Unit Circle and Trigonometry formulas
Prof. S. P. Parmar
→−
↓−
°
−
°
−
↓
→
↓
↓
↓
↓
↓
°
−
↓
↓
→↓
↓ ↓
→↓
°
−
→
↓
↓
↓
↓
↓
↓
°
−
°
−
→
−↓
↓
−↓
↓
↓
−↓
°
−
−↓
↓
→↓
−↓ ↓
→↓
°
−
−↓
→
↓
−↓
− ↓
↓
−↓
°
−
°
−
−↓
→
−↓
↓
− ↓
↓
↓
°
−
−↓
−↓
→↓
−↓ −↓
→↓
°
−
→
−↓
−↓
↓
↓
− ↓
↓
!
°
−
°
−
→
↓
−↓
−↓
↓
↓
−↓
°
−
↓
−↓
→↓
↓ ↓
→↓
°
−
↓
→
−↓
−↓
↓
↓
−↓
°
− Unit Circle and Trigonometry formulas
Prof. S. P. Parmar
Trigonometric Identities 1
Trigonometric Identities
Basic Identities:
sin =
y
r
( 1 )
cos =
x
r
( 2 )
tan =
y
x
=
sin
cos
( 3 )
cot
x
y
=
cos
sin
=
1
tan
( 4 )
sec =
r
x
=
1
cos
( 5 ) csc =
r
y
=
1
sin
( 6 )
x
y
r
4/3
5/4
7/6
2/3
5/3
5/6
3/4
/6, 30
/4, 45
7/4
3/2
cos
sin
1
Unit Circle
0
/3, 60
11/6
/2, 90 Unit Circle and Trigonometry formulas
Prof. S. P. Parmar
Trigonometric Identities 3
Some useful trigonometric relationships:
sin
2
+ cos
2
= 1 ( 7 )
1 + tan
2
= sec
2
(divide [ 7 ] by sin
2
)
1 + cot
2
= csc
2
(divide [ 7 ] by cos
2
)
sin(±) = sin cos ± cos sin
cos () = coscos+ sinsin
( 11 )
tan ()=
tantan
1+ tantan
( 12 )
sin
2
=
1
2
(1 - cos 2)
( 13 )
cos
2
=
1
2
(1 + cos 2)
( 14 )
sin 2 = 2sin cos
cos 2q = cos
2
q - sin
2
q = 2cos
2
q - 1 = 1 - 2sin
2
q ( 16 )
tan 2=
2 tan
1 - tan
2
( 17 )
sin
2
=
1 - cos
2
( 18 )
cos
2
=
1 + cos
2
( 19 ) Unit Circle and Trigonometry formulas
Prof. S. P. Parmar
4 Trigonometric Identities
tan
2
=
1 - cos
sin
=
sin
1 + cos
( 20 )
All of the above relationships are easily proved from Euler's identity
e
i
= cos + isin , ( 21a )
and it also follows that
e
-i
= cos - isin , ( 21b )
cos =
e
i
+ e
-i
2
= cos (-)
( 22 )
sin =
e
i
- e
-i
2i
= - sin (-) ( 23 )
and these identities can be manipulated to get a new and sometimes more
convenient expression for the trigonometric function of an angle. Just in case
you doubt this method, we append some derivations:
cos
2
+ sin
2
=
e
i
+e
-i
2
2
+
e
i
-e
-i
2i
2
=
e
2i
+2+e
-2i
4
+
e
2i
-2+e
-2i
-4
( 24 )
=
e
2i
+2+e
-2i
-e
2i
+2 - e
-2i
4
= 1 .
sin 2=
e
2i
-e
-2i
2i Unit Circle and Trigonometry formulas
Prof. S. P. Parmar
Trigonometric Identities 5
=
e
i
2
-e
-i
2
2i
=
(e
i
+e
-i
)(e
i
-e
-i
)
2i
( 25 )
=(e
i
+e
-i
) sin
= 2 cos sin .
The hyperbolic functions are analogous to the trig functions and often arise in
physical situations. Their relations to the trig functions are as follows:
sinh x =
e
x
- e
-x
2
=
e
-i(ix)
- e
i(ix)
2
= -i sin (ix) , ( 26 )
cosh x =
e
x
+ e
-x
2
=
e
-i(ix
) + e
i(ix)
2
= cos (ix) , ( 27 )
cos x = cosh
x
i
= cosh (-ix) = cosh (ix) , ( 28 )
sin x = i sinh
x
i
= i sinh (-ix) = -i sinh (ix). ( 29 )
(The following laws apply for all
triangles with angles, A, B and C and
opposite side lengths as defined in
the figure.)
Law of Sines:
sin A
a
=
sin B
b
=
sin C
c
( 30 )
Law of Cosines: c
2
= a
2
+ b
2
- 2abcos C ( 31 )
a
b
c
B
CA Unit Circle and Trigonometry formulas
Prof. S. P. Parmar
Reciprocal Identities Ratio or Quotient Identities
sin
cscx
x
1
csc
sinx
x
1
tan
sin
cosx
x
x
cot
cos
sinx
x
x
cos
secx
x
1
sec
cosx
x
1
sin x = cosx tanx cosx = sinx cotx
tan
cotx
x
1
cot
tanx
x
1
Pythagorean Identities Pythagorean Identities in Radical Form
sin cos
22
1
x x sin cosxx 1
2
1
22
tan sec
x x
1
22
cot csc
x x tan secxx
2
1
Note: there are only three, basic Pythagorean identities, the other forms
cos sinxx 1
2
are the same three identities, just arranged in a different order
.
Confunction Identities Odd-Even Identities
Also called negative angle identities
sin cos
2
xx cos sin
2
xx Sin (- x) = -sin x Csc (-x) = -csc x
Cos (- x) = cos x Sec (-x) = sec x
tan cot
2
xx cot tan
2
xx Tan (- x) = -tan x Cot (-x) = -cot x
Sum and Difference Formulas/Identities How to Find Reference Angles
sin( ) sin cos cos sinuv u v u v Step 1: Determine which quadrant the angle is in
sin( ) sin cos cos sinuv u v u v Step 2: Use the appropriate formula
Quad I = is the angle itself
cos( ) cos cos sin sinuv u v u v Quad II = 180 – θ or π - θ
cos( ) cos cos sin sinuv u v u v Quad III = θ – 180 or θ - π
Quad IV = 360 – θ or 2π - θ
tan( )
tan tan
tan tanuv
uv
uv
1
tan( )
tan tan
tan tanuv
uv
uv
1
Unit Circle and Trigonometry formulas
Prof. S. P. Parmar
Reciprocal Identities Ratio or Quotient Identities
sin
cscx
x
1
csc
sinx
x
1
tan
sin
cosx
x
x
cot
cos
sinx
x
x
cos
secx
x
1
sec
cosx
x
1
sin x = cosx tanx cosx = sinx cotx
tan
cotx
x
1
cot
tanx
x
1
Pythagorean Identities Pythagorean Identities in Radical Form
sin cos
22
1x x sin cosxx 1
2
1
22
tan sec
x x
1
22
cot csc
x x tan secxx
2
1
Note: there are only three, basic Pythagorean identities, the other forms
are the same three identities, just arranged in a different order
.
Confunction Identities Odd-Even Identities
Also called negative angle identities
sin cos
2
xx cos sin
2
xx Sin (- x) = -sin x Csc (-x) = -csc x
Cos (- x) = cos x Sec (-x) = sec x
tan cot
2
xx cot tan
2
xx Tan (- x) = -tan x Cot (-x) = -cot x
Right Triangle Definitions of Trigonometric Functions
Note: sin & cos are complementary angles, so are tan & cot and sec & cos, and the sum of complementary angles is 90 degrees.
C
sin θ =
opp
hyp
y
r
csc θ =
hyp
opp
r
y
r y
Hypotenuse opposite
cos θ =
adj
hyp
x
r
sec θ =
hyp
adj
r
x
A
x B
adjacent
tan θ =
opp
adj
y
x
cot θ =
adj
opp
x
y
Adjacent =
is the side adjacent to the angle in consideration. So if we are considering Angle A, then the adjacent side is CB
Trigonometric Values of Special Angles
Degrees 0° 30° 45° 60° 90° 180° 270°
Radians
0
6
4
3
2
3
2
sinθ
0
1
2
2
2
3
2
1
0
-1
cosθ
1
3
2
2
2
1
2
0
-1
0
tanθ
0
3
3
1
3
undefined
0
undefined
To Convert Degrees to Radians, Multiply by
rad
180deg
To Convert Radians to Degrees, Multiply by
180deg
rad
Vocabulary
Cotangent Angles - are two angles with the same terminal side
Reference Angle - is an acute angle formed by terminal side of angle(α) with x-axis
Unit Circle and Trigonometry formulas
Prof. S. P. Parmar
()ππ−π(°=θπ
QudIwnah11 **θ+io2soflKafKK
3
Kh.Kesoj
°
π
π
1.(a)WeareintheQuadrantIIwithareferenceum30fa○6a45acf3DffSVaahtfaum30fanmaDucnumSatuSa
uacfm○snmui○Da○6awVaahtRSdaitfaum30fanmarRucDumiaAAofVoKθIodryerrVoveoθk!jno
al1e9○DsR0uSa6○Da,f6fDfm?faNm30fSya
π○ifyaavfia8a1faitfaDf6fDfm?faum30fa3nIfmVa
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
AmaitnSafQusº0fdagfanmauDfanmarRucDumiaAAVaahtRSdailroicy.rofVoK-IodryerrV.QIodryerrVo/o
KθIodryerrVno
π
:○0Rin○mya
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
π○ifyaaKnowingreferenceanglesspeedsupthingsconsidera?t30o
o
o
o
o
o
o
o
o
+io2soflK*π
θπ
+io2soflK**π
()−ππ
+io2soflK**π
−ππ
+io2soflK**π
π()−π
bπlp1
8πN.g=1
60ºπ Unit Circle and Trigonometry formulas
Prof. S. P. Parmar
g6Aala?numViu3ncmla?nu0○miomVlAa
a
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Ann1fWcigegIafWcr1)lerfcget1dWa1wgtcfcoa1ce16ld0Wdef1sa
a
6
uVDoiVcomarDmiVgoifDoRarugu○DouVo4AicfiVgo55o
a
0
iVeDVgoiVcomagiVeDVgoifDoRarugu○DouVo4AicfiVgo555o
a
)
aruVDoiVcorDmiVgoifDoRarugu○DouVo4AicfiVgo5So
W
1'var&ooh6urouVnafsiguaVouroArDcouVomaVwAVmguaVolug6ofDnDfD.nrWt.)hrQlW
o
o
o
o
o
o
o
o
o
o
o
o
o
+io2soflK*1
%..oaefyvcvmraefbo
hpcbafvcVoiero
,vVfaf*ro
+io2soflK**1
W W Tm31
tcea1de01rgtardef1
1
111T,31
rgtcea1tardef1
fdeiaef1rgfdeiaef1
1.o.
(. a.
+io2soflK***1
W W Tm31
fdeiaef1de01rgfdeiaef1
1
111T,31
tcea1rgtardef1
rgtcea1tardef1
+io2soflK*n1
W W Tm31
rgtcea1de01tardef1
1
111T,31
tcea1rgtardef1
fdeiaef1rgfdeiaef11 Unit Circle and Trigonometry formulas
Prof. S. P. Parmar
!"! 90c6?3fiaπ
rRcAgmut
2
2
πmti11S−=
θSolve )π
h○aS○0IfaitnSafTRuin○mdaiuCfaitfauV○DfrDoruVDalarcsinea○6a1○itaSncfSVa
( )
−=
−
2
2
mtiπmti1mti1
111
θ π
π○ifyaad.osDiVro3aAo6i○Dogaosi2DoglaofD○atAguaVroifaAVcog6DoAVugomufmtD0ooV.ocDgDfsuVDro
g6DoVAs?DfoanofD○atAguaVr0ooo
bfawth1
Kno4raremfcrotlfblo2pideicaVo5vpeodrVferdoicy.rVo.ffanmVaaAmaitnSafQusº0fdaSnmfanSamf3uinIfanma
rRucDumiSaAAAaumcaA6Va
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
.Va9nmca?○DDfSº○mcnm3aum30fSanmait○SfaTRucDumiSVaaAmaitnSafQusº0fdagfamffcaumaum30fanmarRucDumia
AAAaumcaumaum30fanmarRucDumiaA6agtn?tatuSauaSnmfa○6a
a
2
2
−
VaahtfaDf6fDfm?faum30fanSa78acf3DffSagtn?tasfumSaitfaum30fSatuIfauacfm○snmui○Da
○6a6○RDVa
a 9nDSiainsfauD○Rmcya
a //rRucDumiaAAAalum30fanmaDucnumSanSa○mfas○Dfaitumacfm○snmui○Dea
4
5π
a
o ..spideicaou6owicy.rofcoeidficVofVoKo.rVVoicdoatfbfacfm○snmui○Dea
π π
4
7π
a
a :f?○mcainsfauD○Rmcal9RSiaucca.2ai○aitfaºDfIn○RSaum30fSeya
a //rRucDumiaAAAalum30fanmaDucnumSanSa○mfas○Dfaitumacfm○snmui○Dea
4
13
2
4
5 π
π
π
=+ a
o ..spideicaou6owicy.rofcoeidficVofVoKo.rVVoicdoatfbfacfm○snmui○Dea
π π
4
15
2
4
7 π
π
π
=+a
:○0Rin○mya
4
15
,
4
13
,
4
7
,
4
5 ππππ
a
a
Sπ Aπ
Tπ Cπ Unit Circle and Trigonometry formulas
Prof. S. P. Parmar