UNIT CIRCLE - MATHEMATICS- Basic understanding.pdf

samirsinhparmar 121 views 20 slides Sep 09, 2025
Slide 1
Slide 1 of 20
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20

About This Presentation

Unit circle;
Basic mathematics;
Ekam Vartud;
Ekam circle;
Quadrant system in maths;
Quadrant understanding;
Unit circle 0 all information;


Slide Content









! "


#$ %
(, ) " &" ' ( ( # ((
) * %



*( (

sin


=


, cos


=


tan


= 1

+ "


#,- %


#.- %
( #% /&" ' ( (




*( ( (

sin


=


, cos


=


tan


=



sin


=


, cos


=


tan


=3

0(( )12 34 56"(( )*

Unit Circle and Trigonometry formulas
Prof. S. P. Parmar



147 (( -,-$.-8- *
( *
9%21 * 95(
,%2 ,9- -9,
%7("""*:





*




( * "(( " 1 * 5
* "



cos


= −





9 *



"((


7cos






*
sin


=





9 *


"((



+sin


=


*

(" (( tan =




Unit Circle and Trigonometry formulas
Prof. S. P. Parmar






cos sin

cos sin
-#-% - #;-% < -
/6#,-%3/2 12# 76##9-%−32# −12#
/4#$%2/2 2/2
5/4#99$%−2/2 −2/2
/3#.-%12# 3/2
4/3#9-%−12# −3/2


!


/2#8-% - 3/2#9=-% - <
2/3#9-%−12# 3/2
5/3#,--%12# −3/2
3/4#,$%−2/2 2/2
7/4#,$%2/2 −2/2
5/6#$-%−3/2 12# 11/6#,,-% 3/2 −12#

Unit Circle and Trigonometry formulas
Prof. S. P. Parmar


→−
↓−


°


°
















°







→↓
↓ ↓
→↓

°
















°


°



−↓



−↓






−↓

°



−↓



→↓
−↓ ↓
→↓

°



−↓





−↓


− ↓

−↓

°


°



−↓


−↓





− ↓



°



−↓


−↓
→↓
−↓ −↓
→↓

°



−↓


−↓




− ↓



!
°


°






−↓
−↓




−↓

°






−↓
→↓
↓ ↓
→↓

°






−↓


−↓






−↓

°
− Unit Circle and Trigonometry formulas
Prof. S. P. Parmar

Trigonometric Identities 1
Trigonometric Identities
Basic Identities:
sin =
y
r
( 1 )
cos =
x
r
( 2 )
tan =
y
x
=
sin
cos
( 3 )
cot
x
y
=
cos
sin
=
1
tan
( 4 )
sec =
r
x
=
1
cos
( 5 ) csc  =
r
y
=
1
sin
( 6 )
x
y
r

4/3
5/4
7/6
2/3
5/3



5/6
3/4



/6, 30
/4, 45
7/4
3/2








cos
sin
1
Unit Circle
0
/3, 60
11/6
/2, 90 Unit Circle and Trigonometry formulas
Prof. S. P. Parmar

2 Trigonometric Identities
Table of Values from 0 to 2:
degrees 0 30 45 60 90 120 135 150 180
radians 0 /6 /4 /3 /2 2/3 3/4 5/6 
sin
(y/r) 0
1
2
2
2
3
2
1
3
2
2
2
1
2 0
cos
(x/r) 1
3
2
2
2
1
2 0
-
1
2 -
2
2
-
3
2
-1
tan
(y/x) 0
3
3
1
3  -3
-1 -
3
3
0
cot
(x/y)
3
1
3
3
0 -
3
3
-1
-3
sec
(r/x) 1
23
3 2
2

-2
-2
-23
3
-1
csc
(r/y)

2
2
23
3
1
23
3 2
2

Table continued
degrees 210 225 240 270 300 315 330 360
radians 7/6 5/4 4/3 3/2 5/3 7/4 11/6 2
sin
(y/r)
-
1
2
-2
2
-3
2
-1
-3
2
-2
2
-
1
2 0
cos
(x/r)
-3
2
-2
2
-
1
2 0
1
2
2
2
3
2
1
tan
(y/x)
3
3
1
3 -3
-1
-3
3
0
cot
(x/y)
3
1
3
3
0
-3
3
-1
-3
sec
(r/x)
-23
3 -2
-2

2
2
23
3
1
csc
(r/y) -2
-2
-23
3
-1 -
-23
3
-2
-2
 Unit Circle and Trigonometry formulas
Prof. S. P. Parmar

Trigonometric Identities 3
Some useful trigonometric relationships:
sin
2
 + cos
2
= 1 ( 7 )
1 + tan
2
= sec
2
(divide [ 7 ] by sin
2
) 
1 + cot
2
 = csc
2
(divide [ 7 ] by cos
2
) 
sin(±) = sin cos ± cos sin

cos () = coscos+ sinsin
( 11 )
tan ()=
tantan
1+ tantan
( 12 )
sin
2
=
1
2
(1 - cos 2)
( 13 )
cos
2
=
1
2
(1 + cos 2)
( 14 )
sin 2 = 2sin cos 
cos 2q = cos
2
q - sin
2
q = 2cos
2
q - 1 = 1 - 2sin
2
q ( 16 )
tan 2=
2 tan
1 - tan
2

( 17 )
sin

2
=
1 - cos
2
( 18 )
cos

2
=
1 + cos
2
( 19 ) Unit Circle and Trigonometry formulas
Prof. S. P. Parmar

4 Trigonometric Identities
tan

2
=
1 - cos
sin
=
sin
1 + cos
( 20 )
All of the above relationships are easily proved from Euler's identity
e
i
= cos  + isin , ( 21a )
and it also follows that
e
-i
= cos  - isin , ( 21b )
cos =
e
i
+ e
-i
2
= cos (-)
( 22 )
sin =
e
i
- e
-i
2i
= - sin (-) ( 23 )
and these identities can be manipulated to get a new and sometimes more
convenient expression for the trigonometric function of an angle. Just in case
you doubt this method, we append some derivations:
cos
2
+ sin
2
=
e
i
+e
-i
2
2
+
e
i
-e
-i
2i
2
=
e
2i
+2+e
-2i
4
+
e
2i
-2+e
-2i
-4
( 24 )
=
e
2i
+2+e
-2i
-e
2i
+2 - e
-2i
4
= 1 .
sin 2=
e
2i
-e
-2i
2i Unit Circle and Trigonometry formulas
Prof. S. P. Parmar

Trigonometric Identities 5
=
e
i
2
-e
-i
2
2i
=
(e
i
+e
-i
)(e
i
-e
-i
)
2i
( 25 )
=(e
i
+e
-i
) sin
= 2 cos  sin  .
The hyperbolic functions are analogous to the trig functions and often arise in
physical situations. Their relations to the trig functions are as follows:
sinh x =
e
x
- e
-x
2
=
e
-i(ix)
- e
i(ix)
2
= -i sin (ix) , ( 26 )
cosh x =
e
x
+ e
-x
2
=
e
-i(ix
) + e
i(ix)
2
= cos (ix) , ( 27 )
cos x = cosh
x
i
= cosh (-ix) = cosh (ix) , ( 28 )
sin x = i sinh
x
i
= i sinh (-ix) = -i sinh (ix). ( 29 )
(The following laws apply for all
triangles with angles, A, B and C and
opposite side lengths as defined in
the figure.)
Law of Sines:
sin A
a
=
sin B
b
=
sin C
c
( 30 )
Law of Cosines: c
2
= a
2
+ b
2
- 2abcos C ( 31 )
a
b
c
B
CA Unit Circle and Trigonometry formulas
Prof. S. P. Parmar

Saved C: Trigonometry Formulas {Web Page} microsoftword & PDF
Website: www.mathgraphs.com


1
Trigonometric Identities & Formulas
Tutorial Services – Mission del Paso Campus

Reciprocal Identities Ratio or Quotient Identities
sin
cscx
x
1

csc
sinx
x
1

tan
sin
cosx
x
x
cot
cos
sinx
x
x


cos
secx
x
1

sec
cosx
x
1
sin x = cosx tanx cosx = sinx cotx


tan
cotx
x
1

cot
tanx
x
1

Pythagorean Identities Pythagorean Identities in Radical Form

sin cos
22
1
x x sin cosxx 1
2


1
22
tan sec
x x

1
22
cot csc
x x tan secxx 
2
1

Note: there are only three, basic Pythagorean identities, the other forms
cos sinxx 1
2

are the same three identities, just arranged in a different order
.
Confunction Identities Odd-Even Identities
Also called negative angle identities
sin cos

2






xx cos sin

2






xx Sin (- x) = -sin x Csc (-x) = -csc x
Cos (- x) = cos x Sec (-x) = sec x
tan cot

2






xx cot tan

2






xx Tan (- x) = -tan x Cot (-x) = -cot x

sec csc

2






xx csc sec

2






xx Phase Shift =
c
b


Period =
2
b


Sum and Difference Formulas/Identities How to Find Reference Angles
sin( ) sin cos cos sinuv u v u v  Step 1: Determine which quadrant the angle is in
sin( ) sin cos cos sinuv u v u v  Step 2: Use the appropriate formula
Quad I = is the angle itself
cos( ) cos cos sin sinuv u v u v  Quad II = 180 – θ or π - θ
cos( ) cos cos sin sinuv u v u v  Quad III = θ – 180 or θ - π
Quad IV = 360 – θ or 2π - θ
tan( )
tan tan
tan tanuv
uv
uv


1

tan( )
tan tan
tan tanuv
uv
uv


1
Unit Circle and Trigonometry formulas
Prof. S. P. Parmar

Saved C: Trigonometry Formulas {Web Page} microsoftword & PDF
Website: www.mathgraphs.com


2


Reciprocal Identities Ratio or Quotient Identities
sin
cscx
x
1

csc
sinx
x
1

tan
sin
cosx
x
x
cot
cos
sinx
x
x



cos
secx
x
1

sec
cosx
x
1
sin x = cosx tanx cosx = sinx cotx



tan
cotx
x
1

cot
tanx
x
1


Pythagorean Identities Pythagorean Identities in Radical Form
sin cos
22
1x x sin cosxx 1
2


1
22
tan sec
x x

1
22
cot csc
x x tan secxx 
2
1

Note: there are only three, basic Pythagorean identities, the other forms
are the same three identities, just arranged in a different order
.


Confunction Identities Odd-Even Identities
Also called negative angle identities
sin cos

2






xx cos sin

2






xx Sin (- x) = -sin x Csc (-x) = -csc x
Cos (- x) = cos x Sec (-x) = sec x
tan cot

2






xx cot tan

2






xx Tan (- x) = -tan x Cot (-x) = -cot x

sec csc

2






xx csc sec

2






xx


Sum and Difference Formulas - Identities

sin( ) sin cos cos sinuv u v u v  cos( ) cos cos sin sinuv u v u v 
sin( ) sin cos cos sinuv u v u v  cos( ) cos cos sin sinuv u v u v 


tan( )
tan tan
tan tanuv
uv
uv


1

tan( )
tan tan
tan tanuv
uv
uv


1





Unit Circle and Trigonometry formulas
Prof. S. P. Parmar

Saved C: Trigonometry Formulas {Web Page} microsoftword & PDF
Website: www.mathgraphs.com


3


The Unit Circle
90°

Tan = -
3 cot 
3
3
tan = undefined & cot= 0 tan =
3 cot =
3
3


120° 60°

Tan = 1
Tan =- - 1 cot = 1
Cot = -1
135° 45°



2.09 1.57
1.04
150° 2.35 30°

.785
2.61
Tan =

3
3
cot = -
3 .523 tan =
3
3
cot =
3


3.14
Tan= 0 Tan=0 & cot=undef
Cot=undef 180° 360°

3.66 2(3.14 )= 6.28

Tan
3
3
cot =
3 3.925 5.75 tan = 
3
3
cot = -
3

4.186 5.49

4.71 5.23 330°
210°



Tan = -1
Tan = 1 Cot = -1
Cot = 1

225° 315°




240° 270° 300°
Tan = 3 cot =
3
3
tan=undefined tan = -
3 cot = 
3
3

Cot = 0


Definition of Trigonometric Functions concerning the Unit Circle

sin θ =
opp
hyp
y
r
 csc θ =
hyp
opp
r
y


cos θ =
adj
hyp
x
r
 sec θ =
hyp
adj
r
x



tan θ =
opp
adj
y
x
 cot θ =
adj
opp
x
y

Unit Circle and Trigonometry formulas
Prof. S. P. Parmar

Saved C: Trigonometry Formulas {Web Page} microsoftword & PDF
Website: www.mathgraphs.com


4


Right Triangle Definitions of Trigonometric Functions
Note: sin & cos are complementary angles, so are tan & cot and sec & cos, and the sum of complementary angles is 90 degrees.
C
sin θ =
opp
hyp
y
r
 csc θ =
hyp
opp
r
y

r y

Hypotenuse opposite
cos θ =
adj
hyp
x
r
 sec θ =
hyp
adj
r
x

A
x B
adjacent
tan θ =
opp
adj
y
x
 cot θ =
adj
opp
x
y


Adjacent =
is the side adjacent to the angle in consideration. So if we are considering Angle A, then the adjacent side is CB




Trigonometric Values of Special Angles
Degrees 0° 30° 45° 60° 90° 180° 270°

Radians

0



6


4


3




2






3
2



sinθ

0

1
2



2
2

3
2


1

0

-1

cosθ

1

3
2



2
2


1
2


0

-1

0

tanθ

0

3
3



1


3

undefined

0

undefined


To Convert Degrees to Radians, Multiply by
 rad
180deg


To Convert Radians to Degrees, Multiply by
180deg
 rad




Vocabulary
 Cotangent Angles - are two angles with the same terminal side
 Reference Angle - is an acute angle formed by terminal side of angle(α) with x-axis

Unit Circle and Trigonometry formulas
Prof. S. P. Parmar

Saved C: Trigonometry Formulas {Web Page} microsoftword & PDF
Website: www.mathgraphs.com


5

Double Angle Identities Half Angle Identities Power Reducing Formulas
sin sin cos22A AA sin
cos
AA
2
1
2


sin
cos
2
12
2
u
u


cos cos sin2
22
AAA
cos
cos
AA
2
1
2


cos
cos
2
12
2
u
u


cos cos22 1
2
AA
tan
cos
sin
AA
A
2
1


tan
cos
cos
2
12
12
u
u
u


cos si
n212
2
AA

tan
tan
tan
2
2
1
2A
A
A

tan
sin
cos
AA
A
21




Product-to-Sum Formulas Sum-to-Product Formulas
sin sin cos( ) cos( )uv uv uv
1
2

sin sin sin cosxy
xy xy











 2
22

cos cos cos( ) cos( )uv uv uv
1
2

sin sin cos sinxy
xy xy











 2
22

sin cos sin( ) sin( )uv uv uv
1
2

cos cos cos cosxy
xy xy











 2
22

cos sin sin( ) sin( )uv uv uv
1
2

cos cos sin sinxy
xy xy











 2
22

Law of Sines Law of Cosines
Solving Oblique Triangles using sine: AAS, ASA, SSA, SSS, SAS Cosine: SAS, SSS

Standard Form Alternative Form
a
A
b
B
c
C
sin sin sin
 or
sin sin sinA
a
B
b
C
c
 abc bc A
222
2
cos cosA
bca
bc

22 2
2


bac ac
B
222
2cos cosB
acb
ac

222
2


cba abC
222
2
cos cosC
abc
ab

222
2


Finding the Area of non-90degree Triangles

Area of an Oblique Triangle Heron’s Formula

area bc A ab C ac B
1
2
1
2
1
2
sin sin sin
Step 1: Find “s”
s
abc

2

Step 2: Use the formula
area s s a s b s c()()() Unit Circle and Trigonometry formulas
Prof. S. P. Parmar

π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
ValueofDenominator ReferenceAngle
6
?
π
π
30

π
4
?
π
π
45

π
3
?
π
π
60

π
Somehintswhen
dealingwithradians.
6
π
π
4
π
π
3
π
π
2
π
π
2

π
π
4

π
6

π
π
π
6

π
4

π
3

π
6
11π
π
4

π
3

π
π2
π
00
360

π
30

π
45

π
60

120

π
135

π
150

π
210

π
225

π
240

300

π
315

π
330

π
90

π
270

π
()0,1
π
()0,1−
π
()1,0
π
()1,0−
π








2
1
,
2
3
π









2
1
,
2
3
π








−−
2
1
,
2
3
π









2
1
,
2
3
π








2
2
,
2
2
π









2
2
,
2
2
π








−−
2
2
,
2
2
π









2
2
,
2
2
π








2
3
,
2
1
π









2
3
,
2
1
π








−−
2
3
,
2
1
π









2
3
,
2
1
π
3

π
Numeratoris
alwaysππ
Numeratoris
alwaysone
lessthan
denominator
timesππ
Numeratoris
alwaysone
morethan
denominator
timesππ
Numeratoris
alwaysoneless
thantwice
denominator
timesπ
cosine
()−π
sinevalueπ
180

π Unit Circle and Trigonometry formulas
Prof. S. P. Parmar

()ππ−π(°=θπ
QudIwnah11 **θ+io2soflKafKK
3
Kh.Kesoj





°
π
π
1.(a)WeareintheQuadrantIIwithareferenceum30fa○6a45acf3DffSVaahtfaum30fanmaDucnumSatuSa
uacfm○snmui○Da○6awVaahtRSdaitfaum30fanmarRucDumiaAAofVoKθIodryerrVoveoθk!jno
al1e9○DsR0uSa6○Da,f6fDfm?faNm30fSya
π○ifyaavfia8a1faitfaDf6fDfm?faum30fa3nIfmVa
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
π
AmaitnSafQusº0fdagfanmauDfanmarRucDumiaAAVaahtRSdailroicy.rofVoK-IodryerrV.QIodryerrVo/o
KθIodryerrVno
π
:○0Rin○mya
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
π○ifyaaKnowingreferenceanglesspeedsupthingsconsidera?t30o
o
o
o
o
o
o
o
o
+io2soflK*π
θπ
+io2soflK**π
()−ππ
+io2soflK**π
−ππ
+io2soflK**π
π()−π
bπlp1
8πN.g=1
60ºπ Unit Circle and Trigonometry formulas
Prof. S. P. Parmar

g6Aala?numViu3ncmla?nu0○miomVlAa
a
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Ann1fWcigegIafWcr1)lerfcget1dWa1wgtcfcoa1ce16ld0Wdef1sa
a
6
uVDoiVcomarDmiVgoifDoRarugu○DouVo4AicfiVgo55o
a
0
iVeDVgoiVcomagiVeDVgoifDoRarugu○DouVo4AicfiVgo555o
a
)
aruVDoiVcorDmiVgoifDoRarugu○DouVo4AicfiVgo5So
W
1'var&ooh6urouVnafsiguaVouroArDcouVomaVwAVmguaVolug6ofDnDfD.nrWt.)hrQlW
o
o
o
o
o
o
o
o
o
o
o
o
o
+io2soflK*1
%..oaefyvcvmraefbo
hpcbafvcVoiero
,vVfaf*ro
+io2soflK**1
W W Tm31
tcea1de01rgtardef1
1
111T,31
rgtcea1tardef1
fdeiaef1rgfdeiaef1
1.o.
(. a.
+io2soflK***1
W W Tm31
fdeiaef1de01rgfdeiaef1
1
111T,31
tcea1rgtardef1
rgtcea1tardef1
+io2soflK*n1
W W Tm31
rgtcea1de01tardef1
1
111T,31
tcea1rgtardef1
fdeiaef1rgfdeiaef11 Unit Circle and Trigonometry formulas
Prof. S. P. Parmar

!"! 90c6?3fiaπ
rRcAgmut
2
2
πmti11S−=
θSolve )π
h○aS○0IfaitnSafTRuin○mdaiuCfaitfauV○DfrDoruVDalarcsinea○6a1○itaSncfSVa
( )








−=

2
2
mtiπmti1mti1
111
θ π
π○ifyaad.osDiVro3aAo6i○Dogaosi2DoglaofD○atAguaVroifaAVcog6DoAVugomufmtD0ooV.ocDgDfsuVDro
g6DoVAs?DfoanofD○atAguaVr0ooo
bfawth1
Kno4raremfcrotlfblo2pideicaVo5vpeodrVferdoicy.rVo.ffanmVaaAmaitnSafQusº0fdaSnmfanSamf3uinIfanma
rRucDumiSaAAAaumcaA6Va
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
.Va9nmca?○DDfSº○mcnm3aum30fSanmait○SfaTRucDumiSVaaAmaitnSafQusº0fdagfamffcaumaum30fanmarRucDumia
AAAaumcaumaum30fanmarRucDumiaA6agtn?tatuSauaSnmfa○6a
a
2
2

VaahtfaDf6fDfm?faum30fanSa78acf3DffSagtn?tasfumSaitfaum30fSatuIfauacfm○snmui○Da
○6a6○RDVa
a 9nDSiainsfauD○Rmcya
a //rRucDumiaAAAalum30fanmaDucnumSanSa○mfas○Dfaitumacfm○snmui○Dea
4

a
o ..spideicaou6owicy.rofcoeidficVofVoKo.rVVoicdoatfbfacfm○snmui○Dea
π π
4

a
a :f?○mcainsfauD○Rmcal9RSiaucca.2ai○aitfaºDfIn○RSaum30fSeya
a //rRucDumiaAAAalum30fanmaDucnumSanSa○mfas○Dfaitumacfm○snmui○Dea
4
13
2
4
5 π
π
π
=+ a
o ..spideicaou6owicy.rofcoeidficVofVoKo.rVVoicdoatfbfacfm○snmui○Dea
π π
4
15
2
4
7 π
π
π
=+a
:○0Rin○mya
4
15
,
4
13
,
4
7
,
4
5 ππππ
a
a
Sπ Aπ
Tπ Cπ Unit Circle and Trigonometry formulas
Prof. S. P. Parmar

(0,1)
13
13

22
-,
22
 
 
 

22
,
22
 
 
 

13
,
22

 
 
 
13
-,
22

 
 
 
90
π
2
31
-,
22
 
 
 
 
31
,
22
 
 
 
 
 
(1 0)(10)
00 π180
(1,0)(1,0)
00π
3602π
180
31
, -
22
 
 
 
 
31
-,-
22
 
 
 
 
22
-,-
22
 
 
 
 
22
,-
22
 
 
 
 
13
-, -
22
 


13
, -
22
 


270

2
(0,-1)
,
22


 
,
22


  Unit Circle and Trigonometry formulas
Prof. S. P. Parmar