Unit V-Electromagnetic Fields-Normal incidence at a plane dielectric boundary, Normal incidence at a plane conducting boundary

1,902 views 21 slides May 10, 2021
Slide 1
Slide 1 of 21
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21

About This Presentation

Normal incidence at a plane dielectric boundary
Normal incidence at a plane conducting boundary


Slide Content

ELECTROMAGNETIC FIELDS
Dr.K.G.SHANTHI
Professor/ECE
[email protected]
Normal incidence at a plane dielectric boundary
Normal incidence at a plane conducting boundary

REFLECTION OF A PLANE WAVE -Normal incidence
at a plane dielectric boundary
✘Whenaplanewavefromonemediummeetsadifferent
medium,itispartlyreflectedandpartlytransmitted.
✘Theproportionoftheincidentwavethatisreflectedor
transmitteddependsontheconstitutiveparameters
(Permittivityε,Permeabilityμ,Conductivityσ)ofthetwo
mediainvolved.
✘Supposethataplanewavepropagatingalongthe+z-
directionisincidentnormallyontheboundaryz=0
betweendielectricmedium1(z<0)characterizedby
ε
1,μ
1,σ
1anddielectricmedium2(z>0)characterizedby
ε
2,μ
2,σ
2.
2

3
Inthe figure,
subscriptsi,r,andt
denote incident,
reflected, and
transmittedwaves,
respectively.
Incident
wave
Reflected
wave
Transmitted
wave
Z=0
Normal incidence at a plane dielectric boundary

✘(E
i,H
i)istravelingalong+a
zinmedium1istheincidentwave.
✘LetE
ibeelectricfieldstrengthofincidentwave.H
ibeMagneticfield
strengthofincidentwave.
✘(E
r,H
r)istravelingalong-a
zinmedium1isthereflectedwave.
✘E
rbeelectricfieldstrengthofreflectedwave.H
rbeMagneticfield
strengthofreflectedwave.
✘(E
t,H
t)istravelingalong+a
zinmedium2isthetransmittedwave.
✘E
tbeelectricfieldstrengthoftransmittedwave.H
tbeMagneticfield
strengthofincidentwave.
✘Totalfieldsinmedium1comprisesboththeincidentandreflected
fieldsaregivenby
✘Thetotallyreflectedwavecombineswiththeincidentwavetoforma
standingwave.
4
E
1=E
i+E
r
H
1=H
i+H
r

✘Total fields in medium 2 are given by
✘The transmitted wave in medium 2 is a purely traveling wave
and consequently there are no maxima or minima in this region.
✘Attheinterfacez=0,theboundaryconditionsrequirethatthe
tangentialcomponentsofEandHfieldsmustbecontinuous.
Sincethewavesaretransverse,EandHfieldsareentirely
tangentialtotheinterface.
✘Thus at the interface z = 0
✘Relation between E and H is given by
5
E
2=E
t
H
2=H
t
E
1tan=E
2tan
H
1tan=H
2tan
E
i+E
r=E
t andH
i+H
r=H
tH
E

As the direction of reflected wave is
opposite to that of incident wave

6
Thereflectioncoefficient(Г):
Itistheratioofthecomplexamplitude
ofthereflectedwavetothat
oftheincidentwave.

7
The transmission coefficient
Itisdefinedasratioof
transmittedvoltagewave
amplitudetoincidentvoltage
waveamplitude
i.e.E
t/E
i

Important results:
8
1.
2.
3.

✘Considerthewhenmedium
1isaperfectdielectric
(lossless,σ
1=0)and
medium2isaperfect
conductor(σ
2=).
✘Foraperfectconductor,
bothmagneticandelectric
fieldarezero.Hence
intrinsicimpedanceiszero.
9REFLECTION OF A PLANE WAVE -Normal incidence
at a plane conducting boundary  0
2

t
t
H
E

✘The transmission coefficient:
✘The reflection coefficient:
✘Theplanewaveincidentonaperfectconductorgetsentirely
reflectedbecausenofieldexistswithintheconductor.sothere
canbenotransmittedwave(E
2=0).
✘Thetotallyreflectedwavecombineswiththeincidentwaveto
formastandingwave.
10REFLECTION OF A PLANE WAVE -Normal incidence
at a plane conducting boundary

✘Astandingwave"stands"anddoesnottravel;itconsistsoftwo
travelingwaves:E
i-incidentwaveandE
r-reflectedwave.Both
thewaveshavesameamplitudesbuttravelinopposite
directions.
✘Thestandingwaveinmedium1isdenotedas
✘Medium1isaperfectdielectric(lossless,σ
1=0)
✘ThePropagationConstantisgivenby
11

12
Simplifying the above equation,
Hence the Electric field in Medium 1 is given by
The magnetic field component of the wave in Medium 1 is given by
Thestandingwaveinmedium1isdenotedas

Theelectricfieldmagnitudevariessinusoidallywithrespecttodistance
fromthereflectingplane.Itiszeroatthesurfaceandatmultiplesofhalf
wavelength.
1322
0sin0








nnn
z
nz
zatE



|E| is maximum at odd multiples of quarter wavelength.4
)12(
2
2
)12(
2
)12(
2
)12(
1sin

















n
nn
z
nz
zatEE
xam
Where n=0,1,2…….
Where n=0,1,2…….
|H| minimum occurs whenever there is |E| maximum and vice versa.

Standing waves curves
14

Standing-wave ratio -S
✘The ratio of |E
1|
maxto |E
1|
min(or) | H
1|
maxto |H
1|
minis called the
standing-wave ratio
15

16

17

18

19
THANK YOU

20

21