Unit1 GPS Introduction

SravyaGVNSK 369 views 85 slides May 24, 2021
Slide 1
Slide 1 of 85
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85

About This Presentation

Basic concept, System Architecture, GPS and GLONASS Overview, Satellite Navigation, Time and GPS, User Position and Velocity Calculations, GPS Satellite Constellation, Operation Segment, User Receiving Equipment, Space Segment Phased Development, GPS Aided Geo augmented Navigation (GAGAN) Architectu...


Slide Content

GlobalPositioningSystem
UNIT-I
Introduction
-By
GVNSKSravya
AssistantProfessor
ECEDept.
GNITS

Contents
▶Basicconcept
▶SystemArchitecture
▶GPSandGLONASSOverview
▶SatelliteNavigation
▶TimeandGPS
▶UserPositionandVelocityCalculations
▶GPSSatelliteConstellation
▶OperationSegment
▶UserReceivingEquipment
▶SpaceSegmentPhasedDevelopment
▶GPSAidedGeoaugmentedNavigation(GAGAN)Architecture.
2

BasicConceptofGPS
▶Navigationreferstotheartofdeterminingthe
currentlocationofanobjectwhichcouldbein
space,intheair,onland,onorunderthesurfaceof
abodyofwater,orunderground.
3

Contd…
▶NavigationModesInordertogetfromAtoBthereare
basicallyfivebasicnavigationmodes:
▶Pilotage
▶CelestialNavigation
▶DeadReckoning
▶RadioNavigation
▶InertialNavigation
4

Contd…
▶SatelliteNavigationorSatnavSystemisasystemthatuses
satellitestoprovideautonomousgeo-spatialpositioning.
▶Itallowssmallelectronicreceiverstodeterminetheirlocationto
highprecisionusingtimesignalstransmittedalongalineofsight
byradiofromsatellites.
5

Contd…
▶GNSSstandsforGlobalNavigationSatelliteSystem,andisthestandard
generic term for satellite navigation systems that provide autonomousgeo-
spatialpositioningwithglobalcoverage.Thistermincludese.g.theGPS,
GLONASS,Galileo,Beidou,IRNSSandotherregionalnavigationsystems.
6

GPS
▶GPSTheGPSispartofasatellite-basednavigationsystem
developedbytheU.S.DepartmentofDefensein1995.
7

Contd…
▶OfficialnameofGPSisNavigationalSatelliteTimingAnd
RangingGlobalPositioningSystem(NAVSTARGPS).
▶GlobalPositioningSystems(GPS)isaformofGlobal
NavigationSatelliteSystem(GNSS).
▶ConsistsoftwodozenGPSsatellitesinMediumEarthOrbit
(Theregionofspacebetween2000kmand35,786km)
8

Contd…
knownasasatellite
▶Twodozensatellitesworkinginunisonare
constellation
StatesAir
▶Thisconstellation iscurrently controlled by theUnited
Force50thSpaceWing
▶Itcostsabout$750milliontomanageandmaintainthesystemper
year
▶Mainlyusedfornavigation,map-makingandsurveying
9

WorkingofGPS
▶Eachsatellitesbroadcastradiosignalswiththeirlocationandtime.
▶GPSreceiversreceivesradiosignals,andusedthesedatatocalculateitsdistancefromatleast
foursatellites.
▶Distance=Speed*Travel time
▶GPSradiosignalsaretravelatthespeed oflight.
▶Bothsatellitesandreceivergeneratethesamepseudocodesignals.
▶Differenceb/wthe2signalsisthetraveltime.
▶ThenthereceiverusesTrilaterationmethodtodefineitsexactlocationonEarth.
10

Trilateration Process
▶Ifweknowthedistanceb/wthesatelliteandthereceiverfor:1
satellite,thereceiver’slocationisknownwithinasphere.
11

Contd…
▶2satellite,thereceiver’slocationisknownwithin3Dring.
12

Contd…
▶3satellite,thereceiver’slocationissomewhereonatmosttwo
3Dregions.
13

Contd…
▶4satellite,theregiongetssmallerbecauseofthesphereofthe
newsatellite.
14

Architecture of GPS
▶ArchitectureofGPSconsistsofthreesegments:
Spacesegment(SS)
Sontrolsegment(CS)
Usersegment(US)
15

Contd…
16

Space Segment
▶Minimumof24satellites
(currently32)inorbit
aroundearthataltitude
20,000km.
▶Ittransmitradio-
navigationsignals,and
storeandretransmitthe
navigationmessagesent
bythecontrolsegment.
17

ControlSegment
controlstation,
▶Combinationofamaster
four
dedicatedgroundantennas
andsixdedicatedmonitor
stations.
▶Responsiblefortheproper
functioningofallthe
operationofGPSsuchas
changingunhealthysatellite
withahealthyone.
18

Components of ControlSegment 19

UserSegment
▶Comprises of thousand of
military users who uses the
secure GPS Precise Positioning
service, and millions of civil,
commercialandscientificusers.
20

GLONASS
GLONASS
▶AsecondconfigurationforglobalpositioningistheGlobalOrbiting
NavigationSatelliteSystem(GLONASS),placedinorbit bythe
formerSovietUnion,andnowmaintainedby the RussianRepublic.
20

GPSandGLONASSOverview
GPSOrbits
▶ThefullyoperationalGPSincludes
32ormoreactivesatellites
approximatelyuniformlydispersed
aroundsixcircularorbitswithfour
ormoresatelliteseach.
GLONASSOrbits
▶GLONASShas24satellites,distributed
approximatelyuniformlyinthreeorbital
planes(asopposedtosixforGPS)of
eightsatelliteseach(fourforGPS).
21

Contd…
GPSOrbits
▶Theorbitsareinclinedatanangle
of 55°relative to the equator and
are separated from each other by
60°.
GLONASSOrbits
▶Each orbital plane has a
nominal inclination of 64.8°
relativetotheequator,andthe
three orbital planes are
separated from each other by
multiples of 120°right
ascension.
22

Contd…
GPSOrbits
▶Theorbitsarenongeostationary
andapproximatelycircular,with
radii of 26,560 km and orbital
periods of one-half sidereal day
(≈11.967h).
GLONASSOrbits
▶GLONASS orbits have smaller
radii than GPS orbits, about
25,510 km, and a satellite
period of revolution of
approximately 8/17 of a
siderealday.
23

Contd…
▶Theoretically, three or more GPS satellites will always be visible
frommostpointson theearth’ssurface.
▶FourormoreGPSsatellitescanbeusedtodetermineanobserver’s
positionanywhereontheearth’ssurface24h/day.
24

Contd…
GPSSignals
▶The GPS system uses Code
division multiplexing of
independentsatellitesignals.
GLONASSSignals
▶TheGLONASSsystemusesfrequency-
division multiplexing of independent
satellitesignals.
25

Contd…
GPS Signals
Each GPS satellite transmits two
spread spectrum, L-band carrier
signals on two of the legacy L-
band frequencies—an L1 signal
with carrier frequency f1 = 1575.42
MHz and an L2 signal with carrier
frequency f2 = 1227.6 MHz.
GLONASSSignals
▶Its two carrier signals corresponding to
L1 and L2 have frequencies f1 = (1.602 +
9k/16) GHz and f2 = (1.246 + 7k/16)
GHz, where k = −7, −6, . . . 5, 6 is the
satellite number. These frequencies lie in
two bands at 1.598–1.605 GHz (L1) and
1.242–1.248GHz(L2).
26

Contd…
GPSSignals
▶Thesetwofrequenciesareintegral
multiplesf1=1540f0andf2=1200f0
ofabasefrequency f0=1.023MHz
▶TheL1signalfromeachsatelliteuses
binaryphase-shiftkeying(BPSK),
modulatedbytwopseudorandom
noise(PRN).
GLONASSSignals
▶The L1 code is modulated by a C/A-
code(chiprate=0.511MHz)andbya
P-code (chip rate = 5.11 MHz). L2
code is presently modulated only by
theP-code.
27

Contd…
GPSSignals
▶Theinitialsatelliteconfigurationused
SAwithpseudorandomditheringof
theonboardtimebutthiswas
discontinuedonMay1,2000.
GLONASSSignals
▶GLONASSdoesnotuseanyformof
SA.
28

GPS Satellite Constellation 29
Fig.GPSSatelliteConstellation

Contd… 30
Fig.GPS SatelliteConstellationPlanarProjection

Contd…
OrbitsandSatelliteConstellation
▶GPSSatelliteConstellationconsistsof24 operationalsatellitesin6orbitalplanes.
▶Orbitalperiodisof1 siderealday(11hr.58mins.).
▶AngleofInclinationis55degreesw.r.tequator.
▶Equallyspacedaroundtheequatorata60degreesseparation.Orbitalradius
26,600km.(distancefromcenter oftheearthtosat.)
▶Satellitegeometrytoprovidegoodobservabilitytousersthroughout theworld
31

Contd…
OrbitsandSatelliteConstellation
▶Thisgeometry ismeasuredbyaparametercalledDoP(DilutionOfPrecision).
▶Atleast4SV’sineachorbit.
▶Orbitalperiodis12hours.
▶ReceivesinformationfromCS.
▶Broadcastsone-wayrangingsignals.
32

Space Segment Phased Development
▶Thecontinuingdevelopmentofthecontrolandspacesegmentshas
beenphasedin overmanyyears,startinginthemid-1970s.
▶Thisdevelopmentstartedwithaconceptvalidationphaseandhas
progressedtoseveralproductionphases.
▶Thesatellitesassociatedwitheachphaseofdevelopmentarecalleda
block ofsatellites.
33

SatelliteBlockDevelopment
▶Fivesatelliteblocks havebeen developedtodate.
▶TheinitialconceptvalidationsatelliteswerecalledBlock I.
▶ThelastremainingprototypeBlockIsatellitewasdisposedof in late1995.
▶BlockIIsatellitesaretheinitialproductionsatellites,whileBlockIIAreferstoupgraded
productionsatellites.
▶BlockIIRsatellites,denotedas thereplenishmentsatellites.
▶ModifiedBlockIIRversionofsatellitesisdenotedasBlockIIR-M.
▶BlockIIFsatellitesarereferredtoas thefollow-onor sustainmentsatellites.
▶Sincesatellitesarelaunchedonlyasreplacementsforasatellitefailure,theirschedulingis
difficulttopredict,especiallywhen mostsatelliteshavefaroutlivedtheirdesignlifetime.
34

BlockI,Navigationdevelopment
Satellites
▶Fivesatelliteblockshavebeendeveloped todate.
▶Elevensatellitesof thiskindwerelaunchedbetween1978and1985.
▶TheSelectiveAvailability(S/A)wasnotimplemented.
▶Theyweighedabout845Kgandhadaplannedaveragelifeof4.5years,
although someofthemlastedup to 10.
▶Theywerecapableofgivingpositioningservicefor3or4dayswithout
anycontact withtheControlCentre.
35

BlockIIandIIA,OperationalSatellites
▶Theyconsistof 28satellitesintotalthatwerelaunchedfrom1989onand
manyarestilloperating.
▶They weighabout1500 Kgandhaveaplannedaveragelifeof7.5years.
▶Since1990, animprovedversionwasused,BlockIIA(advanced),with
capabilityofmutualcommunication.
▶Theyare abletosupplypositioningservicefor180 dayswithnocontact
withthecontrolsegment.
▶However,undernormaloperatingmode,theycommunicatedaily.
36

Block IIR, Replacement Operational
Satellites
▶From1997,these satellitesarebeingusedassparesforBlockII.
▶BlockIIRisformedbyasetof20satellites,althoughitcouldbe
increasedby 6 more.
▶They weighabout2000Kgandhaveaplannedaveragelifespanof10
years.
▶Thesesatellitescandeterminetheirorbitsandcomputetheirown
navigationmessageautonomously.
37

Block IIR-M, Modernized Satellites
▶They include anewmilitarysignalandthemorerobustcivilsignal.
▶TherewillbeeightsatellitesintheBlockIIR-Mseries.
▶ThefirstsatelliteofthisblockwaslaunchedonSeptember26,2005.
38

Block IIF, Follow-on Operational
Satellites
▶Thefirstsatellite(SVN62)waslaunchedonMay28th2010.
▶Thesesatellitesincludethe third civilsignalon theL5band.
▶Theirtheoreticalaveragelifeisabout12 years,andtheywillhaveinertial
navigation.
39

Block III (GPS III)systems
▶ThenewgenerationofGPSsatellitesintroducessignificant
enhancementsinnavigationcapabilities,byimprovinginteroperability.
▶They providethefourthcivilsignalon L1band.
▶Thefirstlaunchis expectedasof2017.
40

Navigation Payload Overview
▶Thenavigationpayloadisresponsibleforthegenerationandtransmission
ofrangingcodesandnavigationdataontheL1,L2andL5frequenciesto
theusersegment.
▶Controlofthenavigationpayloadistakenfromreceptionofthepredicted
navigationdataandothercontroldatafromtheCSviathetracking,
telemetry,andcontrol(TT&C)links.
41

SatelliteNavigationPayload 42

Contd…
▶Atomicfrequencystandards(AFSs)areusedasthebasisforgenerating
theextremelystablerangingcodesandcarrierfrequenciestransmittedby
thepayload.
▶Thenavigationdataunit(NDU),knownasthemissiondataunitcontains
therangingcodegeneratorsthatgeneratetheC/AcodeandP(Y)codes.
43

Contd…
▶ThecombinedbasebandrangingsignalsarethensenttotheL-band
subsystemwheretheyaremodulatedontotheL-bandcarrierfrequencies
andamplifiedfortransmissiontotheuser.
44

Contd…
▶TheL-bandsubsystemcontainsnumerouscomponents,includingtheL1
andL2transmittersandassociatedantenna.
▶TheNDUprocessoralsointerfacestothecrosslinkreceiver/transmitter
forintersatellitecommunication,aswellasrangingonBlockIIRand
laterversions.
▶Thiscrosslinkreceiver/transmitterusesaseparateantennaandfeed
system.
45

Control Segment (Operating Segment)
▶CSComprisesof2Mastercontrolstations(MCS),16monitoringstations
and 12 groundantennas.
MonitoringStation
andtheir
▶Check position,speed,altitudeand healthoftrackedSV’s.
▶CollectsGPSsignals,navigationdata,atmosphericdata
variations
▶Sends collected informationtoMCS.
46

Contd…
MasterControlStation
▶ComputesspacecoordinatesofSV’s.
▶Evaluates healthofSV’s.
▶Generatesnavigationdata.
▶Performssatellitemaintenance.
▶Resolves satelliteperformances.
▶MaintainsGPSconstellation.
▶ThroughGroundAntennas,MCSprovidescommands,keepscontrolanduploadsnavigation
messagesandotherdatatotheGPSsatellites.
47

Contd…
GroundAntennas
▶Collects,storesdatafromMCS.
▶CSprovidescommands andkeeps controlonsatellites.
▶UploadstotheGPSsatellitesusingSbandsignals(2-4GHz)Computesspacecoordinatesof
SV’s.
48

UserSegment(UserReceiverEquipment)
▶TheusersegmentofGPSsystem
consistsofaGPSreceiver.
▶ProcessestheLbandsignals
transmittedfromsatellitestodetermine
PVT.
▶GPSreceiversfundamentallyconsistof
3basicconstituents-antenna,GPS
receiver andacontroller.
49

GAGAN(GPS aided GEO Augmented
Navigation) Architecture
50
Fig.ArchitectureofGAGAN

Contd… 51
▶Itisanimplementationofregionalsatellitebasedaugmentation
system(SBAS)jointlydevelopedbyISROandAAItoprovidethebest
possiblenavigationalservicesoverIndianFIR(FlightInformationRegion)
withthecapabilityofexpandingtoneighboringFIRs.
GroundSegment
▶DevelopedtoprovideaccuracyofGNSSreceiver
▶GAGANconsistsof3basiccomponents-Spacesegment
andUserSegment

Contd… 52
Spacesegmentconsistsof
(i)3GEOsatellites
(ii)GPSconstellation

Contd… 53
Groundsegmentconsistsof
▶INRES(IndianReferenceStations)
▶INMCC(IndianMasterControlStations)
▶INLUS(IndianNavigationlandearthuplinkstations)

Contd… 54
GAGANUserSegmentConsistsof
▶GAGAN-enabledGPSreceivers,withthesametechnologyas
WAASreceivers,capabletousetheGAGANSignal-in-Space
(SIS).

Satellites of GAGAN 55
▶GSAT-8isanIndiangeostationarysatellites,whichwas
successfullylaunchedon21May2011andispositionedin
geosynchronousorbitat55degreesElongitude.
▶GSAT-10isaugmentedtocarry12KuBand,12CBandand12
ExtendedCBandtranspondersandaGAGANpayload.

Contd… 56
▶Thespacecraftemployspowerhandlingcapabilityofaround6kW
withaliftoffmassof3400kg.GSAT-10wassuccessfullylaunched
on29September2012.
▶GSAT-15carries24KubandtransponderswithIndiacoverage
beamandaGAGANpayload,wassuccessfullylaunchedon10
November2015.

Time and GPS
CoordinatedUniversalTimeGeneration
▶CoordinatedUniversalTime(UTC)isthetimescalebasedontheatomic
second,butoccasionallycorrectedbytheinsertionofleapseconds,soasto
keepitapproximatelysynchronizedwiththeearth’srotation.
▶TheleapsecondadjustmentskeepUTCwithin0.9sofUT1,whichisa
timescalebasedontheearth’saxialspin.
▶UT1isameasureofthetrueangularorientationoftheearthinspace.
Becausetheearthdoesnotspinatexactlyaconstantrate,UT1isnota
uniformtimescale.
57

Time and GPS
GPSSystemTime
▶ThetimescaletowhichGPSsignalsarereferencedisreferredtoasGPS
time.
▶GPStimeisderivedfromacompositeor“paper”clockthatconsistsofall
operationalmonitorstationandsatelliteatomicclocks.
58

Time and GPS
GPSSystemTime
▶Overthelongrun,itissteeredtokeepitwithinabout1µsofUTC,as
maintainedbythemasterclockattheU.S.NavalObservatory,ignoringthe
UTCleapseconds.
▶Attheintegersecondlevel,GPStimeequaledUTCin1980.However,due
totheleapsecondsthathavebeeninsertedintoUTC,GPStimewasahead
ofUTCby14sinFebruary2006.
59

Time and GPS
ReceiverComputationOfUTC
▶TheparametersneededtocalculateUTCfromGPStimearefoundin
subframe4ofthenavigationdatamessage.
▶Thesedataincludeanoticetotheuserregardingthescheduledfuture
orrecentpast(relativetothenavigationmessageupload)valueof
thedeltatimeduetoleapseconds,togetherwiththeweeknumber
WNLSF(WeeknumberLeapsecondfuture)andthedaynumberDN
attheendofwhichtheleapsecondbecomeseffective.
60

Time and GPS
ReceiverComputationOfUTC
▶Thelattertwoquantitiesareknownastheeffectivitytimeof
theleapsecond.“Day1”isdefinedasthefirstdayrelativeto
theend/startofaweekandtheWNLSFvalueconsistsofthe
eightleastsignificantbits(LSBs)ofthefullweeknumber.
61

Satellite Navigation
▶TheGPSiswidelyusedinnavigation.Itsaugmentationwith
otherspace-basedsatellitesisthefutureofnavigation.
NavigationSolution(Two-DimensionalExample)
Antenna location in two dimensions can be calculated by
using range measurements.
62

Symmetric Solution Using Two
Transmitters on Land.
In this case, the receiver and
two transmitters are located
in the same plane, as shown
in Fig. with known positions
x1, y1 and x2, y2.
63
Fig. Two transmitters with known two
dimensional positions

Contd…
Ranges R1 and R2 of two transmitters from the user position are calculated as
R1 = c AT1
R2 = c AT2
Where c = speed of light (0.299792458 m/ns)
AT1 = time taken for the radio wave to travel from transmitter 1 to the user
AT2 = time taken for the radio wave to travel from transmitter 2 to the user
(X , Y )= user position
64

Dilution of Precision
TheaccuracywithwhichapositioncanbedeterminedusingGPS
dependsontheaccuracyoftheindividualpseudorangemeasurements
andontheotherhanditalsodependsupontheGPSsatellite
geometry.
ThisistermedastheDilutionofPrecision(DOP).
SatelliteGeometrycanaffectthequalityofGPSsignalsandaccuracy
ofreceivertrilateration.
65

Contd…
There are 5 distinct kinds of DOP.
•GDOPGeometric Dilution of Precision
•PDOPPosition Dilution of Precision
•TDOPTime Dilution of Precision
•VDOPVertical Dilution of Precision
•HDOPHorizontal Dilution of Precision
66

Contd…
There are 5 distinct kinds of DOP.
•GDOPGeometric Dilution of Precision (Latitude, Longitude, Altitude and
clock)
•PDOPPosition Dilution of Precision (Latitude, Longitude, Altitude )
•TDOPTime Dilution of Precision (Clock)
•VDOPVertical Dilution of Precision (Altitude)
•HDOPHorizontal Dilution of Precision (Latitude and Longitude Positions)
67

Contd… 68

Computation of DOP Values
As a first step in computing DOP, consider the unit vectors from the receiver
to satellite i
Where,
(x,y,z) represents unknown position of the receiver
(xi,yi,zi) represents known positions of the satellite
69

Computation of DOP Values
Formulate the matrix, A, which (for 4 pseudo range measurement residual
equations) is
70

Computation of DOP Values
ThefirstthreeelementsofeachrowofAarethecomponentsofaunitvector
fromthereceivertotheindicatedsatellite.Thelastelementofeachrow
referstothepartialderivativeofpseudorangew.r.t.receiver'sclockbias.
Q, as thecovariance matrixresulting from theleast-squares normal matrix
 elements of Q are
71

Computation of DOP Values 72
PDOP, TDOP and GDOP are given by
GDOP is the square root of the diagonal elements of the matrix Q.

Contd… of DOP 73
DOP gives the geometric orientation of the satellites w.r.t the antennas.
Values of the DOPs are used for the GPS measurement quality
Smaller values of DOP gives the better satellite geometry and accurate user
positions, values greater than 5 suggest poor satellite geometry and least
accurate user positions.
Ideal satellite geometry has one satellite directly above the antenna and
remaining three satellites are spread by 120 degree apart.

Satellite Geometry 74
a) Ideal Satellite Geometry

Satellite Geometry 75
b) Poor Satellite Geometry

User Position Calculations With No Errors
Position calculation with no errors is given as
ρr= pseudorange(known),
x, y, z = satellite position coordinates (known),
X, Y, Z = user position coordinates (unknown),
where x, y, z, X, Y, Z are in the earth-centered, earth-fixed (ECEF) coordinate system.
76

Contd…
Squaring both sides yields
where r equals the radius of earth and Crris the clock bias correction.
77

Contd…
The four unknowns are (X, Y, Z, Crr).
position (x, y, z) is calculated from ephemeris data.
For four satellites, the above Eq becomes
78

Contd…
With four unknown state vectors X, Y, Z and Crr
We can rewrite the four equations in matrix form as
79

Contd…
Then we pre multiply both sides of above equation with M
-1
80

User Velocity Calculations With No Errors
The equation in this case is given as
81

Contd… 82

Contd…
The above equation is w.r.t one satellite,
Similarly the equation for 3 satellites is given as
83

Contd…
Uvis the User velocity
N is the Matrix
Pseudo range rate
84
Tags