USFD-IRSE PROB - Updated.ppt

576 views 144 slides Aug 14, 2023
Slide 1
Slide 1 of 144
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144

About This Presentation

document


Slide Content

USFD
in
Rails & Welds
1

DEVELOPMENT OFFLAWS IN
RAILS
Developmentofflawsinrailsisinevitable
Twomainreasonsaretheinherentdefects
andfatigueofrailsduetopassageof
traffic
Railstressesareincreasingdaybyday
duetowhichmechanicalpropertiesofrail
steelarebeingexceededwithpassageof
wheels
2

DefectsinRails
SURFACEDEFECTS
INTERNALDEFECTS
3

VARIOUS PLANES FOR DEFECT
LOCATION
TRANSVERSE PLANE
LONGITUDINAL PLANE
HORIZONTAL
PLANE
4

CRACK IN HEAD
WEB JUNCTION
CRACK IN HEAD
CRACK IN WEB
5

Transverse defect
6

Gauge face corner defect
7

Non Gauge Face side defect
8

Longitudinal Vertical defect
9

Star Crack or Bolt Hole Crack
10

PROBES
11

Probes Used for Ultrasonic Testing
0
0
orNORMALProbe(4MHZ)
70
0
ForwardProbe(2MHz)
70
0
BackwardProbe(2MHz)
70
0
Shifted/ForwardProbe(2MHz)
70
0
Shifted/BackwardProbe(2MHz)
45
0
Probe(2MHz)
45
0
TandemTestRig(2MHz)
70
0
MiniatureProbe(2MHz)
0
0
Probe(2MHZ)
12

BASIC PRINCIPLES
of
USFD TESTING
15

16

SONIC & SOUND
Sonicisrelatedtoorusingsound.
Soundwavesarecategorizedbytheir
frequenciesas.....
Subsonic(lessthan20Hz)
SONIC(BETWEEN20&20,000Hz)
Ultrasonic(>20,000Hz)
SoundWavesareMechanicalWaves
OtherWavesareElectroMagnetic
Waves
17

CLASSIFICATION OF SOUND WAVES
LONGITUDINAL ORCOMPRESSION
WAVES
TRANSVERSEORSHEARWAVES
SURFACEWAVES
18

LONGITUDINAL WAVES
Vibrationoftheparticlesofthematerial
areinthesamedirectionasthatof
propagationofthewave
Soundenergyistransmittedfromone
particletoanotherbyalternating
compression&hencethesearealso
calledcompressionwaves.
Thesecantravelthroughsolids,liquid
&gases.
Thesearethefastestofallwavetypes.
19

20

TRANSVERSE WAVES
Vibrationoftheparticlesofthematerial
areinadirectionperpendiculartothe
directionofpropagationofthewave
Energyistransmittedfromoneparticle
toanotherbyshear.Hencealsoknownas
shearwaves.
Thesecantravelonlythroughsolidsand
onsurfaceofliquids.Thesecannottravel
throughliquidsandgasesastheydonot
haveanyshearstrength.
Theirvelocityinanygivenmediais
approx.halfthevelocityoflongitudinal
Waves.
21

22

SURFACE WAVES
Theseareconfinedtoaverythinlayerof
materialsurfaceandarethereforenot
importantfromthepointofviewofrail
flawdetection
23

WAVE VELOCITIESMEDIUM VELOCITY IN m/sec
LONG. WAVES TRANS. WAVES
STEEL 5900 3230
COPPER 4700 2260
PERSPEX 2730 1430
WATER 1480 CAN'T TRAVEL
AIR 330 CAN'T TRAVEL
24

WAVE PROPAGATION
Velocityoftravelvdependsupon
thematerialthroughwhichthewave
istopropagate
V=f*
HIGHERTHEFREQUENCY,LOWER
WILLBETHEWAVELENGTH
25

WAVE PROPAGATION
Reflection
Refraction
Transformation
AcousticImpedance
Attenuation
26

TRASFORMATION OF WAVES
i

MEDIUM -I
MEDIUM -II
INCIDENT
WAVE
r
REFLECTED
WAVE
REFRACTED
WAVE
PERSPEX, v
1
STEEL, v
2
i=r2
1
sin
sin
v
vi


27

Mode Conversion
Whenalongitudinalwavehitsaninterface
atanangle,someoftheenergycancause
particlemovementinthetransverse
directiontostartashear(transverse)
wave.
Modeconversion,occurswhenawave
encountersaninterfacebetweenmaterial
ofdifferentaccousticimpedanceandthe
incidentangleisnotnormaltointerface.
28

TRASFORMATION OF WAVES
i
MEDIUM -I
MEDIUM -II
INCIDENT
WAVE
r
T
REFLECTED
WAVES
REFRACTED
WAVE
PERSPEX, v
1
STEEL, v
2
r
L
T
L
T
L

T

L
L
v
L1=2730 m/s
v
T1=1430 m/s
v
L2=5900 m/s
v
T2=3230 m/s
29

TRASFORMATION OF WAVES1
sin
sin
1
1

L
L
Lv
v
r
i
i
MEDIUM -I
MEDIUM -II
r
L
LL
v
L1=2730 m/s
v
T1=1430 m/s
v
L2=5900 m/s
v
T2=3230 m/s
30

TRASFORMATION OF WAVES1
1
sin
sin
T
L
Tv
v
r
i

i
MEDIUM -I
MEDIUM -II
r
T
TL
v
L1=2730 m/s
v
T1=1430 m/s
v
L2=5900 m/s
v
T2=3230 m/s
31

TRASFORMATION OF WAVES2
1
sin
sin
L
L
Lv
vi


i
MEDIUM -I
MEDIUM -II
L

L
L
v
L1=2730 m/s
v
T1=1430 m/s
v
L2=5900 m/s
v
T2=3230 m/s
32

TRASFORMATION OF WAVES2
1
sin
sin
T
L
Tv
vi


i
MEDIUM -I
MEDIUM -II
T

T
L
v
L1=2730 m/s
v
T1=1430 m/s
v
L2=5900 m/s
v
T2=3230 m/s
33

TRASFORMATION OF WAVES
i
c1
MEDIUM -I
MEDIUM -II
INCIDENT
WAVE
PERSPEX, v
1
STEEL, v
2
T
L

T

L
L
i
c1=27.7
0

L=90
0

T=33.3
0
TOTAL
INTERNAL
REFLECTION
34

TRASFORMATION OF WAVES
i
c2
MEDIUM -I
MEDIUM -II
INCIDENT
WAVE
PERSPEX, v
1
STEEL, v
2
TL

T

L
L
i
c2=57.7
0

L=90
0

T=90
0
TOTAL
INTERNAL
REFLECTION
35

Total internal reflection
FIRSTCRITICALANGLE-27.70
SECONDCRITICALANGLE-57.7O
Thisphenomenonisusedfortestingby
AngularProbes
37

USABLE RANGE FOR ANGLE BEAM
PROBES
38

ACOUSTIC IMPEDANCE
Itisapropertyofthematerial
whichdeterminesitsaffinityfor
propagationofsoundwaves.
Theacousticimpedance(Z)ofamaterialis
definedastheproductofdensity(p)and
acousticvelocity(V)ofthatmaterial.
Z=pV
39

ACOUSTIC IMPEDANCEMATERIAL ACCOUSTIC IMPEDENCE
STEEL 4.68
CAST IRON 2.5 TO 4.0
ALUMINIUM 1.72
AIR 0.0004
WATER 0.149
MACHINE OIL 0.15
PERSPEX 0.32
40

Reflection and Transmission
Coefficients
Ultrasonicwavesarereflectedat
boundarieswherethereisadifference
inacousticimpedance(Z).
Fractionalamountoftransmittedsound
energyplusthefractionalamountof
reflectedsoundenergyequalsone.
Thegreatertheimpedancemismatch,
thegreaterthepercentageofenergy
thatwillbereflected.
41


Risreflectioncoefficient.
Multiplyingthereflectioncoefficientby100,yields
theamountofenergyreflectedasapercentage
oftheoriginalenergy.
Sincetheamountofreflectedenergyplusthe
transmittedenergymustequalthetotalamount
ofincidentenergy,thetransmissioncoefficientis
calculatedbysimplysubtractingthereflection
coefficientfromone.
Reflection and Transmission
Coefficients2
12
12









ZZ
ZZ
R
42

REFLECTIONATINTERFACESMEDIUM 1 MEDIUM 2 % REFLECTED % REFRACTED
STEEL AIR 100 0
WATER STEEL 88 12
STEEL PERSPEX 76 24
PERSPEX WATER 13.3 86.7
PERSPEX AIR 100 0
AIR WATER 99.9 0.1
44

Transducer
88%
1
0
0
%
1
2
%
1
2
%
1
.
4
4
%
10.56%
STEEL
WATER
AIR
45

COUPLANT
46

Whensoundtravelthroughamedium,its
intensitydiminisheswithdistance.
Thecombinedeffectofscatteringandabsorption
iscalledAttenuation.
Absorption..isenergyconsumedintheprocessof
causingvibrationsoftheparticlesofmatter.
Scattering..isenergylostbydispersionofwavesall
overinthematerial.
Ultrasonicattenuationis,therefore,therateof
decayofthewaveasitpropagatethrough
material.
ATTENUATION
47

ATTENUATION
ATTENUATION =D
3
f
4
/V
4
i.e..A=D
3
/

WhereD=avg.Grainsizeofthe
material
Thuslossofenergyismorefor
Coarsematerial..welds
Smallerwavelengths (orhigher
frequencies)inagivenmaterial&for
shearwavesascomparedtolong.
Wavesofsamefrequencyinsame
material.
48

WAVELENGTH&DETECTABLE FLAW
SIZEINSTEELFREQ.WAVE LENGTH IN MM FLAW SIZE mm
MH
ZLONGITUD.TRANSVERSELONGITUD.TRANSV.
1 5.9 3.23 2.95 1.6
2 2.95 1.61 1.48 0.8
3 2 1.08 1 0.54
4 1.5 0.81 0.75 0.4
5 1.2 0.64 0.6 0.32
Detectable size of flaw=wavelength/2
49

FLAW
DETECTION
50

FLAW DETECTION
Anultrasonicwaveisfirstintroduced
intotherailsteel
Theultrasonicwavewilltravelthrough
therailuntilitcomesacrossa
boundarywithadissimilarmedium.
Attheboundarythewavewilleitherget
reflectedorrefracteddependingupon
theacousticimpedanceofthetwo
media.
51

FLAWDETECTION(contd)
Theboundarycouldbetheothersurface
oftherailoraninternalflaw.
Aflawinrailisairvoid/crackorany
othermaterial(slag)havingacoustic
impedancemuchdifferentfromthatof
steel.
ThereflectedUSwavecanbedetected
andthelocation&sizeofthesourceof
reflectioncanbeinterpreted.
52

FLAWDETECTION(contd)
Thisiscalled“pulseecho”orreflection
technique.
Duetotheshape&fixityofrail,the
transmission&receptionofsignalshasto
bedonefromthesameside(railhead)
Theotherbutlesscommonlyusedmethod
iscalled“transmissiontechnique”
53

Aplane(two-dimensional)discontinuity
(e.g.materialseparation,crack)ORa
volumetricdiscontinuity(hollowspace,
foreignmaterial)reflectstheultrasonic
wavesmostlyinacertaindirection.
Ifthereflectedportionofthesoundwaveis
notreceivedbytheprobethenitisunlikely
thatthediscontinuitywillbedetected.The
possibilitiesofdetectiononlyincreasewhen
theplanediscontinuityishitnormallybythe
soundbeam.
FLAWDETECTION(contd)
54

GENERATION OFUSWAVES
PIEZOELECTRICCERAMICCRYSTALS
Apropertyofmaterialwhichconvertselectrical
energyintomechanicalenergy&vice-versa.
NATURAL
QUARTZ
TOURMALINE
RECHELLESALT
ARTIFICIAL
BARIUMTITANATE(firstused)
LEADZIRCONATETITANATE(PZT)(mostcommonlyused)
LITHIUMSULPHATE
55

Thepiezoelectricelement,excitedbyan
extremelyshortelectricaldischarge,
transmitsanultrasonicpulse.
Thesameelementontheotherhand
generatesanelectricalsignalwhenit
receivesanultrasonicsignalthus
causingittooscillate.
Theprobeiscoupledtothesurfaceof
thetestobjectwithaliquidorcoupling
pastesothatthesoundwavesfromthe
probeareabletobetransmittedinto
thetestobject.
GENERATION OF US WAVES
56

PROBES
57

PROBES
Itisametallichousingcontainingthecrystal,
dampingmaterial,electricalleads&aPerspex
face.
Probescanbeclassifiedonthebasisof
numberofcrystalsassingleordoublecrystal
probes
angleofwavetransmissionasnormalorangle
probe
frequency
58

Normalprobeor0DegreeProbe-uses
longitudinalwaves(2MHz&4MHz)
AngleProbes–70Degree&45Degreeare
used(2MHz)
PROBES (contd)
59

TYPES OF PROBES
NORMAL PROBE
ANGLE PROBE
60

Case
Damping
Material
Piezo
Electric
Crystal
PlugElectrical
Lead
NORMAL PROBE
(SingleCrystal)
Perspex Cover
61

PROBES (contd)
Angleprobeusestransversewaves
Thetransversewavespropagateat
aroundonlyhalfthesoundvelocityof
longitudinalwaves
Theareainwhichanangleofincidence
ispresentbetweenthe1
st
and2
nd
criticalangle(27.3°-57.7°)givesus
aclearsoundwaveinthetestobject
(madeofsteel),namelythetransverse
wavebetween33.3°and90°
62

ANGLE PROBE
Object
Probe angle
Perspex
Normal
Probe
Long Wave
Shear Wave
63

DOUBLE CRYSTAL PROBE
Perspex
Damping
Material
Case
Electrical Lead
Crystal
64

Calibration&sensitivitysetting
Visualinspectionofequipment&accessories----
dailycheck
Calibrationofequipment---dailycheck
Sensitivitysettingofequip.---Weeklycheck
Sensitivitysettingofequip.fortemp.Variation---
monthlycheck
Checkingofequip.Characteristics.----Monthly
check
65

Calibration of Equipment
Probes:-0
o
Calibration:-USFDtesteristobecalibratedfor300
mm/200mmdepthrange(longwave)withIIW(VI)
Blockon100mmside.
(i)Adjustsurfaceechoat‘Zero’using‘Shift/Delay’
control.
(ii)AdjustRangeby‘H-shift/Delay’andrange’control
simultaneouslytogetsignalsat3.3/6.7/10for300mm
rangeand5/10for200range.
66

Calibration of Equipment
Probes:-70
o
(F),70
o
(B),70
o
GF(F),70
o
GF(B).
Calibration:-USFDtesteristobecalibratedfor300mm
depthrange(longwave)/165mmShearwavewithII
W(VI)Blockon100mmside.
(i)Adjustsurfaceechoat‘Zero’using‘Shift/Delay’
control.
(ii)AdjustRangeby‘H-shift/Delay’andrange’control
simultaneouslytogetsignalsat6.0on100mm
cirvature.
67

Sensitivity setting
68

69

70

Sensitivity setting
For70
o
GFCprobe:-Adjustmax.signalfrom5ФFBHin
head(at15mmfromrailtop)to60%ofFSH.
For45
o
TestRig(forlocationshavingscabs/wheelburns)-
Machinetobecalibratedfor150mmrangeforshearwave.
SensitivitySetting–Usea300mmrailpiece(having
verticalends)ofsamesectionalweight,i.e.52/60kg.
Keep45
o
probe30mmfromrailendandbelow20mm
railtoponsideofrailhead.Receiverprobe(at95mm
for52kgrailand103mmfor60kgrail)signaltobe
adjustedto100%ofFSH.
Sensitivityistobeadjustedtocaterforvariationintemp
also(monthlychecking)
71

TYPES OF PROBES USED IN USFD OF RAILS
S.NO.ANGLE FREQ.DOUBLE/CRYSTAL WHERE
USED
1 0
0
4MHzDOUBLE MACHINE
2 70
0
2MHzSINGLE MACHINE
3 70
0
2MHzSINGLE HAND
4 70
0
2MHzSINGLE(8x8mm) HAND
5 45
0
2MHzSINGLE HAND
6 70
0
Shifted
2MHzDOUBLE MACHINE
72

DEFECTS DETECTABLE BY VARIOUS
PROBES
HORIZONTAL FLAWS -0
o
PROBE
TRANSVERSE FLAWS -70
o
PROBE
LONG. VERT. FLAWS (LVF) -0
o
PROBE
BOLT HOLE FLAWS -0
o
PROBE
GAUGE FACE CORNER(GFC) FLAWS -70
o
SHIFTED PROBE
NON GAUGE FACE CORNER(NGFC) FLAWS -
70
o
SHIFTED PROBE
73

HIGH FREQUENCY SOUND WAVES ARE INTRODUCED
INTO A MATERIAL AND THEY ARE REFLECTED BACK
FROM SURFACES OR FLAWS.
REFLECTED SOUND ENERGY IS DISPLAYED VERSUS
TIME, AND OPERATOR CAN VISUALIZE A CROSS SECTION
OF THE SPECIMEN SHOWING THE DEPTH OF FEATURES
THAT REFLECT SOUND.
f
plate
crack
0 2 4 6 810
initial
pulse
flaw
echo
back echo
Oscilloscope, or flaw
detector screen
ULTRASONIC INSPECTION
(PULSE-ECHO)
74

75

76

77

78

79

80

81

82

83

84

DATA PRESENTATION
85

AREA COVERED BY NORMAL 0 DEGREE PROBE
86

Area covered by 70
0
Probe
87

88

AREA COVERED BY 70 DEGREE (2 MHZ) PROBE
(FOR FLANGE TESTING OF AT WELDS)
89

Testing Scabbed Rail using 45
0
Test Rig
91

UltrasonicTestingofRailsin
SteelPlant
Mostimportantsourceofdefectsisthe
manufacturingdeficiencies
TestinginSteelplantisdonebyanonline
USFDmachinehavingmultipleprobe
coveringentiresection
Incasetheinitialtestingofrailshasnot
beendoneinthesteelplanttherailshall
betestedeitheratFBWPoratsite
92

USFD Testing of Rails in BSP
93

UltrasonicRailTestingEquipment
andaccessories
Inspectorscarryingouttheultrasonic
testingofrailsshallbetrainedbyRDSO
USFDiscarriedoutby
(a)Singlerailtester(SRT)
(b)DoubleRailTester(DRT)
(c)HandTesters
(d)SPURTCar
94

ProcurementofUSFDequipmentsshould
bedoneonlyfromtheRDSOapproved
sources(asperlatestlist)
Maintenance sparesshouldalsobe
procuredalongwithmachinefrom
originalequipmentmanufacturer
TotallifeofUSFDmachineiseightyears
UltrasonicRailTestingEquipment
andaccessories
95

Single Rail Tester
CapableofTestingonlyonerailata
time
Providedwith7probesi.e.normal/
0°(4MHz),70°(F)(2MHz),70°(B)
(2MHz),70°(GF/F)(2MHz),70°
(GF/B)(2MHz),70°(NGF/F)(2MHz)
and70°(NGF/B)(2MHz)
96

Contd…
Thesignalreceivedfromthedefectsbyany
oftheprobesisindicatedonthecathode
raytube(CRT)screen
Inordertofindouttheoriginofdetection,
provisionfordisplayingtheindividual
probeoperationhasbeenmadeinthe
equipment
Tobeusedfortestingsectionsotherthan
LWR/CWRandnewATwelds
Single Rail Tester (Contd)
97

Double Rail Tester
Capableoftestingboththerailsatatime
ProbesaresameasforSRT
Providedwithmulti-channelfacilityi.e.
signalfrom each probe can be
instantaneously distinguished without
takingrecoursetoprocessofelimination.
Alsoprovidedwithathresholdarrangement,
LEDdisplayandaudioalarm.
98

Duetofrequentmisalignmentofprobes
onthefishplatedjointsandlimitations
ofdetectionofboltholecracks,itis
desirabletodeployonLWR/CWR
sections
Double Rail Tester (contd)
99

Checking USFD Testing by AEN
AENshouldspendatleastfewhours(min
2hours)eachmonthduringhisroutine
trolleyinspectionwithUSFDteamand
crosschecktheworkinclaccuracy,
setting,calibrationofmachineetc.
SEandSSEshouldalsoassociate
themselvesoccasionally
100

Safetyagainstfailuresofrailsintrack
dependsupontheinspectionfrequencyand
thepermissibledefectsize
Theinspectionfrequencyandcondemning
defectsizesarerelatedparameters
Iftheinspectionfrequencyishigh,the
condemningdefectsizecanbesuitablyin
creased.
Increaseincondemning defectsizealso
enhancesthereliabilityofinspectionas
chancesofnondetectionforsmallersize
defectsarehigh.
NEED BASED CRITERIA
101

After the initial Testing of Rails in Rail
manufacturing Plant ,the first Retesting need
not normally be done before Test Free Period.
Whenever Rails are not tested in rail
manufacturing plant ,the test free period
shall not be applicable and the rail testing
shall be done as per laid down periodicity
right from the day of its laying in field.
TEST FREE PERIOD
102

YEAR OF ROLLING TEST FREE PERIOD
RAILS ROLLED PRIOR
TO APRIL 1999
15% OF SERVICE LIFE
OF RAIL
RAILS ROLLED LATER
TO APRIL 1999
25% OF SERVICE LIFE
OF RAIL
TEST FREE PERIOD for RAILS
Rails having wt. and grade equal to or more than 52Kg/90UTS
shall be tested covering GFC of rail head after every 40GMT
during test free period
103

SERVICE LIFE OF RAILS
RAIL SECTION SERVICE LIFE (GMT)
72 UTS 90 UTS
60 Kg 550 800
52 Kg 350 525
90R 250 375
104

Frequency of testing for Rails
ROUTE FREQUENCY
ALL BG
ROUTES
ROUTE GMT FREQUENCY
<=5 2 YEARS
>5 <=8 12 MONTHS
>8 <=12 9 MONTHS
>12 <=16 6MONTHS
>16 <=24 4 MONTHS
>24 <=40 3MONTHS
>40 <=60 2 Months
>60 <=80 1.5 Months
>80 1 MONTHS
105

FrequencyforSKVWelds
Initialacceptancejustafterexecution
(asperATWeldManual)
Firstperiodictest-afteroneyear
FurthertestsbasedonrouteGMT-
GMT FREQUENCY
>45 2 YEARS
>30<=45 3 YEARS
>15 <=30 4 YEARS
0-15 5 YEARS
106

Frequency for Conventional AT
Welds
PeriodicTest–Every40GMTOR5Years
whicheverisearlier.
107

CS -2
IncaseofweldsonMajorBridgesandon
Approaches(100meitherside)andin
TunnelandonTunnelApproaches(100m
eitherside)minimumfrequencyoftesting
shallbeonceayear.
108

CLASSIFICATION OF DEFECTS
IMR
IMR(W)
OBS
OBS(W)
DFWR
DFWO
109

Classificationofrail/Weldsdefectsand
Actiontobetaken
SNClas
si-
ficati
on
Painting
onboth
facesof
web
Actiontobe
taken
Interimaction
1IMR
/
IMR
W
Three
cross
withred
paint
Theflawed
portion
should be
replacedby
soundtested
railpieceof
notlessthan
6m length
within3days
ofdetection
PWI/USFD shallimpose
speedrestrictionof30
km/h or stricter
immediatelyandtobe
continued tillflawed
rail/weldisreplaced.He
shouldcommunicate to
sectionalPWIaboutthe
flawlocationwhoshall
ensure that clamped
joggledfishplateis
providedwithin24hrs.
110

:
2OBS
OBSW
One
cross
with
red
paint
Therail/weldto
be provided
with clamped
joggled fish
platewithin3
days.
PWI/USFD to
specifically
record the
observationsof
thelocationin
hisregisterin
subsequent
roundoftesting
PWI/USFDtoadvise
Sectional PWI
within24hrsabout
theflawlocation
Keymantowatch
duringhisdaily
patrollingtillitis
joggledfishplated.
Classification of rail /Welds defects and Action
to be taken (contd)
111

CS-2
IncaseofDFWR/DFWO onMajorBridgesand
Approaches(100moneitherside)andTunnel
andapproaches(100moneitherside)following
actionistobetaken:
a)SE/JE(P.Way) USFD shall impose SR of 30 KMPH
or stricter immediately and to be continued till
Defective weld is replaced. He shall communicate
the flaw location to SE/JE (P Way) who shall
ensure:
b)i) Protection of defective weld by clamped joggle fish plate
within 24 hours
c)Ii) Replacement of defective weld within 3 days.
112

ClassificationofWelddefects/Actiontobetaken
113

& 100 m either side
114

&100 m either side
115

116
& 100 m either side

& 100m either side
117

& 100m either
side
118

& 100m
either side
119

& 100m either
side
120

& 100m
either side
121

Limitation of
Ultrasonic Flaw
Detection of Rails
122

Limitation of Ultrasonic Flaw
Detection of Rails
Equipmentutilizedincorporatesfacility
onlyforspecifieddefects
Todetectthedefectefficiently,
ultrasonicbeamistobedirected
towardstheflawperpendicularly–the
defectmaynotbeorientedfavourably
fordetection
A4mmdeeplayerfromrailtablecan
notbetestedasitfallsinthedeadzone
oftheprobe
123

Severepipeintherailmaygiveindicationof
flawechoby0°probe,butincaseof
hairlineorfinecentralshrinkage(pipe),
negligibledropoccurringinbottomsignal
mayremainunnoticedbytheUSFDoperator
Limitation of Ultrasonic Flaw
Detection of Rails
124

Boltholecrackscanbebestdetectedby
37degprobe,whichisnotnow
availableontestingmachine.BHFare
nowdetectedby0degprobeonly.At
fishplatedjoint,ifthecracksarenot
favorablyorientedorareofsmallersize,
theirdetectionmaybedifficultininitial
stages.
Similarly,ifthecracksarepropagating
verticallydownwards orupwards,
detectionisnotpossible.
Limitation of Ultrasonic Flaw
Detection of Rails
125

Theultrasonicprobesusedintherail
testerhaveafrequencyof4MHz
(longitudinalwave)and2MHz
(transversewaves). Therefore,
crackslesserthan0.8mmsizecannot
bedetected bythepresent
arrangement.
Limitation of Ultrasonic Flaw
Detection of Rails
126

Railshavingrust,pitting,hogging,battering
ofrailend,misalignmentofjoints,scabs,
wheel burns and other surface
imperfectionsrestrictproperacoustic
couplingbetweenprobeandrailtableand
maynotpermitdetectionofflaws.Side
probingshouldbedoneinsuchcases.
Wheneversuchdefectsareencountered,
lossofbackwallechooranalarmsignalis
obtained.Thisindicatesthatdefectsifany
below these patches may remain
undetected.Undersuchcircumstances
handprobingmaybedone.
Limitation of Ultrasonic Flaw
Detection of Rails
127

IntheTestingofSEJs,CMScrossing,points
andcrossings,duetospecificshapenear
thenose,itisdifficulttomovethetrolley
fortestingandachieveacousticcoupling.
Thereforeexceptthestockrail,thebalance
portion(machinedportion)isnotamenable
fordetectionbyUSFDtrolley.
Undersuchcircumstances,handprobingis
requiredtobecarriedoutaccordingtothe
procedurelaiddowninthemanualfor
pointsandcrossingorintheUSFDmanual.
Limitation of Ultrasonic Flaw
Detection of Rails
128

USFDtrolleyhasbeendesignedtooperate
undernormalconditionsofgauge.While
testingonsharpcurvesgradients,slack
gaugeetc,theproblemofpropercoupling
mayarise.
Intheeventofdimensionalvariationsinthe
gaugeandalsoatsharpcurvesitispossiblethat
theprobesarenotproperlycontactingtherail
surfacewhiletestingwithDRT.
Testingbyhandprobingorbysinglerailtester
mayberesortedto.
Thetestresultarenotreproducible,no
documentaryrecordforfutureisgenerated.
Limitation of Ultrasonic Flaw
Detection of Rails
129

FollowingtestsareprescribedforBGandMG
routes.
TestingofWeldHead/Web,whichget
coveredduringThroughPeriodicRailTesting
bySRT/DRT.
Asperthistestdefectsareclassifiedas
IMRWandOBSW.
Procedure for Ultrasonic testing of
Alumino-Thermic Welded Rail Joints
130

0
0
2MHzDOUBLECRYSTALPROBE
70
0
2MHzSINGLECRYSTALPROBE
45
0
2MHzSINGLECRYSTALPROBE
(footscanningforclustereddefect/
microporosityinwebfootregion)
45
0
2MHzTandemProbeforLackof
Fusion
ASPERTHISTESTDEFECTS ARE
CLASSIFIEDASDFW
Initial acceptance test of AT weld
using
131

0
0
2MHzdoublecrystalprobe
70
0
2MHzsinglecrystalprobe
45
0
2MHzsinglecrystalprobeforfoot
forhalfmooncrackdetectionand
70
0
2MHz(8x8mm)singlecrystal
probeforhalfmooncrackdetection
Periodic testing of AT weld using
132

TWRshouldbeplannedafterweldshavecarried50%
ofthestipulatedGMTofrails.CTEwilldecidethe
priority.
TheUSFDTestingcanbedispensedwithincaseof
thoseweldswhichare>15yearsoldandprotected
byjoggledfishplatewithtwofarendtightbolts.
AfterexecutionofATweld,weldedzoneshallbe
dressedproperlytofacilitateplacementofprobesand
toavoidincidenceofspurioussignalonthescreen.
Theflangeofthewelduptoadistanceof200mm.
oneithersideoftheweldcollarshallbethoroughly
cleanedwithawirebrushtoensurefreedomfrom
dust,dirt,surfaceunevennessetc.
Ultrasonic testing of AT Weld Joints
133

Sensitivitysettingtobedonewiththehelpof
astandardATweldedrailpieceof1.5mlength
havingasimulatedflawatstandardlocations
asshowninUSFDmanual.
Ultrasonic testing of AT Weld Joints
134

135

AT Welds Testing by Hand Probing
Atthetimeofexecution–using0
o
2MHz,70
o
2
MHzprobes,45
o
2MHz(footscanningfor
clustereddefectsandmicroporosities)and45
o
2MHz(Tandemprobescanningforlackof
fusion;
PeriodicTesting:-by0
o
2MHz(Dblcrystal18mm
dia),70
o
2MHz,45
o
2MHz(footscanningfor
halfmoondefects)and70
o
2MHz(8mmx8
mm)(singlecrystal)probes.
Couplant:-Softgreasetobeused.
136

AT Welds Testing by Hand Probing
0
o
2MHzProbes:-todetectporosity,blowhole,
slaginclusioninheadanduptomid-web.
Calibration–300mmforlongitudinalwave.
Sensitivity:-Setsignal60%ofFSHon3Фthrough
holeinheadat25mmfromweldtop
Defectmarking:-Moveonweldarea;
signal≥40%andupto60%ofFSHinheadand≥
20%andupto40%ofFSHinweb/foot
DFWO
signal≥60%ofFSHinheadand≥40%ofFSHin
web/footDFWR
137

AT Welds Testing by Hand Probing
70
o
2MHzProbe:-todetectlackoffusion,porosity,
blowhole,slaginclusion,cracksinHead.
Calibration–165mmforShearwaves.
Sensitivity-Setsignal60%ofFSHon3Фthrough
holeinheadat25mmfromrailtop.
Defectmarking:-Movetowardsweldinzig-zag
manner;
movingsignal≥40%andupto60%ofFSH
DFWO
movingsignal≥60%ofFSHDFWR
Abunchofmovingsignal≥10%ofFSHDFWR
138

AT Welds Testing by Hand Probing
45
o
2MHzProbe:-toinspectbottomofweldfoot
fordetectionofclustereddefect,microporosities
andhalfmoondefects.
Calibration–275mmforshearwave.
Sensitivity–adjustedsignalfromsimulatedhalf
moondefect(5Фsemicircleatweldbottom)to
60%ofFSH.(Probemovedonrailtopata
distanceequaltorailht.)
Defectmarking–anysignal≥20%of
FSHDFWR.
139

AT Welds Testing by Hand Probing
45
o
2MHzProbe(Tandemprobescanning):-to
detectanyverticallyorienteddefectlikelackof
fusionintherailhead,webandfootregion
belowtheweb.
Calibration–275mmforshearwave.
Sensitivity–adjustsignalfrombottomofrailbythe
receivingprobeto100%ofFSH.Increasethe
gainfurtherby10dB.
Defectmarking–anysignal≥40%of
FSHDFWR.
140

AT Welds Testing by Hand Probing
70
o
2MHz(8mmx8mm)Probe:-Thisisusedwhen45
o
probecannotbeusedfordetectionofhalfmooncrack
duetopresenceofholthole.
Calibration–300mmforlongitudinalwave
Sensitivity–keeponflangeupperzoneat100mm
distanceandmoveinzig-zagfashiontocatchsimulated
halfmoondefect–setsignalat60%FSH.
Defectmarking–moveonallfoursidesofweldfooton
upperandlowerzones-anysignal≥20%of
FSHDFW.
Limitation:Cannotdetectallhalfmoondefects
141

AT Welds Testing by Hand Probing
70
o
2MHz(20mmx20mm)Probeforflangetesting:-to
detectlackoffusion,porosity,blowhole,slaginclusion
intheflangeofATweld.
Calibration–300mmforlongitudinalwave
Sensitivity–setsignalto60%FSHon3Фdrilledholein
middleofflange..
Defectmarking–keepprobeoflower‘L’zoneat180mm
andmovetowardsweldinzig-zagmanner.Alsorepeat
for‘C’and‘U’zones.Anysignal≥40%ofFSHDFW.
142

75mm Gap AT Weld Testing by Hand
Probing
0
o
2MHzProbe:-setsignalto60%FSHon3Фholein
head.
Defectmarking–Anysignal≥40%ofFSHfromheador≥
20%ofFSHfromweb/footDFW.
70
o
2MHzProbe;HeadTesting:-setsignalto60%FSHon
3Фholeinhead.
Defectmarking–movingsignal≥40%ofFSHDFW.
70
o
2MHzProbe;FlangeTesting:-setsignalto60%FSH
onasawcutof30mmintheweldmetalintheflange15
mmawayfromtheedgeofweldcollar.
Defectmarking–movingsignal≥20%ofFSHDFW
143

144

145

146

147

148

TestingofwebandflangeofFBWby45
0
and70
0
2MHzhandprobe
NormallythereisNoneed
HoweverCEmayorder,iffailurerateishigh
DuetounusuallyhighWeldFailureorabnormal
developmentsinsomesection,CEmayorder,
testingofATweldsearlyasperneed.
149