UV Pnnnnbshhxhdhhdhhdhhdhhdhdhhdhhdhdhhdhh

kamranassadullah992 44 views 74 slides Jul 12, 2024
Slide 1
Slide 1 of 74
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74

About This Presentation

Uv spectroscopy Thyroglobulin is a protein made by the thyroid gland
Tbg is transport protein carrying harmones to tissues
Glycogenolysis : glycogen to glucose
Gluconeogenesis : non hexose precursors glycerol,lactate , pyruvate etc to glucose
Postnatal life :after birth
Type 1: pancreas produces...


Slide Content

UVVISIBLESPECTROSCOPY

IntroductiontoElectroMagneticRadiation(EMR)
Lightissupposedtotravelinwaves.LightorEMRisaformofenergythatistransmitted
throughspaceataconstantvelocityof3×10
8
�����/������.Theseradiationsaresaidto
havedualnatureexhibitingboth
Wavecharacter
Particlecharacterorcorpusculartheory
Accordingtowavetheory,lighttravelsintheformofwaves.Thiswavemotionconsistsof
oscillatingelectric(E)&magnetic(H)fields(vectors)directedperpendiculartoeachother&
perpendiculartothedirectionofthepropagationofwave(Fig.1).

Fig.1:Wavenatureoflight

Anemissionspectrumisproducedbytheemissionofradiantenergybyanexcitedatom.Theexcitationof
atomscanbebroughtaboutthermally(byheatingthesubstancestrongly)orelectrically(bypassingelectric
dischargethroughthevapoursofthesubstanceataverylowpressure).Whenanelectricdischargeispassed
throughthevapoursofthesubstance,energyisabsorbed&electronsinthegroundstatearepromotedto
Meta-stablestates.WhenelectronsfromtheMeta-stablestatejumptothelowerenergystate,thensome
energyofdefinitefrequencyisreleasedasradiation.
Ifthisradiationemittedisanalyzedwiththehelpofaspectroscope,anemissionspectrumisobserved.

Wavelength: It is the distance between the adjacent crests or troughs in a particular wave. It is denoted by ‘λ’
(lambda). It can be expressed in Angstrom or nanometer (nm) or millimicrons(mμ) or centimeter (cm) or
micrometer (μm).
1 nm = 10
-9
m = 10
-3
μm
Nanometer is frequently used in UV-Visible technique.
Wave Number: It is the reciprocal of wavelength & it is expressed in per centimeter; or it is defined as the total
number of waves which can pass through a space of 1 cm. It is expressed as
‘ū (nu bar)’. It is frequently used in IR technique.
Characteristics/Units of wave (Fig.2):

QuantumtheorydescribestheEMRasconsistingofastreamofenergypackets,calledPhotonsorQuanta,which
travelinthedirectionofpropagationofthebeamwiththevelocityoflight.
Thus,duringemissionorabsorptionoflightbychemicalspecies,theenergychangestakeplaceonlydiscretely
alwaysasintegralmultiplesofsmallunitsofenergyi.e.photon.
Theenergyofthephotonisproportionaltothefrequencyofradiation,i.e.Eαν,or,E=hν,Where,h=Plank’s
constant=6.626x10
-27
erg.sec.
Theenergyofaphotoniscalledquantumofenergy&thisdependsonlyonthefrequencybutnotontheintensityof
radiation.
Thewavesarecharacterizedbytheirwavelengthsorfrequenciesorwavenumbers.
TheenergycarriedbyanEMRisdirectlyproportionaltothefrequency.
Alltypesofradiationstravelwiththesamevelocity&nomediumisrequiredfortheirpropagation.Theycantravel
throughvacuumalso.
Whenvisiblelight(agroupofEMR)ispassedthroughaprism,itissplitupintosevencolourswhichcorrespondto
definitewavelengths.Thisphenomenoniscalled‘dispersion’.
Quantum theory of EMR

Thewordspectroscopyisderivedfromspectrumwhichmeansabandofdifferentcoloursformeddueto
differenceinwavelengthandskopinmeansexaminationorevaluation.Thus,spectroscopyisthebranchof
sciencethatdealswiththeexaminationorevaluationofspectrum.
Itisdefinedastheinteractionbetweenthematter&EMR.Itdealswithemissionaswellasabsorption
spectra.
Itisusedtomeasuretheenergydifferencebetweenvariousmolecularenergylevels&todeterminetheatomic
&molecularstructures.Theinstrumentsusedinsuchstudiesarecalledspectrophotometer.
IfEMR(ofcertainwavelengthrange)arepassedthroughthesubstanceunderanalysisforsometimes,then
radiationsofcertainwavelengthsareabsorbedbythesubstance.Thewavelengthswhichareabsorbed
characterizesomeParticularfunctionalgroupspresentinthecompoundorthecompounditself.This
darkpatternoflineswhichcorrespondstothewavelengthsabsorbsiscalledAbsorptionspectrum.After
absorption,thetransmittedlightisanalyzedbythespectrometerrelativetotheincidentlightofagiven
frequency.Theabsorbedenergymayheatupthesampleorisre-emitted.
Spectroscopy

Wavelength: It is the distance between the adjacent crests or troughs in a particular wave. It is denoted by ‘λ’
(lambda). It can be expressed in Angstrom or nanometer (nm) or millimicrons(mμ) or centimeter (cm) or
micrometer (μm). 1 nm = 10
-9
m = 10
-3
μm. Nanometer is frequently used in UV-Visible technique.
Wave Number: It is the reciprocal of wavelength & it is expressed in per centimeter; or it is defined as the
total number of waves which can pass through a space of 1 cm. It is expressed as ‘ū (nu bar)’. It is frequently
used in IR technique.
Characteristics/Units of wave (Fig.2)

Electromagneticspectrum:
WhenamoleculeabsorbsEMR,itcanundergovarioustypesofexcitation.This
excitation maybe
•Electronicexcitation
•Rotationexcitation
•Excitationleadingtoa changeinnuclearspin
•Excitationresultingin bond deformation&so on.

Iftheenergyavailableapproachestheionizationpotentialofthemolecule,anelectronmay
beejected&ionization mayoccur.
Sinceeachmodeofexcitationrequiresaspecificquantityofenergy,thedifferent
absorptions appearin differentregionsof the electromagneticspectrum.
Thevariousregionsofelectromagneticspectrumaresetout(Table:1&Fig.3)&arelabeled
eitheraccordingtothewavelength/waveno.rangeused,oraccordingtothetypeofthe
molecularenergylevelsinvolved,e.g.UV(electronic)spectra,IR(vibrational)spectraor
RF(NMR)spectra.

Table-1:Variousregionsofelectromagneticspectrum
Typeof
Radiation Wavelength Typeofmolecularspectrum
RF > 100 mm NMR (Spin orientation)
Microwave 1–100mm Rotational
FarIR 50μm–1mm Vibrationalfundamentalorrotational
MidIR 2.5μm–50μm Vibrationalfundamental
NearIR 780nm–2.5μm Vibrational(overtones)
Visible 380nm–780nm Electronic(valenceorbital)
NearUV 200nm–380nm Electronic(valenceorbital)
VacuumUV 10nm–200nm Electronic(valenceorbital)
X-rays 10pm–10nm Electronic (coreorbitals)
Gammarays 10
-10
cm Mossbauereffect(Nucleartransitions)
excitedstatesofnuclei
Cosmicrays 10
-12
cm

Fig.2:Characteristicsofwave

Electromagneticspectrum:
Theelectromagneticspectrum,formostspectroscopicpurposes,isconsideredtobe
consisting ofregionof radiantenergyranging fromwavelengths of 10 mto 1 x12
-12
cm.
WhenamoleculeabsorbsEMR,itcanundergovarioustypesofexcitation.This
excitation maybe
Electronicexcitation,
Rotationexcitation,
Excitationleadingtoa changeinnuclearspin,
Excitationresultingin bond deformation&so on.

Iftheenergyavailableapproachestheionizationpotentialofthemolecule,anelectronmay
beejected&ionization mayoccur.
Sinceeachmodeofexcitationrequiresaspecificquantityofenergy,thedifferent
absorptions appearin differentregionsof the electromagneticspectrum.
Thevariousregionsofelectromagneticspectrumaresetout(Table:1&Fig.3)&arelabeled
eitheraccordingtothewavelength/waveno.rangeused,oraccordingtothetypeofthe
molecularenergylevelsinvolved,e.g.UV(electronic)spectra,IR(vibrational)spectraor
RF(NMR)spectra.

Table-1:Variousregionsofelectromagneticspectrum
Typeof
Radiation Wavelength Waveno. Typeofmolecularspectrum
RF > 100 mm < 3 x 109 Hz NMR (Spin orientation)
Microwave 1–100mm 10–0.1cm
-1
Rotational
FarIR 50μm–1mm 200–10cm
-1
Vibrationalfundamentalorrotational
MidIR 2.5μm–50μm 4000–667cm
-1
Vibrationalfundamental
NearIR 780nm–2.5μm (13–4)x10
3
cm
-1
Vibrational(overtones)
Visible 380nm–780nm (2.6–1.3)x10
4
cm
-1
Electronic(valenceorbital)
NearUV 200nm–380nm (5–2.6)x10
4
cm
-1
Electronic(valenceorbital)
VacuumUV 10nm–200nm (10
2
–5)x 10
4
cm
-1
Electronic(valenceorbital)
X-rays 10pm–10nm 10
9
-10
6
cm
-1
Electronic (coreorbitals)
Gammarays 10
-10
cm
10
10
cm-1
Mossbauereffect(Nucleartransitions)
excitedstatesofnuclei
Cosmicrays 10
-12
cm
10
12
cm-1

UVwavelengthregionrangesfrom200nm–to380nm,whereasVisiblewavelengthregion
rangesfrom380nmto780nm.
ItisalsoknownasElectronicspectroscopysinceitinvolvesthepromotionofelectrons(σ,π,n-
electrons)fromthegroundstatetothehigherenergystate.
Itveryusefultomeasurethenumberofconjugateddoublebonds&alsoaromaticconjugation
withinthevariousmolecules.
Itdistinguishesbetweenconjugated&non-conjugatedsystems,α,β-unsaturatedcarbonyl
compoundsfromβ,γ-analogues,homoannular&heteroannularconjugateddienes,etc.
UV-Visible Spectroscopy

Ultraviolet(UV)andvisibleradiationareasmallpartoftheelectromagneticspectrum,whichincludes
otherformsofradiationsuchasradio,infrared(IR),cosmic,andXrays.

Whenradiationinteractswithmatter,severalprocessescanoccur,includingreflection,scattering,
absorbance,fluorescence/phosphorescence(absorptionandre-emission),andphotochemicalreactions
(absorbanceandbondbreaking).Typically,whenmeasuringsamplestodeterminetheirUV-visible
spectrum,absorbanceismeasured.Becauselightisaformofenergy,absorptionoflightbymatter
causestheenergycontentofthemolecules(oratoms)inthemattertoincrease.Thetotalpotentialenergy
ofamoleculeisrepresentedasthesumofitselectronic,vibrational,androtationalenergies:
UV-visible spectra
E
total= E
electronic+ E
vibrational+ E
rotational
Theamountofenergyamoleculepossessesineachformisnotacontinuumbutaseriesofdiscretelevels
orstates.Thedifferencesinenergyamongthedifferentstatesareintheorder:
E
electronic> E
vibrational> E
rotational

Thesetransitionsresultinverynarrowabsorbancebandsatwavelengthshighlycharacteristicofthe
differenceinenergylevelsoftheabsorbingspecies.Thisisalsotrueforatoms,asdepictedinFigure3.
Figure3.Incidentlightofaspecificwavelengthcausesexcitationofelectronsinanatom.Thetypeof
atomandtheenergylevelstheelectronismovingbetweendeterminesthewavelengthofthelight
thatisabsorbed.Transitionscanbebetweenmorethanoneenergylevel,withmoreenergyi.e.lower
wavelengthsoflight,requiredtomovetheelectronfurtherfromthenucleus.

Principle
Sincetheenergylevelsofamoleculearequantized,theenergyrequiredtobringabouttheexcitationisafixed
quantity.Thus,theEMRwithonlyaparticularvalueoffrequencywillbeabletocauseexcitation.Ifthe
substanceisexposedtoradiationofsomedifferentvalueoffrequency,energywillnotbeabsorbed&thus,light
radiationwillnotsufferanylossinintensity.
WhenUVorVisibleradiationispassedthroughasubstance,absorptionofenergyresultsinthepromotionof
electronfromthegroundelectronicstatetotheexcitedelectronicstate.Theamountofabsorptionofenergy
dependsuponwavelengthoftheradiation&thestructureofcompound
Duringtheprocessofabsorption,alargenumberofphoton-moleculecollisionsarepossiblebutonlythose
collisionswillcauseabsorptionofenergyinwhichtheenergyofthephotonmatchestheenergydifference
betweentheground&theexcitedelectronicstateofthemolecule.Theabsorptionofenergyisquantized.
Thewavelengthatwhichmaximumabsorptionofradiationtakesplaceiscalledλ
maxThisλ
maxischaracteristic
oruniqueforeverysubstance&thisisaqualitativeaspect,usefulinidentifyingthesubstance(Fig.4).

Purpose to measure UV/VIS spectra
There are various main reasons to measure UV/VIS spectra
UV/VISspectraallowcomponentspresentinthesamplesolutiontobeidentified.Moreprecisely,
thepositionand,tosomeextent,theprofileoftheabsorptionpeaksallowspecificcompoundstobe
identified.Forexample,organiccompoundscanbeidentifiedbytheirspectra,orsolventpuritycan
beeasilycheckedbyUV/VISspectroscopy
Absorptionpeakscanbeusedtoquantifytheinvestigatedsample.Forexample,thesample
concentrationcanbecalculatedfromtheabsorbancevalueofthepeak:
Basedontherelationshipbetweenabsorbanceandsampleconcentration,UV/VISspectroscopy
isappliedasaquantitativeanalyticaltechniqueinmarketsegmentssuchase.g.WaterTesting,Food
andBeverages,Pharmaceutical,ChemicalandBiotechIndustry.

Thepositionofthepeaksinthespectrumrevealsinformationaboutthemolecularstructureofthe
sample.Forexample,specificfunctionalgroupsofamolecularstructure,suchascarbon-oxygen,
C=O,orcarbon-carbondoublebonds,C=C,absorbatspecificcharacteristicwavelengths.
Thespectrummayrevealspecificphysicalpropertiesofthesamplemolecules.Forinstance,fromthe
UV/VISspectrumitispossibleto:–calculatetheextinctioncoefficientofthesample–calculatethe
meltingpointofproteinsandnucleicacidsbymeasuringtheUV/VISspectraatdifferent
temperatures–determinetherateofareactionbymonitoringtheabsorptionspectraasafunctionof
time(alsoknownaskineticmeasurements).
Finally,positionandprofileofthepeaksinthespectrumcangiveinformationaboutthemicroscopic
environmentofthesamplemolecules.Asanexample,thepresenceofimpuritiesorothersolventsin
thesamplesolutionhasaneffectonpositionandoftheprofileofthepeaks.Inotherwords,thepeaks
maybebroaderorhaveshiftedduetoimpurities.

Electronic transitions
WhenthemoleculeabsorbsUVorvisiblelight,itselectrongetspromotedfromthegroundstate
tothehigherenergystate.
Inthegroundstate,thespinsoftheelectronsineachmolecularorbitalareessentiallypaired.
Thehigherenergystatesaredesignatedashighenergymolecularorbitals&alsocalledasanti-
bondingorbitals.
Thehigherprobabletransitionduetoabsorptionofquantizedenergyinvolvesthepromotionofone
electronfromthehighestoccupiedmolecularorbital(HOMO)tothelowestavailableunfilled
molecularorbital(LUMO).
Thehigheristheenergygap,theloweristhewavelengthofthelightabsorbed

Types of Electronic Transitions
Accordingtothemolecularorbitaltheory,whenamoleculeisexcitedbytheabsorptionofenergy
(UVorvisiblelight),itselectronsarepromotedfromabondingorbitaltoananti-bondingorbital.
Thereareseveraltypesofelectronictransitionsavailabletoamoleculeincluding:
Theanti-bondingorbitalwhichisassociatedwiththeexcitationofσ-electroniscalledσ*-anti-bonding
orbital.σ→σ*transitiontakesplacewhenσ-electronpromotedtoanti-bonding(σ*)orbital.
Whenanon-bondingelectron(η)getspromotedtoananti-bondingsigmaorbital(σ*),thenitrepresents
η→σ*transition.
Similarly,π→π*transitionrepresentsthepromotionofπ-electronstoananti-bondingπ-orbital,(π*-
orbital)
Similarly,whenaη-electron(non-bonding)ispromotedtoananti-bondingπ-orbital,itrepresentsη→π*
transition.

Theenergyrequiredforvarioustransitionsobeythefollowingorder:
σ→σ*>η→σ*>π→π*>η→π*

Let us consider various transitions involved in UV spectroscopy:
a.σ→σ*transitions
Itisahighenergyprocesssinceα-bondsareverystrong.
Itisobservedwithsaturatedcompounds(especiallyhydrocarbons),inwhichallthevalenceshells
electronsareinvolvedintheformationofsigmabondsdonotshowabsorptioninthenormalUV
region,i.e.120nm–180nm.e.g.methane,ethane,propane,cyclopropane,etc.
Itrequiresradiationofveryshortwavelength.

b. η → σ* transitions
It occurs in saturated compounds containing one hetero atom with unshared pair of electrons
(η-electrons).
E.g. saturated halides, alcohols, ethers, amine, etc.
It requires comparatively less energy than that required for σ → σ* transitions.
In saturated alkyl halides, the energy required for such a transition decreases with the increase in size
of the halogen atom (or decrease in the electro-negativity of the atom)

c. π → π* transitions
This type transitions occur in the unsaturated centers of the molecule; i.e. in compounds
containing double or triple bonds & also in aromatics.
Absorption usually occurs within the region of ordinary UV-spectrophotometer.
The excitation of π-electron requires smaller energy & hence, transition of this type occurs at longer
wavelength.
A π-electron of a double bond is excited to π*-orbital. E.g. alkenes, alkynes, carbonyl compounds,
cyanides, azo compounds, etc.
This transition requires still lesser energy as compared to η→σ* transition.

d.η→π*transition
Inthistype,anelectronofunsharedelectronpaironheteroatomgetsexcitedtoπ*-antibonding
orbital.
Thistypeoftransitionrequiresleastamountofenergyoutofallthetransitions,&henceoccursat
longerwavelength.
Insimplecases,itisquiteeasytotellwhetherthetransitionisη→π*orπ→π*sincetheexcitation
coefficientfortheformerisquitelowascomparedtothatoflater.
Theexactelectronicstructureofthemoleculesintheexcitedstateisnotknownbuttheelectronic
transitioninvolvestheredistributionofelectronswithinthemolecule.E.g.aldehydes,ketones,nitro
compounds,etc.containbothη→π*&π→π*transitions.

InUVspectroscopy,thesampleisirradiatedwiththebroadspectrumoftheUVradiationIfa
particularelectronictransitionmatchestheenergyofacertainbandofUV,itwillbeabsorbed
TheremainingUVlightpassesthroughthesampleandisobservedFromthisresidualradiationa
spectrumisobtainedwith“gaps”atthesediscreteenergies–thisiscalledanabsorptionspectrum
The Spectroscopic Process

Fromthemolecularorbitaldiagram,thereareseveralpossibleelectronictransitionsthatcanoccur,each
ofadifferentrelativeenergy
Observed electronic transitions

Observed electronic transitions
AlthoughtheUVspectrumextendsbelow100nm(highenergy),oxygenintheatmosphereisnot
transparentbelow200nm
SpecialequipmenttostudyvacuumorfarUVisrequired
RoutineorganicUVspectraaretypicallycollectedfrom200-700nm

PRESENTATION OF SPECTRA
Theultraviolet–visiblespectrumisgenerallyrecordedasaplotofabsorbanceversuswavelength.

PRINCIPLE
Basic principle of spectroscopyis the Beer-Lambert’s law
1.2.1 BEER LAW
•Beer's law stated that absorbanceis proportional to the concentrationsof the material sample.
1.2.2 LAMBERT LAW
•Lambert's law stated that absorbanceof a material is directly proportional to its thickness(path
length).

ThemodernderivationoftheBeer–Lambertlawcombinesthetwolawsandcorrelatestheabsorbance
toboththeconcentrationsandthethicknessofthematerial.

formostUVspectrometers,lwouldremain constant(standardcellsaretypically1cmin pathlength)
ConcentrationC istypicallyvarieddependingonthestrengthof absorptionobserved
molarabsorptivitiesεvarybyordersof magnitude:
A =ε C.L
Themolarabsorptivity(formerlycalledtheextinctioncoefficient)ofacompoundisaconstantthatis
characteristicofthecompoundataparticularwavelength

Transmittance (T)is the fraction of incident light which is transmitted.
In other words, it’s the amount of light that “successfully” passes through the substance and comes
out the other side.
It is defined as T = I/Io,
where I = transmitted light (“output”) and Io = incident light (“input”).
%T =(I/Io) x 100.

Principles and instrumentation for UV-Vis-IR
Ultraviolet(UV)spectroscopyisanimportantphysicaltoolwhichexploitslightinultraviolet,visible,and
nearinfraredrangeofelectromagneticspectrum.
Beer-Lambertlawestablishesalinearrelationshipbetweenabsorbance,concentrationofabsorbers(or
absorbingspecies)inthesolutionandthepathlength.
Therefore,UV-Visspectroscopycanbeemployedfordeterminingtheconcentrationoftheabsorbingspecies,
forafixedpathlength.Thisisaverysimple,versatile,fast,accurateandcosteffectivetechnique.
Instrumentemployedforultraviolet−visible(orUV-Vis)spectroscopyiscalledUV−Vis−NIR
Spectrophotometer.Thiscanbeusedtoanalyzeliquids,gasesandsolidsbyusingradiativeenergy
correspondingtofarandnearultraviolet(UV),visible(Vis)andnearinfrared(NIR)regionsofelectromagnetic
spectrum.Consequently,predeterminedwavelengthsintheseregionshavebeendefinedas:UV:300-400nm;
Vis:400-765nm;andNIR:765-3200nm.

INSTRUMENTATION
Source of light.
Monochromator.
Sample solution in cuvette.
Photo detector.
Readout device.

Source of Light
PartoftheUVandVisibleradiationsourceisTungstenlamp.
UVradiationsourceisDeuteriumorHydrogenlamp.
Rangeofwavelength200-400nm.
Tungsten lamp
Deuterium lamp

MONOCHROMATOR
It is a device that breaks the polychromatic radiation into component wavelengths.

The monochromatorunit consists of :
Entrance slit: defines narrow beam of radiation from source.
Collimating mirror:(polished surface) collimates the lights.
Diffraction grating or Prism (make of quartz): disperses the light into specific wavelength.
Focusing mirror: captures the dispersed light & sharpens the same to the sample via exit slit
Exit slit: allows the corrected wavelength of light to the sample .

Sample solution in cuvette
liquid sample is usually contained in a cell called a cuvette.
Fingerprints and droplets of water disrupt light rays during measurement.
Cuvette from Quartz can be used in UV as well as in visible spectroscopy.
Cuvette from Glass is suitable for visible but not for UV spectroscopy because it absorbs UV radiation.
Sample solution in cuvette

PHOTO DETECTOR
Aphotodetectorisasemiconductordevicewhichconvertslightenergytoelectricalenergy.
ItconsistsofasimpleP-Njunctiondiodeandisdesignedtoworkinreversebiasedcondition.The
photonsapproachingthediodeareabsorbedbythephotodiodeandcurrentisgenerated.4Seefigure
11.

READOUT DEVICE
Digital screen to record an uvspectrograph with absorbance against the wavelength.
TYPES of SPECTROPHOTOMETER

Althoughtheabsorptionofultravioletradiationresultsfromtheexcitationofelectronsfromground
toexcitedstates,thenucleithattheelectronsholdtogetherinbondsplayanimportantrolein
determiningwhichwavelengthsofradiationareabsorbed.
Thenucleideterminethestrengthwithwhichtheelectronsareboundandthusinfluencetheenergy
spacingbetweengroundandexcitedstates.Hence,thecharacteristicenergyofatransitionandthe
wavelengthofradiationabsorbedarepropertiesofagroupofatomsratherthanofelectrons
themselves.
Thegroupofatomsproducingsuchanabsorptioniscalledachromophore.Asstructuralchanges
occurinachromophore,theexactenergyandintensityoftheabsorptionareexpectedtochange
accordingly.
The Chromophore
Terms used in Spectroscopy

Allthosecompoundswhichabsorblightofwavelengthbetween400-800nmappearcoloredtothe
humaneye.Exactcolordependsuponthewavelengthoflightabsorbedbythecompound.
Originally,achromophorewasconsideredanysystemorunsaturatedatoms/groups,whichis
responsibleforimpartingcolortothecompound.
E.g.Nitrogroupgivesyellowcolor,arylconjugatedazogroupgivesazodyescolor.
Chromophore/chromogenicagent
Chromophoreisdefinedasanyisolatedcovalentlybondedgroupthatshowsacharacteristic
absorptionintheultravioletorthevisibleregion,OR,
Chromophoreisdefinedasanygroupwhichexhibitsabsorptionofelectromagneticradiationsin
thevisibleorultravioletregion.
AchromophoreisthatpartofamoleculethatabsorbsUVorvisiblelight

The absorption occurs irrespective of the fact whether color is produced or not. Some important
chromophores are
Ethylenic, acetylenic, carbonyls, acids, esters, nitrile groups, etc.
A carbonyl isolated group does not produce any color in the UV spectroscopy by absorbing light
Chromophores -
in which the group contains π-electrons & they undergo π→π* transitions, e.g. ethylenes, acetylenes,
etc.
which contain both π-electrons & η-electrons, such chromophores undergo two types of transitions
i.e. π→π* & η→π*; e.g. carbonyls, nitriles, azo compounds, nitro compound, etc.

Auxochrome
An auxochromecan be defined as any group which does not itself acts as a chromophore but whose
presence brings about a shift of the absorption band towards the red end of the spectrum (longer
wavelength).
These are covalently saturated groups with lone pair of electrons.
The absorption at longer wavelength is due to the combination of a chromophore & an auxochrome
to give rise to another chromophore.
An auxochromicgroup is called as color enhancing group.
Auxochromicgroup do not show characteristic absorption above 200 nm. Some common
auxochromicgroups are –OH, -OR, _NH
2, -NHR, -NR
2, -SH, etc.

Theeffectoftheauxochromeisduetoitsabilitytoextendtheconjugationofachromophorebythesharing
ofnon-bondingelectrons.Thus,anewchromophoreresultswhichhasadifferentvalueoftheabsorption
maximumaswellastheextinctioncoefficient.
E.g.Incaseofanilineabsorptionmaximumtakesplaceat280nmbecausethepairofelectronsonnitrogen
atomisinconjugationwiththeπbondsystemofthebenzenering.
(-NH
2)aminogroupisanauxochrome.Itinvolvestheshiftofabsorptionmaximumtowardslongerwavelength.
Allauxochromicgroupscontainnon-bondingelectrons.Duetothis,thereisextensionofconjugationofthe
chromophorebysharingthenon-bondingelectrons

Consider trans—Azobenzeneand trans-p-ethoxyazobenzene
The presence of —OC
2H
5group (an auxochrome) increases the value of λ
max as well as ε
max

Spectral shifts/Absorption and Intensity Shifts
Changesinchemicalstructureortheenvironmentleadtochangesintheabsorptionspectrumof
moleculesandmaterials.Thereareseveraltermsthatarecommonlyusedtodescribetheseshifts,
Bathochromic effect,
Hypsochromiceffect,
Hyperchromiceffect,
Hypochromic effect

a.Bathochromicshiftn(redshift)—ashifttolowerenergyorlongerwavelength
Theeffect,byvirtueofwhichtheabsorptionmaximumisshiftedtowardslongerwavelengthdueto
thepresenceofanauxochromeorbythechangeofsolvent,iscalledasBathochromicshiftorRed
shift.
Theabsorptionsoftwoormorechromophoreswhichareseparatedbymorethanonebondare
usuallyadditive,butwhenchromophoresareconjugated,i.e.separatedbyasinglebond,
pronouncedeffectsareproduced.Themaximumabsorptionisshiftedtolongerwavelengths.

Forexample,
Benzeneshowsλ
max256nmandanilineshowsλ
max280nm.Thus,thereisabathochromicshiftof24
nmintheλ
maxofbenzeneduetothepresenceoftheauxochromeNH
2.
Similarly,abathochromicshiftofntoπ*bandisobservedincarbonylcompoundsondecreasing
solventpolarity,e.g.λ
maxofacetoneisat264.5nminwaterascomparedto279nminhexane.

b.Hypsochromicshift(blueshift)—ashifttohigherenergyorshorterwavelength.
Itisaneffectbyvirtueofwhichtheabsorptionmaximumisshiftedtowardsshorterwavelength.
TheabsorptionshiftedtowardsshorterwavelengthiscalledBlueshiftorHypsochromicshift.
Itmaybecausedbytheremovalofconjugation&alsobychangingthepolarityofthesolvent.

E.g.anilinehasλ
max280nm,becausethepairofelectronsonnitrogenatomisinconjugationwiththeπ-
bondsystemofthebenzenering.Butinacidicmedium,anilinebehavesasC
6H
5-NH
3
+
(aniliniumion)
astheelectronpairisnolongerpresent&henceconjugationisremoved,whichcausesblueshift&
absorptionoccursatshorterwavelength

c. Hyperchromicshift: an increase in intensity.
It is an effect due to which the intensity of absorption maximum increases, i.e. ε
maxincreases.
E.g. Pyridine => λ
max= 257 nm, ε
max= 2750
2-methyl pyridine => λ
max= 262 nm, ε
max= 3560
The introduction of an auxochromeusually increases intensity of absorption.

d. Hypochromic shift:
It is an effect due to which the intensity of absorption maximum decreases i.e. extinction
coefficient, ε
maxdecreases.
The introduction of group which distorts the geometry of the molecule causes hypochromic effect.
E.g. Biphenyl => λ
max= 250 nm, ε
max= 19000
2-methyl biphenyl => λ
max= 237 nm, ε
max= 10250
It is due to the distortion caused by the methyl group in 2-methyl biphenyl.

Choice of Solvent used and effect of solvent on λmax:
A solvent is a liquid that dissolves another solid, liquid, or gaseous solute, resulting in a solution at
specified temperature.
The solvent use should be high purity, generally referred to as ‘spectrograde’.
A good solvent should be transparent over the desired range of wavelengths. Usually solvents which
do not contain conjugated system are most suitable for running the UV spectrum.
Commonly used solvents are water, 95% ethanol, n-hexane, cyclohexane.
A solvent should be chosen so that it does not react chemically with the sample.
Solvents can be broadly classified into two categories:
Polar
Non-Polar

Thesolventexertsaprofoundinfluenceonthequalityandshapeofspectrum.
Polarityplaysanimportantroleinthepositionandintensityofabsorptionmaximumofa
particularchromophore.
E.g.Incaseofnon-polarsolventse.g.Iodinesolution(purplecolor)theabsorptionmaximaoccurat
almostthesamewavelengthasiniodinevapour(518nm),
whereasincaseofpolarsolvents,abrownishcolorisobtainedinsteadofpurplecolor,becausethe
absorptionoccursatshorterwavelengths.
Solvent effects

Theabsorptionmaximumforthepolarcompoundsisusuallyshiftedwiththechangeinthe
polarityofthesolvents.
Case1
Ifthechromophoreinvolvedinthetransitionismorepolarinitsgroundstatethaninitsexcited
state,thenthegroundstateismorestabilizedthantheexcitedstatebyamorepolarsolventdueto
solvation.
Chromophoreswithn→π*transitionsexhibitsuchbehavior.
Thesolventmoleculesareorientedaroundthesolute(chromophore)moleculestofitwiththeground
statechargedistributionofthesolutemolecules.
Hydrogenbondingorpolarsolventsinteractmorestronglywithunsharedelectronpairsofthe
groundstatemolecule.
Onexcitation,thechargedistributioninsuchsystemschangesmarkedlyandtherefore,thesolvent
moleculeswouldnothavepositionandorientationtointeractwiththeexcitedstatechargedistribution

Thus,thegroundstateofsuchsolutemoleculesismorestabilizedthantheexcitedstate.Thiswidens
theenergygapbetweenthegroundandexcitedstateswithincreasingpolarityofthesolvents
(Fig.9).
Therefore,moreenergyisrequiredforthen→π*kindofelectronictransitionwithincreasing
solventpolarity.Thisresultsintheshiftofspectralpeakpositionstowardsshorterwavelength.
Case2
Ontheotherhand,iftheexcitedstateofthechromophoreismorepolarwithrespecttothe
groundstate,thentheexcitedstatewillbemoresolvatedandmorestabilizedbyamorepolar
solvent.Thiskindofpropertyisobservedinthecasechromophoreswithπ→π*transitions.

Thisfavorsstrongerinteractionoftheexcitedstatemoleculewithmorepolarorhydrogen
bondingsolventsandtherebystabilizingtheexcitedstatemorethanthegroundstate.
Thisdecreasestheenergygapbetweentheexcitedandthegroundstateswithincreasingsolvent
polarity(Fig.9)whichresultsinshiftofabsorptionpeakpositionstowardslongerwavelengths.
Wemayrecallthatashiftoftheabsorptionpeakposition(λmax)towardsshorterwavelengths
iscalledablueshiftorhypsochromiceffect.
Ontheotherhand,ashiftoftheλmaxtowardslongerwavelengthistermedastheredshiftor
bathochromiceffect.
Whenthereisanincreaseintheabsorptionintensity,(i.e.,absorbance)theeffectistermedas
hyperchromiceffect.
Ifthereisadecreaseintheabsorptionintensity,theeffectistermedashypochromiceffect.

Inshort,π*orbitalsaremorestabilizedbyhydrogenbondingwithpolarsolventslikewater&
alcohol.Itisduetogreaterpolarityofπ*orbitalscomparedtoπ-orbital.Thus,smallenergywillbe
requiredforsuchatransition&absorptionshowsaredshift.
Ifthegroup(carbonyl)ismorepolaringroundstatethanintheexcitedstate,thenincreasingpolarity
ofthesolventstabilizesthenon-bondingelectroninthegroundstateduetohydrogenbonding.Thus,
absorptionisshiftedtoshorterwavelength.
Ifthegroupismorepolarinexcitedstate,thenabsorptionisshiftedtolongerwavelengthwith
increaseinpolarityofthesolventwhichhelpsinstabilizingthenon-bondingelectronsintheexcited
state.
Increaseinpolarityofsolventsshiftsη→π*&η→σ*toshorterwavelength
Increaseinpolarityofsolventsshiftsπ→π*tolongerwavelength.

Applications of Electronic Spectroscopy in Predicting Absorption Maxima of Organic Molecules
Conjugated Dienes, Trienesand Polyenes
ThepresenceofconjugatedoublebonddecreasestheenergydifferencebetweenHOMOandLUMOof
resultingdiene.Thefigure6showsthechangeinenergyofMOonconjugation.Asaresult,the
radiationsoflongerwavelengthareabsorbed.Theconjugationnotonlyresultsinbathochromicshift
(longerwavelength)butalsoincreasestheintensityofabsorption.Asthenumberofconjugateddouble
bondsisincreased,thegapbetweenhighestoccupiedmolecularorbital(HOMO)andlowestunoccupied
molecularorbital(LUMO)isprogressivelylowered.Therefore,theincreaseinsizeoftheconjugated
systemgraduallyshiftstheabsorptionmaximum(λmax)tolongerwavelengthandalsoincreasesthe
absorption.Forexample,ethyleneabsorbsa175nm(ε=1000)andtheconjugationinbutadienegives
astrongabsorptionatlongerwavelengthat230nmandwithhigherintensity(ε=>1000)