(a)r=(3sin pt)i+(2cos pt)j
(b)r=(cos
pt)j
(c)r=ti+t
2
k
(¥t¥),andwritedownthederivativesdr=dtandd
2
r=dt
2
wheretheyaredened. 2
IfFisavectorfunctionofmorethanonevariable,sayF=F(u;v),thenitisstraightforwardtodeneits
partialderivativeswithrespecttouorv,intermsofpartialderivativesofitscomponents.Thus,forexample,
ifF=(f1(u;v);f2(u;v);f3(u;v)),then
¶F
¶u
=
¶f1
¶u
;
¶f2
¶u
;
¶f3
¶u
:
Onecasewherethisarisesisifthevectorisdenedateachpointonasurface(x(u;v);y(u;v);z(u;v)).
3.2VectorFields
(SeeThomas16.2)
Fortherestofthiscourse,weshallbeconcernedmostlywithvectorsandscalarswhichdependonpositionin
three-dimensionalspace,i.e.whicharefunctionsofthreevariablesx,y,z.Sometimestheymaydependalso
onafourthvariable,suchastimet,orwemayonlybeinterestedintheirvaluesonaparticularpathr(s).A
vectordependingonpositionissaidtoconstituteavectoreld.WewriteavectorFthatvarieswithposition
as
F=F(x;y;z)F(r)
AnexampleisshowninFigure3.2.WecanalsowriteFintermsofitscomponents,whichagaindependon
position:
F=(F1(x;y;z);F2(x;y;z);F3(x;y;z)):
Aphysicalexampleofavectoreldisthevelocityinaowinguid(e.g.thewaterintheoceans,moving
becauseofcurrentsandtides;ortheairintheatmosphere,movingbecauseofwinds).Thevelocityatany
pointintheuidisavectorquantity–ithasmagnitudeanddirection.Ifweattachavelocityvectortoeach
pointoftheowinguid,wehaveavectorelddenedintheregionoccupiedbytheuid.
Anotherphysicalexampleisamagneticeld;nowthingsarenotnecessarilymovingwithtime,butthe
magneticeldhasadirectionandastrengthateachpointinspace;soateachpointinspacewehaveavector;
andthisvector(ingeneral)varieswithpositionsoitisavectoreld.
Wecanaddvectoreldsandmultiplythembyaconstantintheobviousway,soifFandGaretwovector
eldsthenF+Gisalsoavectoreld,andif
lisaconstantthen lFisalsoavectoreld.
Givenavectoreld,wecouldofcoursenowdifferentiatethevectoreldwithrespecttoeachofthe
coordinates(x;y;z)inturn,inthemannerdescribedintheprevioussection;thisgivesusatotalof9quantities
foreachofthex;y;zderivativesofF1;F2;F3.HerewewillbeassumingthatFisasmoothly-varyingfunction
ofposition,soallthesederivativesexistatallpointsofinterestr,(exceptpossiblyforoneortwosingular
points).
Note:thesetofall9derivativesofacomponentbyacoordinateformsaquantityofanewkind,called
atensor.Theseareusedinuidmechanics,solidmechanicsandrelativity,forexample.
30