Vector ( सदिश ) @irfanullah_mehar.pdf sadish

irfanullah6695 0 views 90 slides Oct 10, 2025
Slide 1
Slide 1 of 90
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90

About This Presentation

Vector ( सदिश ) @irfanullah_mehar.pdf


Slide Content

Physics
<br>
Notes
<br>
IrfanullahMehar
<br>
V
[email protected]
<br>
o
@irfanullah_mehar
<br>
WorldofWisdom
<br>

2024
<br>
afaa
(teetor)
<br>
Hp
ofectoys
<br>
sT(Cmbination)
<br>
afaa)
fT
(Resclutem)
<br>
Ex.
<br>
TJAHX
INA
<br>
( HNS)
<br>
(VeetrPooeet)
<br>
IToHAM
<br>
n
<br>
(*1Qucs-hey
<br>
Dstnee,Specd(l0)
<br>
mapnítude
<br>
fa
<br>
fàeja
fa(E.fstenial)s)
<br>

(X
<br>
ife|
<br>
Cop)
<br>
yetheally
<br>

a-Law:ok:eetor
<br>
Allsevenmasn
undamenta
<br>
(i)
<br>
(s)
<br>
seoan,
<br>
quandihy
<scala
<br>

re
<br>
Ex)
<br>
(3)
<br>
(A)
<br>
()
<br>
NHN(3)
<br>
(Dnpular)
<br>
()
<br>
(8)
<br>
()
<br>
()
<br>
()
<br>
H)
<br>
()
<br>
()
<br>
()
<br>
)
<br>

Note8
<br>
().
<br>
(F)
<br>
()
<br>
Tensor)
<br>
(($)
<br>
()
<br>
F
<br>
()
<br>
5
<br>
()
<br>
()
<br>
(Reomesontatinof
vectors)-
<br>
()
<br>

f
<br>
(EquivalatorGkevectors)
-
<br>
OR
<br>
(Töpesoacts)
<br>

<br>
32
<br>
(9-A)
<br>
A.
<br>
A
B
<br>

(3)
fauftaa
(oppositeVector)i
<br>
180
<br>
irsfO)
<br>
AA=-
BB
<br>
(ot,-'tarfaufka
<br>
(UnlikeVeoture)
<br>

(5)sifa
(UnitVeetor)
<br>
2(a)
<br>

A
T
]A|At
Aý+A2
<br>
Q.a)The
expression(estsrs)(l3) å
<br>
(4)
<br>
afea
<br>
(Null
Veekorg
<br>
(a)
sifa
(Scala)
<br>
J)62482+10
<br>
1
<br>

(Panalel)
<br>
)$(at+6j-ak)
<br>
Cb
<br>
al+6)-2K
<br>
(9(3i+<+2R)
<br>
(6)
<br>
(4i
+8j+6k)+(-i+af-8k)
<br>
) si+
sf-2Re
<br>
(3?t6j-2K)
<br>
(a)si-ej+2)
<br>
49
<br>
St36t4
<br>
Ans-
(a)
<br>

Ans
<br>
()5t'9of)
<br>
25
<br>
(ami)
<br>
5
<br>
s(3lr)
<br>
15it90i
<br>

Ans
<br>
(c)
<br>
i)
<br>
1
<br>
(6)1P)
=
1)
<br>
$20r/)
<br>
trot
Loitu
<br>

faa
<br>
DoHalPoj
<br>
NEURÍrS
(CoinithiadWectore
<br>
nose
<br>
B
<br>
faufxOpposite)
<br>
A
- B
<br>
idtial
<br>
Poit
isSme
<br>
()
<br>

T J,(Concwet
Veators)
<br>
(wheseTtenseetienpoitis
<br>
These
<br>
Sume.
<br>
Bne
<br>
(hiehies
n
Smesla
ne
<br>
(Tronlatnt
<br>
peint
<br>
CPstenVeetr)
<br>
Wetos)-
<br>
motio)
<br>
initial
poiut
<br>
defiite
<br>
Appiaahn,
<br>
Foree
<br>
momeudum
<br>
(ra)
<br>
etc.
<br>

(sotaieneJMeton)
<br>
far
<br>
Arglebfotuo
vectorswillbe
eonaidened tai&
<br>
oodastaatnn,tc,tiilres:
<br>
Tailto
<br>
(sg
<br>
(5)
<br>
(difiiteais)
<br>
altirT,
HeadtoHea
<br>
)
<br>

kil
toHead
cT
faR)
<br>
Handtoail(faj)
<br>
)
<br>
(i)
<br>
(iü)
<br>
260-290
<br>

(v)
<br>
Ex
<br>
(i)
<br>
not
b
<br>
A
<br>
=
(26°
<br>
-18,-70
<br>
66
<br>

9=
2
n
<br>
Combinatintoveetos(fas a)9)
<br>
theiresultt
or
<br>
Law
<br>
Swn
)
<br>

()
<br>
tan
<br>
Tieptrs)
<br>
tan'.
<br>
Ban
<br>
(9-ro
<br>
tuole
<br>
Resultut
<br>
iRAftB2A
BCoso
<br>
Bsne
<br>
AtBos)
<br>
Resultnat)
<br>

Case
It5s
<br>
""Cos
0=1
<br>
AsAtB20Boso
<br>
AJA+B2+2AB
<br>
A-J(A+B)2
<br>
RA+B
<br>
MaximuY)
<br>
RmaxAB
<br>
tì)tanoka
<br>
tan
<br>
Bsin0
<br>
AtBocG
<br>
Beno'
<br>
AB
CoS0
<br>
Note-Gk.
(
<br>
20
270360
<br>
RO 27036
<br>
Rance(48)11
<br>
Range(o7)
<br>
OR
<br>
Cose
<br>

loseI|
<br>
Ces180
<br>
RA?48A8
<br>
R4-)2
<br>
wRA-B
<br>
RA-B
<br>
R,
<br>
un
<br>
)tono
<br>
-1
(miinn)
<br>
A-8
<br>
8ne
<br>
Bsin
R0'
<br>
A-B
<br>
-A
<br>
ton
cbjhit
<br>
tcuno".T
<br>

Case-
<br>
ase
<br>
o).R=A+2ABCoso
<br>
x
<br>
RA4B
<br>
R
x?+t2%2
Cos
<br>
R
2x2(1+ose)
<br>
i)
tan
<br>
tanx
<br>
A
<br>
B
&in
<br>
A+B09
<br>
3+Coso
<br>
(
<br>
Rs2x2:a
<br>
R2%0s
<br>

fslase
<br>
Note
-
<br>
)
<br>
(m)
<br>
x
<br>
R=
2xCos
<br>
Cas
<br>
2x
Ces
<br>
2X
<br>
OR
<br>
ABRX
<br>
o
2A2+2
+
ABCoss
<br>
X=Jx4X2422Coso
<br>
Sqie
RootCaucol
<br>
2x2CosO-X
<br>
4
<br>
2
<br>
2,
<br>
Cos
j20-h
<br>
R
(RGTG)
<br>
2-920
<br>

Q.5|
<br>
(9)0°,
<br>
(B)5N
<br>
(b)g0°
<br>
R
<br>
Ans(
<br>
(C)1N(D)
NT7NGE
<br>
(a)
N
<br>
(8)5N
<br>
|8-)
<br>
(D)ING1
<br>

Ans-hteo
<br>
Q.3|
<br>
()
<br>
(9)13G
<br>
M)
<br>
J202
<br>
B)1.2
<br>
(B)I8.2()
S202
<br>
Anse
<br>
tb)ta'
(Pd)()tasla/)
<br>
greta
<br>

tano
h
<br>
P+QCGA
<br>
Cioss
ma
<br>

Q.
s)
<br>
aA2+8'+9ABos
<br>
A(b)
A-+2AB(oto.
<br>
(4)
90
<br>
(b)120
<br>
A
At
B
<br>
A12N
<br>
RaA+B
<br>
125
<br>
A
<br>
(D)60°
<br>
=5N RF F?
<br>
-12-5itles
+s*JrHGt25
<br>
-]169
<br>
Re130
<br>
tail
<br>

11111
<br>
Ans
<br>
Rmax
-A+B=1+
<br>
Rmn
<br>
A=3x
<br>
R
99
<br>
A
<br>
A-13
.
<br>
385
<br>
R
A²42
<br>
2%2
<br>
R2+52
<br>
Rl3N
<br>
9D9ot52t15
X
<br>
fol3(31al)
<br>

).17]
<br>
-ufkon
<br>
(b)P4
<br>
RÁ3+/2teoi0s
<br>
R'2R
<br>
(d)2p
<br>
Ane-(
<br>
x
A
<br>

9.13
<br>
Ans
<br>
Cose
<br>
l)|20(3)50
<br>
ttnso'
<br>
14+BCge
<br>
2
<br>
24
<br>
R
<br>
1BSn9
<br>
A+13CosO
<br>
2
<br>
.A
<br>
8
<br>

4
<br>
Angs
<br>
A24B2-2A2
<br>
n2
+
B2
<br>
:20
<br>
3
<br>
Cose-J
<br>
'oe
<br>

aoloa)202y
<br>
R=
-
<br>
RA+B-
2AB
CoSO
<br>
X2+22x2,os
<br>
RaX(
Cose)
<br>
R2x in9/
<br>
Bubsractiom
o
Vetors
<br>
RA +B-
2ABCosG
<br>
(3
<br>
0),er0:(ii)e.s6°T(i)
180"
<br>
RaA-BMeRJAYg2
<br>
R
A+B
<br>
-1
<br>

(4)
<br>
(2)
<br>
()
<br>
tan,
Bsne.
<br>
A+B
Cos
<br>
(4)=0=)
R
At8
<br>
(G)
(86-
R
<br>
(D)(R)>B)
<br>
RJe2+gABCose
<br>
0fR
A-B
<br>
180°
R
A+B
<br>

Ans
<br>
Q.21|
<br>
Ans
<br>
A+B2ABOSe
<br>
(9)30
<br>
4A8,Cose
<br>
9-
0
<br>
(
<br>
(b)6o?
<br>
(Ani-)
<br>
(e)120-()450°
<br>
A B
R
<br>
12O
<br>
(sAns- )
<br>

Ans))Ae
<br>
A
8
<br>
Ane
<br>
()
B0
<br>
fA+B
=1
<br>
e-128
<br>
(5)J3
<br>
(3-2ra)Ja-)
<br>
lA8)
<br>
A+B-
2ABCos
<br>
(b)o
Ce)(20°
<br>

Ans
<br>
(A))0
<br>
60
<br>
dye
<br>
(b)20dye
cco
10J3dyne
<br>
Ang-(A
<br>

Ans
<br>
G.26
<br>
(9)
<br>
(9)o°
<br>
Ans
<br>
AnsMethodI|
<br>
(A)
-
<br>
(b)
<br>
Co1)
<br>
n~5,By,c-3
<br>
5-16+9+2y
Cose
<br>
()7
<br>
5 4
98
<br>
tno
Being
<br>
tana
<br>
-
<br>
do
<br>

tan
<br>
Method-T
<br>
Ans
<br>
A=534C3
<br>
A
<br>
5
<br>
Cot()
<br>
8ne
<br>
Beine
<br>
(Ans
)
<br>
-
<br>
(AJ
<br>
90
<br>
(B)
<br>

ACro
<br>
C=R
<br>
(A-JA+842nB)
<br>
B
J2A
<br>
RA 1350
<br>
26)
<br>
92
<br>
(An-c
<br>

Re
<br>
(M)
<br>
(oimgamsticaliy)
<br>
b
<br>

Ans
<br>
(a)
g0
,
la5,135°
<br>
RP 2+Q2t2
PQ
Case
<br>
P
<br>
90°
<br>
allAQe 185
<br>
(b)90,45°,45°
<br>
()45°,
135°,135
<br>
I15
<br>
P
<br>
sin
<br>
PO)
<br>
P+
Plo)
<br>

Notei
<br>
F
<br>
(S
-0g)/(Sumn-olno)
<br>
(cTGEON)-01oj
(Sshraction
<br>
To
(Associautivelaw)
<br>
A+(B+)
=
(Ä+B)
+
<br>
B-(B)
<br>
120
<br>
(1E)-
<br>
90
<br>
(
St-d)
<br>
F
<br>
Fnet=0
<br>
)60
<br>
66
<br>

(5)E.
6T
<br>
)
<br>
(Eq
Wbaian)
<br>
A-B
<br>
<lc)
A
tB
<br>

(9)
<br>
lshiehofthe
<br>
(b)
<br>
(c)
<br>
(4)
<br>
(1)
<br>
4
<br>
Oa
Vectoin
<br>
4
<br>
Ax
<br>
15
<br>
203A
<br>
12.
<br>
1
<br>
-R
<br>
eomponents
<br>
(2
Dimendicnal)rrartay)
<br>
(a)
<br>
Ax
<br>
Vectors)
<br>
fty
<br>
R
<br>
i)
<br>
Cose
<br>
Ax=
ACase)
<br>

eolups
Sn
<br>
(9)3D
<br>
x
<br>
(5)gEaierc(vetial)
Componu
<br>
PrHtHy
(A
Cose)
+(Aeine)
<br>
Ay
<br>
Y
<br>
Ay
<br>
Ax
<br>
1
<br>
Ar
tAy Az
<br>
3D
<br>
(aivecton'cosine)
<br>
31
<br>
Ax/
<br>
As
<br>
A
<br>

A
<br>
Aces
<br>
cos-()
<br>
(
<br>
Az
<br>
Ax-
Acos
oX
-)
err t
<br>
Si=Sine
<br>
CusyAz
<br>
A
<br>
Az
-
Aces
<br>
Ssa-Co
sine,)
(tauged
<br>
()203
<br>
Cos'Coep+Csy|s
(
<br>

Note
<br>
NOTE
<br>
bapuA-JA+Ay
<br>
()
A
<br>
tai'"Ob)
<br>
C
Cosine)
<br>
(ine)
<br>
(D)AyR
Sh
<br>
Acose-0)
<br>
-
203R
<br>
()
<br>
Ay
<br>
Ano
<br>
3
<br>
T
<br>

Ex.
<br>
:
Ax
3
<br>
Ay
4
<br>
A=5
<br>
tan
<br>
19
<br>
tRstr
a(PositienVestos))
<br>
(X82)
<br>
Ax
<br>
-
XiYft2k
<br>
(3e83
<br>

Y
<br>
7-X,?+
Yý+Z,k
<br>
(F)-CohasVroifia83)g
<br>
(n)1+j+10k
<br>
(d)
2?+6k
<br>
(S600
<br>
farg
<br>
(facsa)
<br>
Ans
<br>
P(23,5)
<br>
CAnsc
<br>

Q.SN
<br>
Cosne)
<br>
Ans
<br>
1
<br>
A
<br>
(A)10N
<br>
A
<br>
5N
<br>
(B)
3N()4N(oj2:5
N
<br>
J95
<br>
Ax
)k
5
<br>
Ay
<br>
X%
<br>
tg(55N
<br>
fi(B)
<br>
(D)
u'
<br>

A
<br>
A
<br>
l8)e)n,(4)SaA
<br>
Coe
<br>
(9ange0
<br>
Ay A2
<br>
(e)
<br>

Q.Findthe
<br>
Ans-
<br>
5N
<br>
53
<br>
58)
<br>
5Cos53
<br>
-uftmo
<br>
Y
<br>
)57
<br>
5N
<br>
55n53)
<br>
SN
<br>
5Singg+5Sing3
<br>
5N
<br>
34°
<br>
51V
<br>
R
<br>
ResdtatR?2
<br>
X
<br>
scs53
<br>
5n53
<br>
5os32°
<br>
1N
<br>

Ans
<br>
Y
<br>
J36t69
<br>
R0
<br>

SN
<br>
Ans
<br>
R=
<br>
45
<br>
532J:5o&
<br>
(n)5m
<br>
^5N
<br>
5)2
<br>
220le5N
<br>
5V
<br>
5N
<br>
R=0
<br>

Ane
<br>
A
-
<br>
1
<br>
et 10sec
<br>

0)
<br>
(A)
<br>
Muttiph'ahibnoVeotore
<br>
mA
<br>
Ex
<br>
m
<br>
(DitProduct
<br>
+Azk(afG
<br>
mAx?t
m
<br>
m
<br>
(Al+Ayft
Azky
<br>
0203A
<br>
08|D4y
<br>
12152
Am
<br>
(B) CrOSshoduet
<br>

Acose
<br>
Lmatima
<br>
(soalar
pluuttipleabon)
<br>
A.An
os
<br>
Coso-1
<br>
Cose
<br>
Cos)80-1
<br>
mntmwm
<br>
1-4:1-
koR=1
<br>
1
<br>

E
i)
<br>
Note
<br>
=
AxBx
+
AyBytA2
Bz
<br>
(im)Flux(bodz)faT.
<br>
9209f
<br>
se
matPuchoRaste
Gha Ke,
<br>

Acose
<br>
ACoSe
<br>
A
<br>
1
<br>
-9to
<br>
12412,
<br>
T
<br>
AB
<br>

.31
<br>
Ans
<br>
B
<br>
B
<br>
4t53R
<br>
AB
1242ot|5
<br>
ACosG,
=
<br>
B
<br>
w
<br>
3k
<br>
AB
<br>
-R2-3
<br>

Q.32
<br>
.93
<br>
Ans
7
<br>
B)10
,
CC)20
<br>
A.B 42X+200
<br>
(d)
<br>
Sattu
<br>

.
35
<br>
Q.36
<br>
(P.&)
<br>
(b)30lc)-uscd)6o°
<br>
Coelg25-25
<br>

Ans
<br>
(a)Cos!
<br>
(a)()
Eoc)
<br>
J6+62+(3)2J4ty
<br>
co)
<br>
(54)
<br>
LJ9-y
<br>
Snos5/
<br>
6
<br>
Ani
<br>

Q99
<br>
(o)90
<br>
Cose
<br>
Coso
<br>
(4)4X3
<br>
(b)
o
<br>
AB
<br>
-60
<br>
(06X3
<br>
(dl6o
<br>
(d)4X6
<br>
/Ans
<br>

Ax-
A8onn
<br>
Cyoss
<br>
fetet
<br>
(Veckoxbultipiation)
<br>
Cas-I
<br>
AB
<br>

Case-I
<br>
Case
<br>

Caie-)
<br>
Ex•
<br>
fe-?
<br>
2
<br>
+90-926)
<br>
0URAtieloelewises
<br>
-i<
<br>

-Ans
<br>
3
<br>
3
<br>
()-iul
+34-16k
<br>
(7+9)R
+{1s+1)ft
(3-s5)
<br>
Case-I
J
<br>
Ang-l),
<br>
Rxi
AxBx(ix^)+
AxByltx3)+
AyBz(ixl+
<br>
Hy&x(3+i)
<br>
An
e()
1
A;Bz(-3)
+AyBa-k)
+Ay6a();
AzBx(3)+
<br>

Case
<br>
(AyBz-ABy)?
+(ABy
-Ay
Bz)tlAxyty)T
<br>
+(AxBy-
Ay&x)R
=ot
+of+ok
<br>
ti)
Ay
&2-AzBy
-b
<br>
AyBz
2
By
<br>
A
<br>
BA
<br>
B2
<br>
A
Bx Bz
<br>
Az
<br>
Bz
<br>
BX
<br>

Ans
<br>
CosAR
<br>
AB
<br>
-15R1
<br>
exABxt
AyBytAz
Bz
<br>
(9)Os-(b).-,2(c)
<br>
-yi-6-AK
<br>
AX Ay
<br>
By
<br>
(d)
4
<br>
d=-2
<br>
A
<br>
Bz
<br>

(9)
<br>
Arca +Ë)
<br>
Veateymulticaton):
<br>
eh
t
yovao
1XBI
<br>
A.
(Bx)o
<br>
L.
<br>
Ayea
<br>
(hiogenal)
<br>

.42
<br>
(a)3,
<br>
Cb)5,(c)-4,
(d)-8
<br>
,
imot
-
<br>
e.(ANE)
-o
<br>
(9+)k
+
(3-2)1+(I+G)f
<br>
Ax)=ioal
<br>
o1Sept224
<br>
(sl+p45R).(î3+5k)=0
<br>
3++p+25120
<br>
Te+28.0
<br>
-
28
<br>

-Dhd
Spethoc
Datn
Thathed
<br>
Ans
<br>
-a++s
<br>
(6)A+8
<br>
-
<br>
(f)
<br>
5
<br>
1(P-<)=o
<br>
20t6P+14
4Pp-6FO
<br>
98+7P=0
<br>
P--9
<br>
ta)(a+8As)
<br>
(A+82ANCost)
<br>

Q.
<br>
Ane
<br>
taun6S3
<br>
-
(A+8:
<br>
(a)
O
<br>
(ixE)
<br>
(92+8
+
AB)
<br>
(b)
n
(cxE(d)2(x
<br>
n°-R/
<br>
(&xR)4(ax-B)]+
(exA)
t(Ëyeo)
<br>

-
(i
18)(8
xÄ)
<br>
45
<br>
Anag
<br>
(4)
<br>
Ar
-
(d)
<br>
(4)
<br>

Q.
<br>
Ang
<br>
Ans
<br>
e)
<br>
3a)
G
(b)3Cc)(d)
o
<br>
B3
<br>
TS,)TESTeoe.
<br>
ABne
<br>
22
422
+
2.2.3Cos
<br>
2+3
+22,3Quso1
<br>

Ans
<br>
(a)
O
<br>
(9)
o
(b)
7
,
(c)
<br>
Lstgrade
<br>
Q.53
<br>
2o)R
<br>
(a)
1(B)
12(C)3(d)Zero
<br>
1
<br>
Ans
<br>

Ans
<br>
.
f
<br>
A=3
<br>
B4
<br>
R-1
<br>
R? +8242ABCosGJ
<br>
32os 24Cose
-2y
<br>
9203e
<br>
Cose-241
<br>
Ane
<br>
(68Ä)
<br>
(er373r1)+(4n3XSX0)-(9
xsX3X%-(6rs751
<br>

34t30e0s-25
<br>
(a)
e
<br>
30
CoS9
<br>
Cese=%o)
<br>
(6X8X3xi)+(3A5x
)-(9A5X8Xo)-(6r57e
<br>
)s4t18-31150
<br>
/2
<br>
-23
<br>
-78
=>-8)
-156
<br>
–118.5
<br>
X1)
<br>

Ans
<br>
-2c09(92hCose
2n2
<br>
oso
(--ntj(nt-1)
<br>
Cos0
<br>
Cos1
<br>

sing
<br>
d203v-
2
o)c
<br>
2
<br>
AB
<br>
2
<br>
2
<br>
theu ?
<br>
(20
<br>

2hdGrde,oe3
Sanskit)
<br>
Q.58)
<br>
2ndered2018|
<br>
5
<br>
(B)7(0ts)(e)(:0)
<br>
B
<br>

Ans
<br>
Fuet
<br>
(0g(5)
<br>
(i)
<br>
(c)ABsino
<br>
Ascwne(51/)
<br>
Fu
<br>
iv)
<br>

AX
0
<br>
(n)T2)
A
CC)zhovector
(ert
<br>
A-c)
<br>
Note
;-forety
.
<br>
2.2xt
3.2y20
<br>
.62
x
+y-ia fouf (1,1,1)
<br>
X2
<br>
A
=2xt2YÝ
-
1k
<br>
(11,4)
<br>
3
<br>
RO
<br>
J231221r
<br>

Q63|
<br>
Tao
Vectors
<br>
epoint.
<br>
DnoYeased
<br>
scalarn
<br>
game
<br>
becones
<br>
by
<br>
es th
<br>
tue'ytaile
<br>
te
<br>
the
auglelothenis
<br>
2o'thenthemagžudeof
<br>
produet
emains
same
<br>
-findtteeuhalagle
<br>
(o)60(B)70*(c)80()
90Tos
onpe
<br>
ABCos(o
+
20) 93Cos
<br>
codet0*
<br>
AL)egvoi
Gos{ot26)Fces(i80-0),
<br>
Cos(-)-cos6
<br>
co(i00-6)
<br>
(l6080
<br>

er
Rad
nmethod(mmom
Sense)
<br>
0-90
<br>
704)
<br>
0-0)
<br>
o
<br>
80()
<br>
(D)90-0
<br>
3203
A
<br>
90
<br>
30-120
<br>
241-2-Coso=2Jy?H3)2+21.1osi
<br>
JIt342J3
(0)
<br>
=2Ans
<br>

Q65|
<br>
Ang>
<br>
Aus
<br>
(A)
<br>
-5
<br>
2
<br>
(2-0)R+3+5)4+
(0+2)
<br>
-O200
<br>
cAsiw
<br>
5T
<br>
(o~2)to2)(2-o)
<br>

Q.67/
<br>
togve
<br>
92
<br>
dtferent
<br>
Ane
<br>
K
<br>
mn,no
.
ofcoplaes
wete
<br>
nagnutucle.
<br>
)
5
<br>
28)3
5
<br>
6)4
<br>

WorldofWisdom
<br>
YOURWISDOM
<br>