vttftfhuhushshscjbahbhfrsrftdrftesws4.ppt

DentRidhaAlshair 19 views 74 slides Sep 16, 2024
Slide 1
Slide 1 of 74
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74

About This Presentation

-ijj


Slide Content

Restorative Composite ResinsRestorative Composite Resins
Dr shabeel pn
                                                                             

Official Disclaimer
•The opinions expressed in this presentation are
those of the author and do not necessarily
reflect the official position of the US Air Force or
the Department of Defense (DOD)
•Devices or materials appearing in this
presentation are used as examples of currently
available products/technologies and do not
imply an endorsement by the author and/or the
USAF/DOD

Overview
•Direct restoratives
–composition
–classification
–performance factors
•Flowable
•Packables
Click here for briefing on composite resins (PDF)

Composite
•Material with two or more distinct substances
–metals, ceramics or polymers
•Dental resin composite
–soft organic-resin matrix
•polymer
–hard, inorganic-filler particles
•ceramic
•Most frequently used
– esthetic-restorative material
Leinfelder 1993

History
•1871 – silicates
–alumina-silica glass &
phosphoric acid
–very soluble
–poor mechanical properties
•1948 - acrylic resins
–polymethylmethacrylate
–high polymerization shrinkage
Rueggeberg J Prosthet Dent 2002

History
(cont.)
•1962 – Bis-GMA
–stronger resin
•1969 – filled composite resin
–improved mechanical properties
–less shrinkage
–paste/paste system
•1970’s – acid etching and microfills
•1980’s – light curing and hybrids
•1990’s – flowables and packables
•2000’s – nanofills
Rueggeberg J Prosthet Dent 2002

Indications
•Anterior restorations
•Posterior restorations
–preventive resin
–conservative class 1 or 2

Contraindications
•Large posterior
restorations
•Bruxism
•Poor isolation

Advantages
•Esthetics
•Conservation of tooth structure
•Adhesion to tooth structure
•Low thermal conductivity
•Alternative to amalgam

Disadvantages
•Technique sensitivity
•Polymerization shrinkage
–marginal leakage
–secondary caries
–postoperative sensitivity
•Decreased wear resistance

Composition
•Resin matrix
–monomer
–initiator
–inhibitors
–pigments
•Inorganic filler
–glass
–quartz
–colloidal silica
•Coupling Agent
OCH
2
CHCH
2
O-C-C=CH
2
CH
2
=C-C-O-CH
2
CH-CH
2
O -C-
CH
3
CH
3
CH
3
CH
3
OH OH
O O
Bis-GMA
Phillip’s Science of Dental Materials 2003

Monomers
•Binds filler particles together
•Provides “workability”
•Typical monomers
–Bisphenol A glycidyl methacrylate (Bis-GMA)
–Urethane dimethacrylate (UEDMA)
–Triethylene glycol dimethacrylate (TEGMA)
CH
2
=C-C-O-CH
2
CH
2
-O-C-NHCH
2
CH
2
CHCH
2
-C-CH
2
-NH-C-
CH
3
CH
3
OCH
2
CH
2
O-C-C=CH
2
CH
3
O OOO
CH
3
CH
3
OCH
2CHCH
2O-C-C=CH
2CH
2=C-C-O-CH
2CH-CH
2O -C-
CH
3
CH
3
CH
3
CH
3OH OH
O O
CH
2
=C-C-O-CH
2
CH
2
-OCH
2
CH
2
CH
3
OCH
2
CH
2
O-C-C=CH
2
CH
3
O O

Monomers
•Bis-GMA
–extremely viscous
•large benzene rings
–lowered by adding TEGDMA
•freely movable
•increases polymer conversion
•increases crosslinking
•increases shrinkage
CH
2
=C-C-O-CH
2
CH-CH
2
O -C- OCH
2
CHCH
2
O-C-C=CH
2
CH
3
CH
3
CH
3
CH
3
OH OH
O O

Monomers
•Shrinkage
–2 – 7 %
–marginal gap
formation

Filler Particles
•Crystalline quartz
–larger particles
–not polishable
•Silica glass
–barium
–strontium
–lithium
–pyrolytic
•sub-micron
  
                                   
Phillip’s Science of Dental Materials 2003

Filler Particles
•Increase fillers, increase
mechanical properties
–strength
–abrasion resistance
–esthetics
–handling
•50 to 86 % by weight
•35 to 71% by volume
0
0.5
1
1.5
2
F
r
a
c
t
u
r
e

T
o
u
g
h
n
e
s
s
02837485362
% Filler Volume
Ferracane J Dent Res 1995

Coupling Agent
•Chemical bond
–filler particle - resin matrix
•transfers stresses
•Organosilane (bifunctional molecule)
–siloxane end bonds to hydroxyl groups on filler
–methacrylate end polymerizes with resin
CH
3-C-C-O-CH
2-CH
2-CH
2-Si-OH
CH
2
O OH
OH
Bonds with filler
Silane
Bis-GMA
Bonds with resin
Phillip’s Science of Dental Materials 2003

Inhibitors
•Prevents spontaneous
polymer formation
–heat
–light
•Extends shelf life
•Butylated Hydroxytoluene
Phillip’s Science of Dental Materials 2003

Pigments and UV Absorbers
•Pigments
–metal oxides
•provide shading and opacity
•titanium and aluminum oxides
•UV absorbers
–prevent discoloration
–acts like a “sunscreen”
•Benzophenone
Phillip’s Science of Dental Materials 2003

Visible-Light Activation
•Camphorquinone
–most common photoinitiator
•absorbs blue light
–400 - 500 nm range
•Initiator reacts with amine activator
•Forms free radicals
•Initiates addition polymerization
OCH
2
CHCH
2
O-C-C=CH
2
CH
2
=C-C-O-CH
2
CH-CH
2
O -C-
CH
3
CH
3
CH
3
CH
3
OH OH
O O
Bis-GMA

Polymerization
•Initiation
–production of reactive free radicals
•typically with light for restorative materials
•Propagation
–hundreds of monomer units
–polymer network
–50 – 60% degree of conversion
•Termination
Craig Restorative Dental Materials 2002

C=C
C=C C=C
C=C C=C
C=C C=C
C=C C=C
C=C C=C
C=C C=C
C=C C=C
C=C C=C
C=C
C=C
C=C
C=C
C=C
C=C
C=C
C=C C=C
C=C C=C
C=C
C=C
polymerization
Ferracane

Classification System
•Historical
•Chronological
•Based on particle size
–traditional
–microfilled
–small particle
–hybrid
Phillip’s Science of Dental Materials 2003

Traditional (Macrofilled)
•Developed in the 1970s
•Crystalline quartz
–produced by grinding or milling
–large - 8 to 12 microns
•Difficult to polish
–large particles prone to pluck
•Poor wear resistance
•Fracture resistant
•Examples: Adaptic, Concise
•Suitable for Class 3, 4 and 5
Phillip’s Science of Dental Materials 2003

Microfills
•Better esthetics and polishability
•Tiny particles
–0.04 micron colloidal silica
–increases viscosity
•To increase filler loading
–filler added to resin
–heat cured
–ground to large particles
–remixed with more resin and filler
Ground
polymer with
colloidal
silica (50 u)
Polymer
matrix
with
colloidal
silica
Phillip’s Science of Dental Materials 2003

Microfills
•Lower filler content
–inferior properties
•increased fracture potential
•lacks coupling agent
•lacks radiopacity
•Linear clinical wear pattern
•Suitable for Class 3, 5
–exceptions with reinforced microfills
•Class 1 or 2
Click here for table of microfills

Small Particle
•1 - 5 micron heavy-metal
glasses
•Fracture resistant
•Polishable to semi-gloss
•Suitable for Class 1 to 5
•Example: Prisma-Fil
Silane-coated
silica or glass
(1-5 u)
Polymer
matrix
Phillip’s Science of Dental Materials 2003

Hybrids
•Popular as “all-purpose”
–AKA universal hybrid, microhybrids,
microfilled hybrids
•0.6 to 1 micron average particle size
–distribution of particle sizes
•maximizes filler loading
–microfills added
•improve handling
•reduce stickiness
Silane-coated
silica or glass
Polymer
matrix with
colloidal
silica
Phillip’s Science of Dental Materials 2003

Hybrids
•Strong
•Good esthetics
–polishable
•Suitable
–Class 1 to 5
•Multiple available
Click here for table of hybrids

Property TraditionalMicrofilled
Small
Particle
Hybrid
Compressive strength
(MPa)
250-300 250-300 350-400 300-350
Tensile strength (MPa) 50-65 30-50 75-90 70-90
Elastic Modulus (GPa) 8-15 3-6 15-20 7-12
Coefficient of Thermal
Expansion (10
-6
/ºC)
25-35 50-60 19-26 30-40
Knoop Hardness 55 5-30 50-60 50-60
Phillip’s Science of Dental Materials 2003
Table of Properties

Newer Classification System
•Based on particle size
–megafill
•0.5 - 2 millimeters
–macrofill
•10 - 100 microns
–midifill
•1 - 10 microns
–minifill
•0.1 - 1 microns
–microfill
•0.01 - 0.1 microns
–nanofill
•0.005-0.01 microns
•Most new systems
–minifillers
•Newest trend
–nanofillers
–trimodal loading
•prepolymerized
Bayne JADA 1994

Midi-filler -
2 um
(beachball)
Mini-filler -
0.6 um
(canteloupe)
Nanofiller-
.02 um (pea)
Microfiller-
.04 um
(marble)
Relative Particle Sizes
(not to scale)

Nanofill vs. Nanohybrid
•Nanofills
–nanometer-sized particles throughout
matrix
•Nanohybrids
–nanometer-sized particles combined with
more conventional filler technology
Swift J Esthet Restor Dent 2005

Nanofilled Composite
•Filtek Supreme (3M ESPE)
•Filler particles
–filled: 78% wgt
–nanomers
•0.02 – 0.07 microns
–nanocluster
•act as single unit
–0.6 – 1.4 microns
Click here for technical profile
Click here for DECS evaluation

Performance Factors
•Material factors
–biocompatibility
–polymerization shrinkage
–wear resistance
–polish mechanisms
–placement types
–mechanical & physical properties

Biocompatibility
•Tolerated by pulp
–with good seal
•Rare allergic reactions
–HEMA
•Cytotoxicity
–short lived
•not a chronic source
•Degree of cure important
–decrease free monomer
Phillip’s Science of Dental Materials 2003

Systemic
•Estrogenic effects seen in cell cultures
–impurities in Bis-GMA-based resins
•Bis-phenol A in sealants
–Olea EHP 1996
»click here for abstract
–however, insignificant short-term
risk
•literature review
–Soderholm JADA 1999
»click here for abstract

Polymerization Shrinkage
•Significant role in restoration failure
–gap formation
•secondary caries formation
•marginal leakage
•post-operative sensitivity
•Counteract
–lower shrinkage composites
–incremental placement

Composite Wear
•Less wear
–small particle size
•less abrasion
–heavier filled
•less attrition
–non-contact areas
•3 - 5 times less
–less surface area
–anterior location
•premolars vs. molars
Hilton Oper Dentistry: A Contemporary Approach 2001

Composite Wear
•Reduced wear with smaller particles
–less plucking leaving voids
•Higher filler loads for enhanced
properties
–correlations between wear and fracture
toughness and flexure strength
•Higher cure of resin matrix to resist
scratching and gouging by abrasives
Hilton Oper Dentistry: A Contemporary Approach 2001

Polish Mechanisms
•Acquired polish
–clinician induced
•Inherent polish
–ultimate surface
•Microfills
–high acquired, high inherent
•similar resin matrix and fillers wear more evenly
•Hybrids
–high acquired, acceptable inherent
Adept Report 1992

Small Particle Hybrid Microfilled Composite
Time
Acquired Polish
Inherent Polish
Polish Mechanisms
Adept Report 1992
Linear wear pattern

Shaded vs. Anatomic
Placement
•Shaded
–shade selected from middle
third of tooth
–shade guide gives recipe for
multiple shades
•Anatomic
–highly chromatic dentin
matched to existing dentin
–colorless enamel replaces
existing enamel
Click here for details

Placement Types
Composite Brands
•Shaded
–4 Seasons (Ivoclar Vivadent)
–Esthet-X (Dentsply)
–Filtek Supreme (3M ESPE)
–Point 4 (Kerr)
–Venus (Heraeus Kulzer)
–Renamel (Cosmedent)
–Gradia Direct (GC)
•Anatomic
–4 Seasons (Ivoclar Vivadent)
–Vitalescence (Ultradent)
–Miris (Coltene/Whaledent)
Jackson PPAD 2003

Composite Selection
•Anterior/stress (Class 4)
–hybrid
•mini- or midi-fill
–hybrid/microfill veneer combo
•Anterior/non-stress (Class 3 or 5)
–hybrid
•mini-fill
–microfill

Composite Selection
•Posterior
–hybrid
•mini- or midi-fill
–reinforced microfill

Selecting a Brand
•Contents of kit
–shades
–bonding agent
–unit-dose compules vs syringes
•Indications
–anterior, posterior, both?
•Cost of kit
–refills
Click here for synopsis of
restorative composite resins

Government Price
($/gm of refill resin)
6.3
6.5
7.58
8.498.53
8.798.9 9
9.44
10.1510.21
11.37
9.95
4
S
e
a
s
o
n
s
G
r a
d
i a
P
o
s
t
G
r a
d
i a
A
n
t
H
e
r c
u
l i t e
X
R
V
P
r o
d
i g
y
P
o
i n
t 4
Z
1
0
0
V
e
n
u
s
V
i t a
l e
s
c
e
n
c
e
E
s
t h
e
t X
Z
2
5
0
P
r e
m
i s
e
S
u
p
r e
m
e
Prices current as of Jan 05

Selecting a Brand
•Results of lab and clinical studies
•Compositional characteristics
–% filler content
–average filler particle size
Click here for synopsis of
restorative composite resins

0
1
2
3
V
e n
u
s
S
u
p
r e m
e
4 S
e a s o
n
s
E
n
a m
e l
V
i t a l e s c e n
c e
G
r a d
i a P
o
s t
D
e n
t i n
G
r a d
i a A
n
t
Radiopacity
(mm of aluminum)
Source: USAF DECS Project 03-024
ISO Requirement

Surface Hardness
(24 hrs)
0
10
20
30
40
Z
2
5
0
S
u
p
r e
m
e
V
i t a
l e
s
c
e
n
c
e
V
e
n
u
s
E
s
t h
e
t - X
P
o
i n
t 4
4
S
e
a
s
o
n
s
P
r e
m
i s
e
G
r a
d
i a
P
o
s
t
G
r a
d
i a
A
n
t
Horizontal lines connect nonsignificant differences (p<0.05); N=5
Source: USAF DECS Project 03-37
KHN

Flexural Strength
(24 hrs)
0
20
40
60
80
100
120
140
160
Supreme 4
Seasons
Venus Gradia
Ant
PremiseGradia
Post
Horizontal lines connect nonsignificant differences (p<0.05); N=5
Source: USAF DECS Project 03-037

Volumetric Shrinkage
0
1
2
3
4
5
A
1
1
0
G
r a
d
i a
D
i r e
c
t
Z
1
0
0
P
r e
m
i s
e
4
S
e
a
s
o
n
s
V
e
n
u
s
R
e
n
e
w
E
s
t h
e
t - X
F
l o
w
%
Horizontal lines connect nonsignificant differences (p<0.05); N=5
Source: USAF DECS Project 03-037

Composite Variants
•Packable
•Flowable

Packable Composites
•Marketed for posterior use
–increase in viscosity
•better proximal contacts?
•handle like amalgam?
•Subtle alteration of filler
–shape
–size
–particle distribution
•Similar resin chemistry and filler volume
Click here for table of packable composites

Packable Composites
•Mechanical properties
–similar to hybrids
Choi J Esthet Dent 2000
Click here for abstract
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
ALERT
Solitare
SureFil
Heliomolar
Z100
Fracture
Toughness

Proximal Contact Studies
•Packables similar to hybrids
–diameter and tightness
•Best contacts
–sectional matrix system
Peumans Dent Mater 2001
-click here for abstract
Klein Am J Dent 2002

96.9 96.2
91.2
85.1
71.5 70.370.2
55.4
41.4
22.4
0 0
0
20
40
60
80
100
Pyr-DProdigySureFilAlertSolitairePyr-E
2 mm
5 mm
Depth of Cure
Packable Composite Resin
%
Hardness
Ratio
Choi J Esthet Dent 2000 Click here for abstract

Packable Vs. Hybrid Composites
•Mechanical properties similar
•Wear properties similar
•Curing depths similar
•Similar proximal contacts
•Drier, denser feel
Choi J Esthet Dent 2000
Peumans Dent Mater 2001
Click here for more details

Flowable Composites
•Marketed
–class 1, 3, 5
–liner
•Particle size similar
to hybrid composites
•Reduced filler
content
–reduces viscosity
0
10
20
30
40
50
60
70
80
W
e
i
g
h
t

P
e
r
c
e
n
t
Percent Filler Loading
Aeliteflo
FloRestore
Revolution
Ultraseal+
Prodigy
Bayne JADA 1998
Click here for abstract

Liners Under Direct Composites
•Increased flow
•Increased shrinkage
•Improved marginal integrity?
–laboratory studies equivocal
•most studies show no benefit
–Braga JADA 2003
»click here for abstract
•Reduced post-operative sensitivity?
–no clinical evidence of reduction
–Perdigao Quint Int 2004
»click here for abstract

Polymerization Shrinkage
0
1
2
3
4
5
A
e
l i t e
- F
l o
R
e
v
o
l u
t i o
n
W
a
v
e
F
l o
w
- i t
T
e
t r i c
F
l o
w
A
l e
r t
S
u
r e
F
i l
Z
1
0
0
H
e
l i o
m
o
l a
r
%
Tolidis JDR 1999

Radiopacity
•Reduced
radiopacity?
–product specific
–may be more
difficult to
distinguish on
radiograph
Murchison Quint Int 1999
Click here for abstract
0
50
100
150
200
250
Tetric Flow
Flow-it
Enamel
Revolution
FloRestore
UltraSeal+
Gray value

Flowable Composite
•Mechanical properties
–inferior to hybrids
0 0.51 1.52 2.5
MPa
Fracture Toughness
Prodigy
Ultraseal +
Revolution
FloRestore
Aeliteflo
0 50 100 150 200
MPa
Flexure Strength
Bayne JADA 1998
Click here for abstract

Flowable Composites
•Clinical applications
–preventive resin restorations
–small Class 5
–provisional repair
–composite repair
–liners??

Regular Material Usage*
Civilian Practitioners
•Flowable Composite81%
•Hybrid Composite 69%
•Amalgam67%
•All-Purpose Composite53%
•Microfill Composite52%
•Resin-modified Glass ionomer45%
•Packable Composite33%
•Compomer7%
•Other1%
DPR 2005*Multiple responses

Review of Clinical Studies
(Failure Rates in Posterior Permanent Teeth)
0
2
4
6
8
Amalgam Direct
Comp
Comp
Inlays
Ceramic
Inlays
CAD/CAM
Inlays
Gold
Inlays &
Onlays
GI
LongitudinalCross-Sectional
Hickel J Adhes Dent 2001
% Annual Failure

0
5
10
15
% Annual Failure
Manhart Oper Dent 2004
Click here for abstract
Standard Deviation
Longitudinal and Cross-Sectional Data
Review of Clinical Studies
(Failure Rates in Posterior Permanent Teeth)

Purchasing Considerations
Federal Service
•Universal hybrid systems are suitable for
both anterior and posterior restorations
–may not need to stock packable systems
•additional expense to maintain
•no improvement in mechanical properties
•no improvement in proximal-contact formation
•no increase in depth of cure
Click here for more details

Purchasing Considerations
Federal Service
•Most cases often only need one shade type
•Complex cases may need multiple shades
applied in layers
–larger Class 4, direct veneers, diastema
closures
•Wide diversity of kits available
–simple kits with only a few shades
–complete kits with multiple shades in various
opacities; bonding agents, dispenser guns,
shade guides
Click here for synopsis of restorative composite resins

Purchasing Considerations
Federal Service
•Simple universal hybrid kit in compact
case for routine individual use in
operatories or suites
–many systems available
•e.g., Prodigy (Kerr)
•More complete universal hybrid kit
for general use by entire facility
or training program
–several systems available
•e.g., 4 Seasons (Ivoclar Vivadent)
Click here for synopsis of restorative composite resins

Future Composites
•Low-shrinking monomers
–expanding spiroorthocarbonates
–epoxy-based resins
–liquid crystal
•Self-adhesive?
Click here for details

Acknowledgments
•Dr. Dave Charlton
•Dr. Jack Ferracane
•Dr. Tom Hilton
Questions/Comments
Col Kraig Vandewalle
– DSN 792-7670
[email protected]
Tags