The Conical Pendulum
AForce Diagram
h
r
O
P
T
T= tension in the string
(always away from object)
The Conical Pendulum
A
m
g
Force Diagram
h
r
O
P
T
T= tension in the string
(always away from object)
The Conical Pendulum
A
m
g
Force Diagram
h
r
O
P
T
T= tension in the string
(always away from object)
ical with vert makes string
The Conical Pendulum
A
m
g
Force Diagram
h
r
O
P
T
T= tension in the string
(always away from object)
ical with vert makes string
p
endulu
m
oflocity angular ve
The Conical Pendulum
A
m
g
Force Diagram
h
r
O
P
T
T= tension in the string
(always away from object)
ical with vert makes string
p
endulu
m
oflocity angular ve
Resultant Forces
The Conical Pendulum
A
r
mv
xm
2
m
g
Force Diagram
h
r
O
P
T
T= tension in the string
(always away from object)
ical with vert makes string
p
endulu
m
oflocity angular ve
Resultant Forces
The Conical Pendulum
A
r
mv
xm
2
0
ym
m
g
Force Diagram
h
r
O
P
T
T= tension in the string
(always away from object)
ical with vert makes string
p
endulu
m
oflocity angular ve
Resultant Forces
The Conical Pendulum
A
r
mv
xm
2
0
ym
m
g
Force Diagram
h
r
O
P
T
T= tension in the string
(always away from object)
ical with vert makes string
p
endulu
m
oflocity angular ve
Resultant Forces
r
mv
2
forces horizontal
The Conical Pendulum
A
r
mv
xm
2
0
ym
m
g
Force Diagram
h
r
O
P
T
T= tension in the string
(always away from object)
ical with vert makes string
p
endulu
m
oflocity angular ve
Resultant Forces
r
mv
2
forces horizontal
0forces vertical
The Conical Pendulum
A
r
mv
xm
2
0
ym
m
g
Force Diagram
h
r
O
P
T
T
= tension in the string
(always away from object)
ical with ver
t
makes string
p
endulu
m
o
f
locity angular ve
Resultant Forces
r
mv
2
forces horizontal
0forces vertical
The Conical Pendulum
A
r
mv
xm
2
0
ym
m
g
Force Diagram
h
r
O
P
T
T
= tension in the string
(always away from object)
ical with ver
t
makes string
p
endulu
m
o
f
locity angular ve
Resultant Forces
r
mv
2
forces horizontal
0forces vertical
The Conical Pendulum
A
r
mv
xm
2
0
ym
m
g
Force Diagram
h
r
O
P
T
T
= tension in the string
(always away from object)
ical with ver
t
makes string
p
endulu
m
o
f
locity angular ve
Resultant Forces
r
mv
2
forces horizontal
sin
T
0forces vertical
The Conical Pendulum
A
r
mv
xm
2
0
ym
m
g
Force Diagram
h
r O
P
T
T= tension in the string
(always away from object)
ical with ver
t
makes string
p
endulu
m
o
f
locity angular ve
Resultant Forces
r
mv
2
forces horizontal
sin
T
r
mv
T
2
sin
0forces vertical
The Conical Pendulum
A
r
mv
xm
2
0
ym
m
g
Force Diagram
h
r O
P
T
T= tension in the string
(always away from object)
ical with ver
t
makes string
p
endulu
m
o
f
locity angular ve
Resultant Forces
r
mv
2
forces horizontal
sin
T
r
mv
T
2
sin
2
mr
0forces vertical
The Conical Pendulum
A
r
mv
xm
2
0
ym
m
g
Force Diagram
h
r O
P
T
T
= tension in the string
(always away from object)
ical with ver
t
makes string
p
endulu
m
o
f
locity angular ve
Resultant Forces
r
mv
2
forces horizontal
sin
T
r
mv
T
2
sin
2
mr
0forces vertical
The Conical Pendulum
A
r
mv
xm
2
0
ym
m
g
Force Diagram
h
r O
P
T
T
= tension in the string
(always away from object)
ical with ver
t
makes string
p
endulu
m
o
f
locity angular ve
Resultant Forces
r
mv
2
forces horizontal
sin
T
r
mv
T
2
sin
2
mr
0forces vertical
m
g
cos
T
The Conical Pendulum
A
r
mv
xm
2
0
ym
m
g
Force Diagram
h
r O
P
T
T
= tension in the string
(always away from object)
ical with ver
t
makes string
p
endulu
m
o
f
locity angular ve
Resultant Forces
r
mv
2
forces horizontal
sin
T
r
mv
T
2
sin
2
mr
0forces vertical
m
g
cos
T
mg T
m
g
T
cos
0 cos
mgr
mv
T
T1
cos
sin
2
mgr
mv
T
T1
cos
sin
2
rg
v
2
tan
mgr
mv
T
T1
cos
sin
2
rg
v
2
tan
g
r
2
mgr
mv
T
T
1
cos
sin
2
rg
v
2
tan
g
r
2
h
r
AOP
tan in But
mgr
mv
T
T
1
cos
sin
2
rg
v
2
tan
g
r
2
h
r
AOP
tan in But
h
r
rg
v
2
mgr
mv
T
T
1
cos
sin
2
rg
v
2
tan
g
r
2
h
r
AOP
tan in But
h
r
rg
v
2
2
2
v
gr
h
mgr
mv
T
T
1
cos
sin
2
rg
v
2
tan
g
r
2
h
r
AOP
tan in But
h
r
rg
v
2
2
2
v
gr
h
2
g
mgr
mv
T
T
1
cos
sin
2
rg
v
2
tan
g
r
2
h
r
AOP
tan in But
h
r
rg
v
2
2
2
v
gr
h
2
g
Implications
mgr
mv
T
T
1
cos
sin
2
rg
v
2
tan
g
r
2
h
r
AOP
tan in But
h
r
rg
v
2
2
2
v
gr
h
2
g
Implications •depth of the pendulum below
A
is independent of the length of the
string.
mgr
mv
T
T
1
cos
sin
2
rg
v
2
tan
g
r
2
h
r
AOP
tan in But
h
r
rg
v
2
2
2
v
gr
h
2
g
Implications •depth of the pendulum below
A
is independent of the length of the
string.
•as the speed increases, the particle (bob) rises.
e.g. The number of revolutions pe r minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
e.g. The number of revolutions pe r minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
e.g. The number of revolutions pe r minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
T
e.g. The number of revolutions pe r minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
m
g
T
e.g. The number of revolutions pe r minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
m
g
T
h
r
e.g. The number of revolutions pe r minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
m
g
T
h
r
r
mv
2
forces horizontal
e.g. The number of revolutions pe r minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
m
g
T
h
r
r
mv
2
forces horizontal
0forces vertical
e.g. The number of revolutions pe r minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
m
g
T
h
r
r
mv
2
forces horizontal
0forces vertical
e.g. The number of revolutions pe r minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
m
g
T
h
r
r
mv
2
forces horizontal
sin
T
0forces vertical
e.g. The number of revolutions pe r minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
m
g
T
h
r
r
mv
2
forces horizontal
sin
T
2
sin
mr
T
0forces vertical
e.g. The number of revolutions pe r minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
m
g
T
h
r
r
mv
2
forces horizontal
sin
T
2
sin
mr
T
0forces vertical
e.g. The number of revolutions pe r minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
m
g
T
h
r
r
mv
2
forces horizontal
sin
T
2
sin
mr
T
0forces vertical
m
g
cos
T
e.g. The number of revolutions pe r minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
m
g
T
h
r
r
mv
2
forces horizontal
sin
T
2
sin
mr
T
0forces vertical
m
g
cos
T
mg T
m
g
T
cos
0 cos
g
r
mg
mr
2
2
1
tan
g
r
mg
mr
2
2
1
tan
h
r
tanBut
g
r
mg
mr
2
2
1
tan
h
r
tanBut
2
2
g
h
h
r
g
r
g
r
mg
mr
2
2
1
tan
h
r
tanBut
2
2
g
h
h
r
g
r
rad/s2
rad/s
60
120
60rev/min when
g
r
mg
mr
2
2
1
tan
h
r
tanBut
2
2
g
h
h
r
g
r
rad/s2
rad/s
60
120
60rev/min when
m
4
2
2
2
g
g
h
g
r
mg
mr
2
2
1
tan
h
r
tanBut
2
2
g
h
h
r
g
r
rad/s2
rad/s
60
120
60rev/min when
m
4
2
2
2
g
g
h
rad/s3
rad/s
60
180
rev/min09when
g
r
mg
mr
2
2
1
tan
h
r
tanBut
2
2
g
h
h
r
g
r
rad/s2
rad/s
60
120
60rev/min when
m
4
2
2
2
g
g
h
rad/s3
rad/s
60
180
rev/min09when
m
9
3
2
2
g
g
h
g
r
mg
mr
2
2
1
tan
h
r
tanBut
2
2
g
h
h
r
g
r
rad/s2
rad/s
60
120
60rev/min when
m
4
2
2
2
g
g
h
rad/s3
rad/s
60
180
rev/min09when
m
9
3
2
2
g
g
h
0.14m
m
94
heightin rise
22
gg
(
ii
) (2002)
A particle of mass
m
is suspended by a string of length
l
from a point
directly above the vertex of a smooth cone, which has a vertical axis.
The particle remains in contact with the cone and rotates as a conical
pendulum with angular velocity .
The angle of the cone at its vertex is where , and the string makes an
2
4
angle of with the horizontal as shown in the diagram. The forces acting on the
particle are the tension in the string
T
, the
normal reaction
N
and the gravitational
force
mg
.
(
ii
) (2002)
A particle of mass
m
is suspended by a string of length
l
from a point
directly above the vertex of a smooth cone, which has a vertical axis.
The particle remains in contact with the cone and rotates as a conical
pendulum with angular velocity .
The angle of the cone at its vertex is where , and the string makes an
2
4
angle of with the horizontal as shown in the diagram. The forces acting on the
particle are the tension in the string
T
, the
normal reaction
N
and the gravitational
force
mg
.
Note: whenever a particle makes contact with a surface there will be
a normal force perpendicular to the surface.
a) Show, with the aid of a diagram, that the vertical component of
N
is
sin
N
a) Show, with the aid of a diagram, that the vertical component of
N
is
sin
N
a) Show, with the aid of a diagram, that the vertical component of
N
is
sin
N T
a) Show, with the aid of a diagram, that the vertical component of
N
is
sin
N T
a) Show, with the aid of a diagram, that the vertical component of
N
is
sin
N
N
T
a) Show, with the aid of a diagram, that the vertical component of
N
is
sin
N
N
T
m
g
a) Show, with the aid of a diagram, that the vertical component of
N
is
sin
N
N
T
a) Show, with the aid of a diagram, that the vertical component of
N
is
sin
N
N
T
a) Show, with the aid of a diagram, that the vertical component of
N
is
sin
N
N
T
a) Show, with the aid of a diagram, that the vertical component of
N
is
sin
N
N
T
m
g
a) Show, with the aid of a diagram, that the vertical component of
N
is
sin
N
N
T
m
g
c
a) Show, with the aid of a diagram, that the vertical component of
N
is
sin
N
N
T
m
g
c
sin
sin
N
c
N
c
a) Show, with the aid of a diagram, that the vertical component of
N is
sin
N
N
T
m
g
c
sin
sin
N
c
N
c
sinisof
component verticalthe
N
N
a) Show, with the aid of a diagram, that the vertical component of
N is
sin
N
N
T
m
g
c
sin
sin
N
c
N
c
sinisof
component verticalthe
N
N
and , of terms
in for expression an find and ,
sin
that Show b)
lm
NT
m
g
NT
a) Show, with the aid of a diagram, that the vertical component of
N is
sin
N
N
T
m
g
c
sin
sin
N
c
N
c
sinisof
component verticalthe
N
N
and , of terms
in for expression an find and ,
sin
that Show b)
lm
NT
m
g
NT
2
forces horizontal
mr
a) Show, with the aid of a diagram, that the vertical component of
N is
sin
N
N
T
m
g
c
sin
sin
N
c
N
c
sinisof
component verticalthe
N
N
and , of terms
in for expression an find and ,
sin
that Show b)
lm
NT
m
g
NT
2
forces horizontal
mr
a) Show, with the aid of a diagram, that the vertical component of
N is
sin
N
N
T
m
g
c
sin
sin
N
c
N
c
sinisof
component verticalthe
N
N
and , of terms
in for expression an find and ,
sin
that Show b)
lm
NT
m
g
NT
2
forces horizontal
mr
cos
T
cos
N
a) Show, with the aid of a diagram, that the vertical component of
N is
sin
N
N
T
m
g
c
sin
sin
N
c
N
c
sinisof
component verticalthe
N
N
and , of terms
in for expression an find and ,
sin
that Show b)
lm
NT
m
g
NT
2
forces horizontal
mr
cos
T
2
cos cos
mr
N
T
cos
N
a) Show, with the aid of a diagram, that the vertical component of
N is
sin
N
N
T
m
g
c
sin
sin
N
c
N
c
sinisof
component verticalthe
N
N
and , of terms
in for expression an find and ,
sin
that Show b)
lm
NT
m
g
NT
2
forces horizontal
mr
cos
T
2
cos cos
mr
N
T
cos
N
0forces vertical
a) Show, with the aid of a diagram, that the vertical component of
N is
sin
N
N
T
m
g
c
sin
sin
N
c
N
c
sinisof
component verticalthe
N
N
and , of terms
in for expression an find and ,
sin
that Show b)
lm
NT
m
g
NT
2
forces horizontal
mr
cos
T
2
cos cos
mr
N
T
cos
N
0forces vertical
a) Show, with the aid of a diagram, that the vertical component of
N is
sin
N
N
T
m
g
c
sin
sin
N
c
N
c
sinisof
component verticalthe
N
N
and , of terms
in for expression an find and ,
sin
that Show b)
lm
NT
m
g
NT
2
forces horizontal
mr
cos
T
2
cos cos
mr
N
T
cos
N
0forces vertical
m
g
sin
T
sin
N
a) Show, with the aid of a diagram, that the vertical component of
N is
sin
N
N
T
m
g
c
sin
sin
N
c
N
c
sinisof
component verticalthe
N
N
and , of terms
in for expression an find and ,
sin
that Show b)
lm
NT
m
g
NT
2
forces horizontal
mr
cos
T
2
cos cos
mr
N
T
cos
N
0forces vertical
m
g
sin
T
mg NT
m
g
N
T
sinsin
0 sinsin
sin
N
m
g
N
T
sinsin
m
g
N
T
sinsin
sin
sin
mg
NT
m
g
N
T
m
g
N
T
sinsin
sin
sin
mg
NT
m
g
N
T
2
cos cos
mr
N
T
m
g
N
T
sinsin
sin
sin
mg
NT
m
g
N
T
2
cos cos
mr
N
T
cos
cos
2
2
mr
NT
mr NT
m
g
N
T
sinsin
sin
sin
mg
NT
m
g
N
T
2
cos cos
mr
N
T
cos
cos
2
2
mr
NT
mr NT
cosBut
l
r
m
g
N
T
sinsin
sin
sin
mg
NT
m
g
N
T
2
cos cos
mr
N
T
cos
cos
2
2
mr
NT
mr NT
cosBut
l
r
2
ml
N
T
m
g
N
T
sinsin
sin
sin
mg
NT
m
g
N
T
2
cos cos
mr
N
T
cos
cos
2
2
mr
NT
mr NT
cosBut
l
r
2
ml
N
T
and , of in terms of value for this expression an Find
cone. th the contact wi lose about to is
p
article when theis,that 0,until increasedislocity angular ve The c)
gl
N
m
g
N
T
sinsin
sin
sin
mg
NT
m
g
N
T
2
cos cos
mr
N
T
cos
cos
2
2
mr
NT
mr NT
cosBut
l
r
2
ml
N
T
and , of in terms of value for this expression an Find
cone. th the contact wi lose about to is
p
article when theis,that 0,until increasedislocity angular ve The c)
gl
N
;0When
N
m
g
N
T
sinsin
sin
sin
mg
NT
mg
N
T
2
cos cos
mr
N
T
cos
cos
2
2
mr
NT
mr NT
cosBut
l
r
2
ml
N
T
and , of in terms of value for this expression an Find
cone. th the contact wi lose about to is
p
article when theis,that 0,until increasedislocity angular ve The c)
gl
N
;0When
N
sin
m
g
T
m
g
N
T
sinsin
sin
sin
mg
NT
mg
N
T
2
cos cos
mr
N
T
cos
cos
2
2
mr
NT
mr NT
cosBut
l
r
2
ml
N
T
and , of in terms of value for this expression an Find
cone. th the contact wi lose about to is
p
article when theis,that 0,until increasedislocity angular ve The c)
gl
N
;0When
N
sin
m
g
T
2
an
d
ml
T
m
g
N
T
sinsin
sin
sin
mg
NT
mg
N
T
2
cos cos
mr
N
T
cos
cos
2
2
mr
NT
mr NT
cosBut
l
r
2
ml
N
T
and , of in terms of value for this expression an Find
cone. th the contact wi lose about to is
p
article when theis,that 0,until increasedislocity angular ve The c)
gl
N
;0When
N
sin
m
g
T
2
an
d
ml
T
2
sin
ml
m
g
m
g
N
T
sinsin
sin
sin
mg
NT
mg
N
T
2
cos cos
mr
N
T
cos
cos
2
2
mr
NT
mr NT
cosBut
l
r
2
ml
N
T
and , of in terms of value for this expression an Find
cone. th the contact wi lose about to is
p
article when theis,that 0,until increasedislocity angular ve The c)
gl
N
;0When
N
sin
m
g
T
2
an
d
ml
T
2
sin
ml
m
g
sin
sin
2
l
g
l
g