X2 t06 05 conical pendulum (2012)

1,843 views 90 slides May 30, 2012
Slide 1
Slide 1 of 90
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90

About This Presentation

No description available for this slideshow.


Slide Content

The Conical Pendulum

The Conical Pendulum
A
P

The Conical Pendulum
A

h
r
O
P

The Conical Pendulum
AForce Diagram

h
r
O
P

The Conical Pendulum
AForce Diagram

h
r
O
P

The Conical Pendulum
AForce Diagram

h
r
O
P
T
T= tension in the string
(always away from object)

The Conical Pendulum
A
m
g
Force Diagram

h
r
O
P
T
T= tension in the string
(always away from object)

The Conical Pendulum
A
m
g
Force Diagram

h
r
O
P
T
T= tension in the string
(always away from object)
ical with vert makes string


The Conical Pendulum
A
m
g
Force Diagram

h
r
O
P
T
T= tension in the string
(always away from object)
ical with vert makes string



p
endulu
m
oflocity angular ve 

The Conical Pendulum
A
m
g
Force Diagram

h
r
O
P
T
T= tension in the string
(always away from object)
ical with vert makes string



p
endulu
m
oflocity angular ve 

Resultant Forces

The Conical Pendulum
A
r
mv
xm
2

m
g
Force Diagram

h
r
O
P
T
T= tension in the string
(always away from object)
ical with vert makes string



p
endulu
m
oflocity angular ve 

Resultant Forces

The Conical Pendulum
A
r
mv
xm
2

0

ym
m
g
Force Diagram

h
r
O
P
T
T= tension in the string
(always away from object)
ical with vert makes string



p
endulu
m
oflocity angular ve 

Resultant Forces

The Conical Pendulum
A
r
mv
xm
2

0

ym
m
g
Force Diagram

h
r
O
P
T
T= tension in the string
(always away from object)
ical with vert makes string



p
endulu
m
oflocity angular ve 

Resultant Forces
r
mv
2
forces horizontal 

The Conical Pendulum
A
r
mv
xm
2

0

ym
m
g
Force Diagram

h
r
O
P
T
T= tension in the string
(always away from object)
ical with vert makes string



p
endulu
m
oflocity angular ve 

Resultant Forces
r
mv
2
forces horizontal 
0forces vertical

The Conical Pendulum
A
r
mv
xm
2


0

ym
m
g
Force Diagram

h
r
O
P
T
T
= tension in the string
(always away from object)
ical with ver
t
makes string



p
endulu
m
o
f
locity angular ve 

Resultant Forces
r
mv
2
forces horizontal 

0forces vertical

The Conical Pendulum
A
r
mv
xm
2


0

ym
m
g
Force Diagram

h
r
O
P
T
T
= tension in the string
(always away from object)
ical with ver
t
makes string



p
endulu
m
o
f
locity angular ve 

Resultant Forces
r
mv
2
forces horizontal 

0forces vertical

The Conical Pendulum
A
r
mv
xm
2


0

ym
m
g
Force Diagram

h
r
O
P
T
T
= tension in the string
(always away from object)
ical with ver
t
makes string



p
endulu
m
o
f
locity angular ve 

Resultant Forces
r
mv
2
forces horizontal 


sin
T
0forces vertical

The Conical Pendulum
A
r
mv
xm
2


0

ym
m
g
Force Diagram

h
r O
P
T
T= tension in the string
(always away from object)
ical with ver
t
makes string



p
endulu
m
o
f
locity angular ve 

Resultant Forces
r
mv
2
forces horizontal 


sin
T
r
mv
T
2
sin

0forces vertical

The Conical Pendulum
A
r
mv
xm
2


0

ym
m
g
Force Diagram

h
r O
P
T
T= tension in the string
(always away from object)
ical with ver
t
makes string



p
endulu
m
o
f
locity angular ve 

Resultant Forces
r
mv
2
forces horizontal 


sin
T
r
mv
T
2
sin



2

mr

0forces vertical

The Conical Pendulum
A
r
mv
xm
2


0

ym
m
g
Force Diagram

h
r O
P
T
T
= tension in the string
(always away from object)
ical with ver
t
makes string



p
endulu
m
o
f
locity angular ve


Resultant Forces
r
mv
2
forces horizontal



sin
T
r
mv
T
2
sin




2

mr

0forces vertical

The Conical Pendulum
A
r
mv
xm
2


0

ym
m
g
Force Diagram

h
r O
P
T
T
= tension in the string
(always away from object)
ical with ver
t
makes string



p
endulu
m
o
f
locity angular ve


Resultant Forces
r
mv
2
forces horizontal



sin
T
r
mv
T
2
sin




2

mr

0forces vertical

m
g

cos
T

The Conical Pendulum
A
r
mv
xm
2


0

ym
m
g
Force Diagram

h
r O
P
T
T
= tension in the string
(always away from object)
ical with ver
t
makes string



p
endulu
m
o
f
locity angular ve


Resultant Forces
r
mv
2
forces horizontal



sin
T
r
mv
T
2
sin




2

mr

0forces vertical

m
g

cos
T
mg T
m
g
T




cos
0 cos

mgr
mv
T
T1
cos
sin
2


mgr
mv
T
T1
cos
sin
2



rg
v
2
tan

mgr
mv
T
T1
cos
sin
2



rg
v
2
tan






g
r
2

mgr
mv
T
T
1
cos
sin
2



rg
v
2
tan







g
r
2

h
r
AOP 

tan in But

mgr
mv
T
T
1
cos
sin
2



rg
v
2
tan







g
r
2

h
r
AOP 

tan in But
h
r
rg
v


2

mgr
mv
T
T
1
cos
sin
2



rg
v
2
tan







g
r
2

h
r
AOP 

tan in But
h
r
rg
v


2
2
2
v
gr
h

mgr
mv
T
T
1
cos
sin
2



rg
v
2
tan







g
r
2

h
r
AOP 

tan in But
h
r
rg
v


2
2
2
v
gr
h





2

g

mgr
mv
T
T
1
cos
sin
2



rg
v
2
tan







g
r
2

h
r
AOP 

tan in But
h
r
rg
v


2
2
2
v
gr
h





2

g
Implications

mgr
mv
T
T
1
cos
sin
2



rg
v
2
tan







g
r
2

h
r
AOP 

tan in But
h
r
rg
v


2
2
2
v
gr
h





2

g
Implications •depth of the pendulum below
A
is independent of the length of the
string.

mgr
mv
T
T
1
cos
sin
2



rg
v
2
tan







g
r
2

h
r
AOP 

tan in But
h
r
rg
v


2
2
2
v
gr
h





2

g
Implications •depth of the pendulum below
A
is independent of the length of the
string.
•as the speed increases, the particle (bob) rises.

e.g. The number of revolutions pe r minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.

e.g. The number of revolutions pe r minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.

e.g. The number of revolutions pe r minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
T

e.g. The number of revolutions pe r minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
m
g
T

e.g. The number of revolutions pe r minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
m
g
T

h
r

e.g. The number of revolutions pe r minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
m
g
T

h
r
r
mv
2
forces horizontal

e.g. The number of revolutions pe r minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
m
g
T

h
r
r
mv
2
forces horizontal

0forces vertical

e.g. The number of revolutions pe r minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
m
g
T

h
r
r
mv
2
forces horizontal

0forces vertical

e.g. The number of revolutions pe r minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
m
g
T

h
r
r
mv
2
forces horizontal


sin
T
0forces vertical

e.g. The number of revolutions pe r minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
m
g
T

h
r
r
mv
2
forces horizontal


sin
T
2
sin


mr
T

0forces vertical

e.g. The number of revolutions pe r minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
m
g
T

h
r
r
mv
2
forces horizontal


sin
T
2
sin


mr
T

0forces vertical

e.g. The number of revolutions pe r minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
m
g
T

h
r
r
mv
2
forces horizontal


sin
T
2
sin


mr
T

0forces vertical

m
g

cos
T

e.g. The number of revolutions pe r minute of a conical pendulum
increases from 60 to 90.
Find the rise in the level of the bob.
m
g
T

h
r
r
mv
2
forces horizontal


sin
T
2
sin


mr
T

0forces vertical

m
g

cos
T
mg T
m
g
T




cos
0 cos

g
r
mg
mr
2
2

1
tan





g
r
mg
mr
2
2

1
tan





h
r


tanBut

g
r
mg
mr
2
2

1
tan





h
r


tanBut
2
2



g
h
h
r
g
r


g
r
mg
mr
2
2

1
tan





h
r


tanBut
2
2



g
h
h
r
g
r



rad/s2
rad/s
60
120
60rev/min when





g
r
mg
mr
2
2

1
tan





h
r


tanBut
2
2



g
h
h
r
g
r



rad/s2
rad/s
60
120
60rev/min when





m
4
2
2
2
g
g
h

g
r
mg
mr
2
2

1
tan





h
r


tanBut
2
2



g
h
h
r
g
r



rad/s2
rad/s
60
120
60rev/min when





m
4
2
2
2
g
g
h


rad/s3
rad/s
60
180
rev/min09when





g
r
mg
mr
2
2

1
tan





h
r


tanBut
2
2



g
h
h
r
g
r



rad/s2
rad/s
60
120
60rev/min when





m
4
2
2
2
g
g
h


rad/s3
rad/s
60
180
rev/min09when





m
9
3
2
2
g
g
h
 

g
r
mg
mr
2
2

1
tan





h
r


tanBut
2
2



g
h
h
r
g
r



rad/s2
rad/s
60
120
60rev/min when





m
4
2
2
2
g
g
h


rad/s3
rad/s
60
180
rev/min09when





m
9
3
2
2
g
g
h
 
0.14m
m
94
heightin rise
22









gg

(
ii
) (2002)
A particle of mass
m
is suspended by a string of length
l
from a point
directly above the vertex of a smooth cone, which has a vertical axis.
The particle remains in contact with the cone and rotates as a conical
pendulum with angular velocity .

The angle of the cone at its vertex is where , and the string makes an

2
4



angle of with the horizontal as shown in the diagram. The forces acting on the
particle are the tension in the string
T
, the
normal reaction
N
and the gravitational
force
mg
.

(
ii
) (2002)
A particle of mass
m
is suspended by a string of length
l
from a point
directly above the vertex of a smooth cone, which has a vertical axis.
The particle remains in contact with the cone and rotates as a conical
pendulum with angular velocity .

The angle of the cone at its vertex is where , and the string makes an

2
4



angle of with the horizontal as shown in the diagram. The forces acting on the
particle are the tension in the string
T
, the
normal reaction
N
and the gravitational
force
mg
.
Note: whenever a particle makes contact with a surface there will be
a normal force perpendicular to the surface.

a) Show, with the aid of a diagram, that the vertical component of
N
is

sin
N

a) Show, with the aid of a diagram, that the vertical component of
N
is

sin
N

a) Show, with the aid of a diagram, that the vertical component of
N
is

sin
N T

a) Show, with the aid of a diagram, that the vertical component of
N
is

sin
N T

a) Show, with the aid of a diagram, that the vertical component of
N
is

sin
N
N
T 

a) Show, with the aid of a diagram, that the vertical component of
N
is

sin
N
N
T
m
g

a) Show, with the aid of a diagram, that the vertical component of
N
is

sin
N
N
T 

a) Show, with the aid of a diagram, that the vertical component of
N
is

sin
N
N
T 

a) Show, with the aid of a diagram, that the vertical component of
N
is

sin
N
N
T 



a) Show, with the aid of a diagram, that the vertical component of
N
is

sin
N
N
T
m
g




a) Show, with the aid of a diagram, that the vertical component of
N
is

sin
N
N
T
m
g


c


a) Show, with the aid of a diagram, that the vertical component of
N
is

sin
N
N
T
m
g


c





sin
sin
N
c
N
c


a) Show, with the aid of a diagram, that the vertical component of
N is

sin
N
N
T
m
g


c





sin
sin
N
c
N
c


sinisof
component verticalthe
N
N

a) Show, with the aid of a diagram, that the vertical component of
N is

sin
N
N
T
m
g


c





sin
sin
N
c
N
c


sinisof
component verticalthe
N
N



and , of terms
in for expression an find and ,
sin
that Show b)
lm
NT
m
g
NT 

a) Show, with the aid of a diagram, that the vertical component of
N is

sin
N
N
T
m
g


c





sin
sin
N
c
N
c


sinisof
component verticalthe
N
N



and , of terms
in for expression an find and ,
sin
that Show b)
lm
NT
m
g
NT 
2
forces horizontal

mr

a) Show, with the aid of a diagram, that the vertical component of
N is

sin
N
N
T
m
g


c





sin
sin
N
c
N
c


sinisof
component verticalthe
N
N



and , of terms
in for expression an find and ,
sin
that Show b)
lm
NT
m
g
NT 
2
forces horizontal

mr

a) Show, with the aid of a diagram, that the vertical component of
N is

sin
N
N
T
m
g


c





sin
sin
N
c
N
c


sinisof
component verticalthe
N
N



and , of terms
in for expression an find and ,
sin
that Show b)
lm
NT
m
g
NT 
2
forces horizontal

mr


cos
T

cos
N

a) Show, with the aid of a diagram, that the vertical component of
N is

sin
N
N
T
m
g


c





sin
sin
N
c
N
c


sinisof
component verticalthe
N
N



and , of terms
in for expression an find and ,
sin
that Show b)
lm
NT
m
g
NT 
2
forces horizontal

mr


cos
T
2
cos cos



mr
N
T



cos
N

a) Show, with the aid of a diagram, that the vertical component of
N is

sin
N
N
T
m
g


c





sin
sin
N
c
N
c


sinisof
component verticalthe
N
N



and , of terms
in for expression an find and ,
sin
that Show b)
lm
NT
m
g
NT 
2
forces horizontal

mr


cos
T
2
cos cos



mr
N
T



cos
N
0forces vertical

a) Show, with the aid of a diagram, that the vertical component of
N is

sin
N
N
T
m
g


c





sin
sin
N
c
N
c


sinisof
component verticalthe
N
N



and , of terms
in for expression an find and ,
sin
that Show b)
lm
NT
m
g
NT 
2
forces horizontal

mr


cos
T
2
cos cos



mr
N
T



cos
N
0forces vertical

a) Show, with the aid of a diagram, that the vertical component of
N is

sin
N
N
T
m
g


c





sin
sin
N
c
N
c


sinisof
component verticalthe
N
N



and , of terms
in for expression an find and ,
sin
that Show b)
lm
NT
m
g
NT 
2
forces horizontal

mr


cos
T
2
cos cos



mr
N
T



cos
N
0forces vertical

m
g

sin
T

sin
N

a) Show, with the aid of a diagram, that the vertical component of
N is

sin
N
N
T
m
g


c





sin
sin
N
c
N
c


sinisof
component verticalthe
N
N



and , of terms
in for expression an find and ,
sin
that Show b)
lm
NT
m
g
NT 
2
forces horizontal

mr


cos
T
2
cos cos



mr
N
T



cos
N
0forces vertical

m
g

sin
T
mg NT
m
g
N
T






sinsin
0 sinsin

sin
N

m
g
N
T




sinsin

m
g
N
T




sinsin




sin
sin
mg
NT
m
g
N
T


m
g
N
T




sinsin




sin
sin
mg
NT
m
g
N
T


2
cos cos



mr
N
T

m
g
N
T




sinsin




sin
sin
mg
NT
m
g
N
T


2
cos cos



mr
N
T






cos
cos
2
2
mr
NT
mr NT



m
g
N
T




sinsin




sin
sin
mg
NT
m
g
N
T


2
cos cos



mr
N
T






cos
cos
2
2
mr
NT
mr NT



cosBut 
l
r

m
g
N
T




sinsin




sin
sin
mg
NT
m
g
N
T


2
cos cos



mr
N
T






cos
cos
2
2
mr
NT
mr NT



cosBut 
l
r
2

ml
N
T


m
g
N
T




sinsin




sin
sin
mg
NT
m
g
N
T


2
cos cos



mr
N
T






cos
cos
2
2
mr
NT
mr NT



cosBut 
l
r
2

ml
N
T



and , of in terms of value for this expression an Find
cone. th the contact wi lose about to is

p
article when theis,that 0,until increasedislocity angular ve The c)
gl
N
 

m
g
N
T




sinsin




sin
sin
mg
NT
m
g
N
T


2
cos cos



mr
N
T






cos
cos
2
2
mr
NT
mr NT



cosBut 
l
r
2

ml
N
T



and , of in terms of value for this expression an Find
cone. th the contact wi lose about to is

p
article when theis,that 0,until increasedislocity angular ve The c)
gl
N
 

;0When 
N

m
g
N
T




sinsin




sin
sin
mg
NT
mg
N
T


2
cos cos



mr
N
T






cos
cos
2
2
mr
NT
mr NT



cosBut 
l
r
2

ml
N
T



and , of in terms of value for this expression an Find
cone. th the contact wi lose about to is

p
article when theis,that 0,until increasedislocity angular ve The c)
gl
N
 

;0When 
N

sin
m
g
T

m
g
N
T




sinsin




sin
sin
mg
NT
mg
N
T


2
cos cos



mr
N
T






cos
cos
2
2
mr
NT
mr NT



cosBut 
l
r
2

ml
N
T



and , of in terms of value for this expression an Find
cone. th the contact wi lose about to is

p
article when theis,that 0,until increasedislocity angular ve The c)
gl
N
 

;0When 
N

sin
m
g
T
2
an
d

ml
T

m
g
N
T




sinsin




sin
sin
mg
NT
mg
N
T


2
cos cos



mr
N
T






cos
cos
2
2
mr
NT
mr NT



cosBut 
l
r
2

ml
N
T



and , of in terms of value for this expression an Find
cone. th the contact wi lose about to is

p
article when theis,that 0,until increasedislocity angular ve The c)
gl
N
 

;0When 
N

sin
m
g
T
2
an
d

ml
T

2
sin


ml
m
g

m
g
N
T




sinsin




sin
sin
mg
NT
mg
N
T


2
cos cos



mr
N
T






cos
cos
2
2
mr
NT
mr NT



cosBut 
l
r
2

ml
N
T



and , of in terms of value for this expression an Find
cone. th the contact wi lose about to is

p
article when theis,that 0,until increasedislocity angular ve The c)
gl
N
 

;0When 
N

sin
m
g
T
2
an
d

ml
T

2
sin


ml
m
g






sin
sin
2
l
g
l
g

Exercise 9C; all