YOUR_PASSWORDYOUR_SSIDYOUR_PASSWORDYOUR_SSIDYOUR_SSID

8055darkwizard 0 views 24 slides May 20, 2025
Slide 1
Slide 1 of 24
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24

About This Presentation

Godiva


Slide Content

Program 5 .Using the DFT and IDFT, compute the following for any two given sequences a)Circular convolution b) Linear convolution % 1.Get the input sequence1 and Plot input the sequence1 x=input ('Enter the sequence x(n) = ') a=0: length(x)-1; Subplot (2, 2, 1); Stem ( a,x ); xlabel ('n'); ylabel ('x(n)'); title('SEQUENCE x(n)'); Grid on; %2.Get the input sequence2 and Plot input the sequence2 h=input ('Enter the sequence h(n) = ') b=0: length (h)-1; subplot (2,2,2); stem ( b,h ); xlabel ('n'); ylabel ('h(n)'); title('SEQUENCE h(n)'); grid on ;

contd %3.Find the Linear Convolution of the two given sequence using DFT & IDFT and Plot the output sequence L=length(x)+length(h)-1; XK= fft ( x,L ); HK= fft ( h,L ); YK=XK.*HK; disp (‘Linear Convolution of the two given sequence using DFT & IDFT’); y=real( ifft (YK)) c=0:length(y)-1; subplot(2,2,3); stem( c,y ); xlabel ('n'); ylabel ('y(n)'); title(' Linear Convolution of the two given sequence using DFT & IDFT '); grid on ;

Enter the sequence x(n) = [1 2 3 4] x = 1 2 3 4 Enter the sequence h(n) = [2] h = 2 Linear Convolution of the two given sequence using DFT & IDFT y = 2 4 6 8

Circular Convolution b) Computation of circular convolution of two given sequences using DFT and IDFT   %1.Get the input sequence1 and Plot input the sequence1   x=input('Enter the sequence x(n) = ') a=0:length(x)-1; subplot(2,2,1); stem( a,x ); xlabel ('n'); ylabel ('x(n)'); title('SEQUENCE x(n)'); grid on;   %2.Get the input sequence2 and Plot input the sequence2 h=input('Enter the sequence h(n) = ') b=0:length(h)-1; subplot(2,2,2); stem( b,h ); xlabel ('n'); ylabel ('h(n)'); title('SEQUENCE h(n)'); grid on;

5.Circular Convolution Find the Circular Convolution of the two given sequence using DFT & IDFT Plot the output sequence   L=max(length(x),length(h)); XK= fft ( x,L ); HK= fft ( h,L ); YK=XK.*HK; disp (‘Circular Convolution of the two given sequence using DFT & IDFT’); y=real( ifft (YK)) c=0:length(y)-1; subplot(2,2,3); stem( c,y ); xlabel ('n'); ylabel ('y(n)'); title(' Circular Convolution of the two given sequence using DFT & IDFT '); grid on;  

Convolution Circular Convolution using DFT & IDFT Enter the sequence x(n) = [1 0 1 0] x = 1 0 1 0 Enter the sequence h(n) = [1 1 1 1] h = 1 1 1 1 Circular Convolution of the two given sequence using DFT & IDFT y = 2 2 2 2

Program 6.Verification of DFT properties. disp ('Verification of DFT Linearity Property: ax1(n)+bx2(n)=aX1(k)+bX2(k)'); a=input('Enter value of a='); b=input('Enter value of b='); x1=input('Enter x1(n)='); x2=input('Enter x2(n)='); LHS= fft (a*x1+b*x2) RHS=a* fft (x1)+b* fft (x2) disp ('LHS=RHS, DFT Linearity Property proved.');  

Contd % DFT Circular Time Shift Property disp ('Verification of DFT Circular Time Shift Property: DFT{x((n- m))N}=WN^( mk )*X(k)'); m=input('Enter value of m='); N=length(x1); k=0:1:N-1; LHS= fft ( circshift (x1,[1,m])) % Twiddle factor WN^( mk ) WN=exp(-j*2*pi/N); mk =m'*k; WNmk =WN.^( mk ); RHS= fft (x1).* WNmk disp ('LHS=RHS, DFT Circular Time Shift Property proved.');   disp (RHS) % DFT Circular Frequency Shift Property disp ('Verification of DFT Circular Frequency Shift Property: DFT{WN^(- mk )*x(n)}=X((k-m))N'); WNmk =WN.^(- mk ); LHS= fft (WNmk.*x1) RHS= circshift ( fft (x1),[1,m]) disp ('DFT Circular Frequency Shift Property proved.');  

Contd DFT{WN^(- mk )*x(n)}=X((k-m))N'); WNmk =WN.^(- mk ); LHS= fft (WNmk.*x1) RHS= circshift ( fft (x1),[1,m]) disp ('DFT Circular Frequency Shift Property proved.'); Output: Verification of DFT Linearity Property: ax1(n)+bx2(n)=aX1(k)+bX2(k) Enter value of a=2 Enter value of b=6 Enter x1(n)=[2 3 1 4] Enter x2(n)=[1 2 2 1] LHS = 56.0000 -4.0000 - 4.0000i -8.0000 -4.0000 + 4.0000i RHS = 56.0000 -4.0000 - 4.0000i -8.0000 -4.0000 + 4.0000i LHS=RHS, DFT Linearity Property proved. Verification of DFT Circular Time Shift Property: DFT{x((n-m))N}=WN^( mk )*X(k) Enter value of m=2 LHS = 10.0000 -1.0000 - 1.0000i -4.0000 -1.0000 + 1.0000i RHS = 10.0000 -1.0000 - 1.0000i -4.0000 - 0.0000i -1.0000 + 1.0000i LHS=RHS, DFT Circular Time Shift Property proved. Verification of DFT Circular Frequency Shift Property: DFT{WN^(- mk )*x(n)}=X((k-m))N LHS = -4.0000 + 0.0000i 1.0000 - 1.0000i 10.0000 - 0.0000i 1.0000 + 1.0000i RHS = -4.0000 1.0000 - 1.0000i 10.0000 1.0000 + 1.0000i DFT Circular Frequency Shift Property proved.  

Expt 8:DESIGN AND IMPLEMENTATION OF DIGITAL HIGH PASS FIR FILTER USING A WINDOW TO MEET THE GIVEN SPECIFICATIONS

Result Enter the Value of Sampling frequency ( fs ) in Hz=8000 Enter the Value of Cutoff frequency ( fc )in Hz=2000 Enter the Order (ODD Order) =30

Output

8b Result 10b: Enter the Value of Sampling frequency ( fs ) inHz =2000 Enter the Value of Cutoff frequency ( fc )in Hz=500 Enter the Order (ODD Order)20

output

Expt 9.DESIGN AND IMPLEMENTATION OF DIGITAL IIR BUTTERWORTH LOW PASS FILTER TO MEET THE GIVEN SPECIFICATIONS clc ; clear all fs =input('Enter the Value of Sampling frequency ( fs ) in Hz='); kp =input('Enter the Value of Pass band Attenuation in dB='); ks =input('Enter the Value of Stop band Attenuation in dB='); fp =input('Enter the Value of Pass band Frequency in Hz='); fstop =input('Enter the Value of Stop band Frequency in Hz='); wp = fp /( fs /2); wstop = fstop /( fs /2); [N, wc ]= buttord ( wp,wstop,kp,ks ) [b, a]=butter( N,wc,'low ') freqz (b,a,1000,fs)

Result 9a: Enter the Value of Sampling frequency ( fs ) in Hz=1000 Enter the Value of Pass band Attenuation in dB=3 Enter the Value of Stop band Attenuation in dB=60 Enter the Value of Pass band Frequency in Hz=40 Enter the Value of Stop band Frequency in Hz=150 N =5 wc =0.0810 b = 1.0e-03 *0.0227 0.1136 0.2272 0.2272 0.1136 0.0227 a =1.0000 -4.1768 7.0358 -5.9686 2.5478 -0.4375

output

Result 9 b: Enter the Value of Sampling frequency ( fs ) in Hz=5000 Enter the Value of Pass band Attenuation in dB=7 Enter the Value of Stop band Attenuation in dB=70 Enter the Value of Pass band Frequency in Hz=50 Enter the Value of Stop band Frequency in Hz=500 N = 4 wc = 0.0276 b =1.0e-04 *0.0315 0.1259 0.1888 0.1259 0.0315 a =1.0000 -3.7737 5.3464 -3.3701 0.7974

output

10.DESIGN AND IMPLEMENTATION OF DIGITAL IIR BUTTERWORTH HIGH PASS FILTER TO MEET THE GIVEN SPECIFICATIONS clc ; clear all fs =input('Enter the Value of Sampling frequency ( fs ) in Hz='); kp =input('Enter the Value of Pass band Attenuation in dB='); ks =input('Enter the Value of Stop band Attenuation in dB='); fp =input('Enter the Value of Pass band Frequency in Hz='); fstop =input('Enter the Value of Stop band Frequency in Hz='); wp = fp /( fs /2); wstop = fstop /( fs /2); [N, wc ]= buttord ( wp,wstop,kp,ks ) [b, a]=butter( N,wc,'high ') freqz (b,a,1000,fs)

Result 10a: Enter the Value of Sampling frequency ( fs ) in Hz=1000 Enter the Value of Pass band Attenuation in dB=3 Enter the Value of Stop band Attenuation in dB=60 Enter the Value of Pass band Frequency in Hz=40 Enter the Value of Stop band Frequency in Hz=150 N = 5 wc =0.0810 b =0.6615 -3.3073 6.6145 -6.6145 3.3073 -0.6615 a =1.0000 -4.1768 7.0358 -5.9686 2.5478 -0.4375

output

Result 10b: Result 12a: Enter the Value of Sampling frequency ( fs ) in Hz=5000 Enter the Value of Pass band Attenuation in dB=7 Enter the Value of Stop band Attenuation in dB=70 Enter the Value of Pass band Frequency in Hz=50 Enter the Value of Stop band Frequency in Hz=500 N = 4 wc =0.0276 b = 0.8930 -3.5719 5.3579 -3.5719 0.8930 a = 1.0000 -3.7737 5.3464 -3.3701 0.7974

output
Tags