Z transform and Properties of Z Transform

414 views 38 slides Jan 23, 2024
Slide 1
Slide 1 of 38
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38

About This Presentation

Properties of Z Transform


Slide Content

1
Lecture 7 –10
Z -Transform
June 07, 2005
By
Dr. Mukhtiar Ali Unar

2
The Direct Z-Transform
Thez-transformofadiscretetimesignalisdefinedasthepower
series
(1)
Wherezisacomplexvariable.Forconvenience,thez-transformofa
signalx[n]isdenotedby
X(z)=Z{x[n]}
Sincethez-transformisaninfiniteseries,itexistsonlyforthose
valuesofzforwhichthisseriesconverges.TheRegionof
Convergence(ROC)ofX(z)isthesetofallvaluesofzforwhich
thisseriesconverges.
Weillustratetheconceptsbysomesimpleexamples.




n
n
z]n[x)z(X

3
Example1:Determinethez-transformof
thefollowingsignals
(a)x[n]=[1,2,5,7,0,1]
Solution:X(z)=1+2z
-1
+5z
-2
+7z
-3
+z
-5,
ROC:entirezplaneexceptz=0
(b)y[n]=[1,2,5,7,0,1]
Solution:Y(z)=z
2
+2z+5+7z
-1
+z
-3
ROC:entirez-planeexceptz=0andz=.
(c)z[n]=[0,0,1,2,5,7,0,1]
Solution:z
-2
+2z
-3
+5z
-4
+7z
-5
+z
-7,
ROC:allzexceptz=0

4
(d) p[n] = [n]
Solution: P(z) = 1, ROC: entire z-plane.
(e) q[n] = [n –k], k > 0
Solution: Q(z) = z
-k
, entire z-plane except
z=0.
(f) r[n] = [n+k], k > 0
Solution: R(z) = z
k
,
ROC: entire z-plane except z = .

5
Example 2: Determine the z-transform of
x[n] = (1/2)
n
u[n]
Solution:
ROC: |1/2 z
-1
| < 1, or equivalently |z| > 1/21
2
1
n
0n
1n
n
0n
n
n
z
2
1
1
1
.......z
2
1
z
2
1
1
z
2
1
z
2
1
z]n[x)z(X




































6
Example 3: Determine the z-transform of the
signalx[n] = a
n
u[n]
Solution: 

|a||z:|ROC
az1
1
.......azaz1
azza)z(X
1
2
11
n
0n
1n
0n
n














7
Properties of z-transform
Linearity
Ifx
1[n] X
1(z)
and x
2[[n] X
2(z)
then
a
1x
1[n] + a
2x
2[n] a
1X
1(z) + a
2X
2(z)

8
Example:Determinethez-transformof
thesignalx[n]=[3(2
n
)–4(3
n
)]u[n]
Solution: 
11
nn
1
n
z31
1
4
z21
1
3]34)2(3[z
az1
1
]]n[ua[z








Example4:Determinethez-transformof
thesignal(cosw
0n)u[n] 
  
2
0
1
0
1
1jw1jw0
njwnjw
0
zwcosz21
wcosz1
ze1
1
2
1
ze1
1
2
1
]n[unwcosz
e
2
1
e
2
1
]n[unwcos
00
00













9
Time Shifting Property:
If x[n] X(z) then x[n-k] z
-k
X(z)
Proof:
since
then the change of variable m = n-k
produces




n
n
z]kn[x]]kn[x[z )z(Xzz]m[xz
z]m[x]]kn[x[z
k
m
mk
m
)km(










10
Example: Find the z-transform of a unit step
function. Use time shifting property to find z-
transform of u[n] –u[n-N].
The z-transform of u[n] can be found as
Now the z-transform of u[n]-u[n-N] may be
found as follows:1
21
0n
n
n
n
z1
1
.......zz1
zz]n[u]]n[u[z










  1
N
1
N
1
z1
z1
z1
1
z
z1
1
]]Nn[u]n[u[z













11
Scaling in the z-domain
If x[n] X(z)
Then a
n
x[n] X(a
-1
z)
For any constant a, real or complex.
Proof:
Example 5: Determine the z-transform of the signal
a
n
(cosw
0n)u[n].
Solution: since    zaXza]n[xz]n[xa]n[xaz
1
n
n
1n
n
nn 






  2
0
1
0
1
0
zwcosz21
wcosz1
]n[u)nw[cos(z




  
22
0
1
0
1
0
n
zawcosaz21
wcosaz1
]]n[unwcosa[z






12
Time reversal
If x[n] X(z) then x[-n] X(z
-1
)
Proof:
Example 6: Determine the z-transform of
u[-n].
Solution: since z[u[n]] = 1/(1 –z
-1
)
Therefore,
Z[u[-n]] = 1/(1-z) 











m m
1
m
1m
n
n
)z(Xz]m[xz]m[xz]n[x]]n[x[z

13
Differentiation in the z -Domain
x[n] X(z) then nx[n] = -z(dX(z)/dz)
Tutorial4:Q1:Provethedifferentiation
propertyofz–transform.
Example7:Determinethez-transformofthe
signalx[n]=na
n
u[n].
Solution:  
2
1
1
1
n
1
n
az1
az
az1
1
dz
d
z]]n[una[z
az1
1
]]n[ua[z











14
Convolution of two sequences
If x
1[n] X
1(z) and x
2[n] X
2(z) then
x
1[n]*x
2[n] X
1(z)X
2(z)
Proof:
The convolution of x
1[n] and x
2[n] is defined as



k
2121
]kn[x]n[x]n[x*]n[x]n[x
Thez-transformofx[n]is















n
n
n
21
n
n
zknx]k[xz]n[x)z(X
Upon interchanging the order of the summation
and applying the time shifting property, we obtain   zXzXz]k[xzXzknxkx)z(X
1
k
2
k
12
n
n
2
k
1 
















15
Example8:Compute theconvolution
ofthesignalsx
1[n]=[1,-2,1]and
Solution:
X
1(z)=1–2z
-1
+z
-2
X
2(z)=1+z
-1
+z
-2
+z
-3
+z
-4
+z
-5
NowX(z)=X
1(z)X
2(z)=1–z
-1
–z
-6
+z
-7
Hencex[n]=[1,-1,0,0,0,0,-1,1]
Note:Youshouldverifythisresultfromthe
definitionoftheconvolutionsum.

 

elsewhere,0
5n0,1
]n[x
2

16
Correlation of two sequences
If x
1[n] X
1(z) and x
2[n] X
2(z)
then r
x1x2[k] = X
1(z)X
2(z
-1
)
Tutorial 4 Q2: Prove this property.
The Initial Value Theorem:
If x[n] is causal then)z(Xlim]0[x
z

Proof:....z]2[xz]1[x]0[xz]n[x)z(X
21
0n
n






Obviously,asz,z
-n
0sincen>0,this
provesthetheorem.

17
Final Value Theorem
If x[n] X(z), then )z(Xz1lim][x
1
1z



Tutorial 4 Q3: Prove the Final Value
Theorem
Example9:Findthefinalvalueof21
1
z8.0z8.11
z2
)z(X




Solution:   
21
1
11
z8.0z8.11
z2
z1)z(Xz1




  
  
1
1
11
1
1
z5.01
z2
z5.01z1
z2
z1









The final value theorem yields10
2.0
2
z8.01
z2
lim][y
1
1
1z





18
Inverse z-transform
Ingeneral,theinversez-transformmaybe
foundbyusinganyofthefollowing
methods:
Powerseriesmethod
Partialfractionmethod

19
Power Series Method
Example 2: Determine the z-transform of 21
z5.0z5.11
1
)z(X



By dividing the numerator of X(z) by its
denominator, we obtain the power series ...zzzz1
zz1
1
4
16
313
8
152
4
71
2
3
2
2
11
2
3




x[n] = [1, 3/2, 7/2, 15/8, 31/16,…. ]

20
Power Series Method
Example 2:Determine the z-transform of 21
1
zz22
z4
)z(X





By dividing the numerator of X(z) by its
denominator, we obtain the power series
x[n]=[2,1.5,0.5,0.25,…..]

21
Partial Fraction Method:
Example 1: Find the signal corresponding to
the z-transform21
3
zz32
z
)z(X




Solution: 5.0z1zz
5.0
z5.0z5.1z
5.0
zz32
z
)z(X
2321
3







   5.0z
4
1z
1
z
1
z
3
5.0z1zz
5.0
z
)z(X
22






 5.0z
z
)4(
1z
z
z
1
3)z(X




or11
1
z5.01
1
4
z1
1
z3)z(X





 ]n[u5.04]n[u]1n[]n[3]n[x
n


22
Partial Fraction Method:
Example 2: Find the signal corresponding to the z-
transform  
2
11
z2.01z2.01
1
)z(Y



Solution:   
2
3
2.0z2.0z
z
)z(Y

     
22
2
2.0z
1.0
2.0z
75.0
2.0z
25.0
2.0z2.0z
z
z
)z(Y







  
2
2.0z
z1.0
2.0z
z75.0
1z
z25.0
)z(Y





  
2
1
1
2.0
1.0
11
z2.01
z2.0
z2.01
1
75.0
z2.01
1
25.0








   ]n[u2.0n5.0]n[u2.075.0]n[u2.025.0]n[y
nnn


23
The One-Sided z-Transform
The one-sided or unilateral z-transform of a signal
x[n] is defined by 




0n
n
z]n[x)z(X
Characteristics:
•It does not contain information about the
signal x[n] for negative values of time.
•It is unique only for causal signals.

24
Pulse Transfer Function
Itisdefinedastheratioofthez-transformofthe
outputtothez-transformoftheinputwhenall
initialconditionsareassumedtobezero.
Mathematically,











N
0k
k
k
M
0k
k
k
N
N
2
2
1
10
M
M
2
2
1
10
za
zb
za.....zazaa
zb.....zbzbb
)z(H
The roots of the denominator of a pulse transfer function
are called Polesand those of the denominator are called
Zeros.
The above pulse transfer function has M zeros and N poles.
We can represent X(z) graphically by a pole-zero plotin the
Complex plane, which shows the location of poles by crosses
() and the location of zeros by circles (o).

25
Stability:
A discrete time system is said to be stable if,
and only if, all of its poles lie inside a unit
circle.
If any pole(s) lie(s) on the unit circle, the
system is said to be marginally stable.
Im(z)
Re(z)




Unit circle
Stable System


Unstable System

Marginally stable

26
Example:Asystemischaracterizedby
by the difference equation
y[n]–0.1y[n-1]–0.02y[n-2]=2x[n]–x[n-1].
Findthesystemtransferfunctionandunit
impulseresponse.
Solution:Takingthez-transformofbothsidesofthe
differenceequation(ignoringtheinitial
conditions)wehave
Y(z)–0.1z
-1
Y(z)–0.02z
-2
Y(z)=2X(z)–z
-1
X(z)
Y(z)[1–0.1z
-1
–0.02z
-2
]=X(z[2–z
-1
]21
1
z02.0z1.01
z2
)z(X
)z(Y





Thistransferfunctionhastwopoles(i.e.z=-0.1,0.2)and
Twozerosatz=0,0.5.Thisshowsthatthesystemis
BIBOstable.ThePole-zeroplotisgivenonthenextslide.

27
-1.5-1 -0.5 0 0.5 1 1.5
-1
0
1
RealPart
Imaginary
Part
Pole-zero plot

28
Tofindtheunitimpulseresponse,we
computetheinversez-transformofH(z)by
usingpartialfractionexpansion:  1.0z2.0z
2z2
02.0z1.0z
zz2
z02.0z1.01
z2
)z(H
2
2
2
21
1










    1.0z
4
2.0z
2
1.0z2.0z
1z2
z
)z(H







 




















 11
z1.01
1
4
z2.01
1
2
1.0z
z4
2.0z
z2
)z(H
and, the unit impulse response is
H[n] = -2(0.2)
n
u[n] + 4(-0.1)
n
u[n]

29
Response of systems with non-zero initial
conditions
Wecanusez-transformtosolvethedifference
equationthatcharacterizesacausal,linear,time
invariantsystem.Thefollowingexpressionsare
especiallyusefultosolvethedifference
equations:
z[y[(n-1)T]=z
-1
Y(z)+y[-T]
Z[y(n-2)T]=z
-2
Y(z)+z
-1
y[-T]+y[-2T]
Z[y(n-3)T]=z
-3
Y(z)+z
-2
y[-T]+z
-1
y[-2T]+
y[-3T]

30
Tutorial 5 Q1: Determine the step response of
the system
y[n]=ay[n-1] + x[n], -1 < a < 1
when the initial condition is y[-1] = 1.

31
Example:Considerthefollowingdifference
equation:
y[nT]–0.1y[(n-1)T]–0.02y[(n-2)T]=2x[nT]–
x[(n-1)T]
wheretheinitialconditionsarey[-T]=-10andy[-
2T]=20.Findtheoutputy[nT]whenx[nT]isthe
unitstepinput.
Solution:
Computing the z-transform of the difference
equation gives
Y(z) –0.1[z
-1
Y(z) + y[-T]] –0.02[z
-2
Y(z) + z
-1
y[-T]
+ y[-2T]] = 2X(z) –z
-1
X(z)
Substituting the initial conditions we get
Y(z)–0.1z
-1
Y(z)+1–0.02z
-2
Y(z)+0.2z
-1
–0.4=
(2–z
-1
)X(z)

32    6.0z2.0
z1
1
z2)z(Yz02.0z1.01
1
1
121





   6.0z2.0
z1
z2
z02.0z2.01)z(Y
1
1
1
21







      
111
21
211
21
z1.01z2.01z1
z2.0z6.04.1
z02.0z1.01z1
z2.0z6.04.1
)z(Y









   1.0z2.0z1z
z2.0z6.0z4.1
23


 1.0z
830.0
2.0z
567.0
1z
136.1
z
)z(Y






 111
z1.01
1
830.0
z2.01
1
567.0
z1
1
136.1)z(Y







andtheoutputsignaly[nT]is]nT[u)1.0(830.0]nT[u)2.0(567.0]nT[u136.1]nT[y
nn


33
Pole-Zero Cancellation
Whenaz-transformhasapolethatisatthe
samelocationasazero,thepoleiscancelledby
thezeroand,consequently,thetermcontaining
thatpoleintheinversez-transformvanishes.
Pole-zerocancellationmayoccureitherinthe
systemfunctionitselforintheproductofthe
systemfunctionwiththez-transformofthe
inputsignal.
Whenthezeroislocatedverynearthepolebut
notexactlyatthesamelocation,theterminthe
responsehasaverysmallamplitude.
Pole-zerocancellationmaycauseinstability
andshouldbeavoidedinmostcases.

34
Example:Determinetheunitimpulseresponseof
thesystemcharacterizedbythedifference
equation
y[n]=2.5y[n-1]–y[n-2]+x[n]–5x[n-1]+6x[n-2]
Solution: Taking the z-transform of both sides of
the above difference equation and ignoring all
initial conditions, we obtain the following pulse
transfer function:  
  
1
2
1
1
1
2
1
1
11
2
1
11
21
21
z1
z5.2
1
z1
z31
z21z1
z31z21
zz5.21
z6z51
)z(H



















andtherefore ]1n[u5.2]n[]n[h
1n
2
1


35
System Frequency response
The frequency response of a BIBO stable
system is defined as
H(w) = H(z)|
z = e
jw
The frequency response function is usually
expressed in terms of its magnitude |H(w)|
and phase (w), where
H(w) = |H(w)|e
j(w)
Usually, the magnitude is plotted on a
logarithmic scale as
|H(w)|
dB= 20log
10|H(w)|

36
Example: Determine the frequency response
function H(w) and the magnitude |H(w)|
dBfor the
LTI system characterized by the difference
equation
y[n] = 1.8y[n-1] –0.81y[n-2] + x[n] + 0.95x[n-1]
Solution: The pulse transfer function is 
2
1
1
21
1
z9.01
z95.01
z81.0z8.11
z95.01
)z(H










Nowthefrequencyresponsefunctionmaybeobtainedas
 
2
jw
jw
e9.01
e95.01
wH





The magnitude response iswcos8.181.1
wcos9.19025.1
|)w(H|


37
Wenotethat|H(w)|hasitsmaximumatw=0,
where|H(0)|=195.Itiscustomarytonormalize
|H(w)|byitspeakvalueandplot
20log|H(w)|/|H|
max.Aplotofthenormalized
magnitudeofthefrequencyresponseisshown
below:
0
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
- 

38
Example:Findthefrequencyresponseforthe
system
y[n]=-0.1y[n-1]+0.2y[n-2]+x[n]+x[n-1]
Solution: The system function is21
1
z2.0z1.01
z1
)z(H





Now )zz(2.0)zz(08.005.1
zz2
z2.0z1.01
z1
z2.0z1.01
z1
)z(H)z(H
221
1
221
1
1












 wcos8.0wcos16.045.1
wcos22
|)z(H)z(H||)w(H|
2ez
12
jw




 wcos8.0wcos16.045.1
wcos22
|)w(H|
2



Tags