Z-transform power point presentation.pdf

SUMITDATTA23 3 views 91 slides Oct 22, 2025
Slide 1
Slide 1 of 91
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91

About This Presentation

this is Ztransform ppt


Slide Content

The z-Transform
B Tech VIth Semester EIC-DSP

Content
Introduction
z-Transform
Zeros and Poles
Region of Convergence
Important z-Transform Pairs
Inverse z-Transform
z-Transform Theorems and Properties
System Function

The z-Transform
INTRODUCTION

Why z- Transform?
A generalization of Fourier transform
Why generalize it?
◦FT does not convergeon all sequence
◦Notationgood for analysis
◦Bring the power of complex variable theorydeal with the discrete-time
signals and systems

The z-Transform
Z-TRANSFORM

Definition
The z-transform of sequence x (n) is defined by


−∞=

=
n
n
znxzX )()(
Let z = e
−jω
.
( ) ()
j jn
n
Xe xne
ωω


=−∞
=∑
Fourier
Transform

z-Plane
Re
Im
z = e
−jω
ω


−∞=

=
n
n
znxzX )()(
( ) ()
j jn
n
Xe xne
ωω


=−∞
=∑
Fourier Transform is to evaluate z-transform
on a unit circle.

z-Plane
Re
Im
X(z)
Re
Im
z = e
−jω
ω

Periodic Property of FT
Re
Im
X(z)
π−π ω
X(e

)
Can you say why Fourier Transform is
a periodic function with period 2π ?

The z-Transform
ZEROS AND POLES

Definition
Give a sequence, the set of values of zfor which the z-transform converges,
i.e., |X(z)|<∞, is called the region of convergence.
∞<==∑∑

−∞=


−∞=

n
n
n
n
znxznxzX |||)(|)(|)(|
ROC is centered on origin and
consists of a set of rings.

Example: Region of
Convergence
Re
Im
∞<==∑∑

−∞=


−∞=

n
n
n
n
znxznxzX |||)(|)(|)(|
ROC is an annual ring centered
on the origin.
+−
<<
xx
RzR ||
r
}|{
+−
ω
<<==
xx
j
RrRrezROC

Stable Systems
A stable system requires that its Fourier transformis uniformly convergent.
Re
Im
1
Fact: Fourier transform is to
evaluate z-transform on a unit
circle.
A stable system requires the
ROC of z-transform to include
the unit circle.

Example: A right sided
Sequence
)()( nuanx
n
=
12345678910-1-2-3-4-5-6-7-8
n
x(n)
. . .

Example: A right sided
Sequence
)()( nuanx
n
=
n
n
n
znuazX


−∞=
∑= )()(


=

=
0n
nn
za


=

=
0
1
)(
n
n
az
For convergence of X(z), we
require that
∞<∑

=

0
1
||
n
az
1||
1
<

az
||||az>
az
z
az
azzX
n
n

=

==


=

∑ 1
0
1
1
1
)()(
||||az>

a−a
Example: A right sided
SequenceROC for x (n)=a
n
u(n)
|||| ,)( az
az
z
zX >

=
Re
Im
1
a−a
Re
Im
1
Which one is stable?

Example: A left sided
Sequence
)1()( −−−= nuanx
n
12345678910-1-2-3-4-5-6-7-8
n
x(n)
. . .

Example: A left sided
Sequence
)1()( −−−= nuanx
n
n
n
n
znuazX


−∞=
∑ −−−= )1()(
For convergence of X(z), we
require that
∞<∑

=

0
1
||
n
za
1||
1
<

za
||||az<
az
z
za
zazX
n
n

=

−=−=


=

∑ 1
0
1
1
1
1)(1)(
||||az<
n
n
n
za


−∞=
∑−=
1
n
n
n
za∑

=

−=
1
n
n
n
za∑

=

−=
0
1

a−a
Example: A left sided Sequence
ROC for x(n)=−a
n
u(−n−1)
|||| ,)( az
az
z
zX <

=
Re
Im
1
a−a
Re
Im
1
Which one is stable?

The z-Transform
REGION OF
CONVERGENCE

Represent z-transform as a
Rational Function
)(
)(
)(
zQ
zP
zX=
where P(z)and Q(z)are
polynomials in z.
Zeros:The values of z’s such that X(z) = 0
Poles:The values of z’s such that X(z) = ∞

Example: A right sided
Sequence
)()( nuanx
n
= |||| ,)( az
az
z
zX >

=
Re
Im
a
ROC is bounded by the
poleand is the exterior
of a circle.

Example: A left sided
Sequence
)1()( −−−= nuanx
n
|||| ,)( az
az
z
zX <

=
Re
Im
a
ROC is bounded by the
poleand is the interior
of a circle.

Example: Sum of Two Right Sided Sequences
)()()()()(
3
1
2
1
nununx
nn
−+=
3
1
2
1
)(
+
+

=
z
z
z
z
zX
Re
Im
1/2
))((
)(2
3
1
2
1
12
1
+−

=
zz
zz
−1/3
1/12
ROC is bounded by poles
and is the exterior of a circle.
ROC does not include any pole.

Example: A Two Sided
Sequence
)1()()()()(
2
1
3
1
−−−−= nununx
nn
2
1
3
1
)(

+
+
=
z
z
z
z
zX
Re
Im
1/2
))((
)(2
2
1
3
1
12
1
−+

=
zz
zz
−1/3
1/12
ROC is bounded by poles
and is a ring.
ROC does not include any pole.

Example: A Finite Sequence
10 ,)( −≤≤= Nnanx
n
n
N
n
n
N
n
n
zazazX )()(
1
1
0
1
0


=


=
∑∑==
Re
Im
ROC: 0 < z< ∞
ROC does not include any pole.
1
1
1
)(1




=
az
az
N
az
az
z
NN
N


=
−1
1
N-1 poles
N-1 zeros
Always Stable

Properties of ROC
A ringor diskin the z-plane centered at the origin.
The Fourier Transform of x(n) is converge absolutely iff the ROC
includes the unit circle.
The ROC cannot include any poles
Finite Duration Sequences:The ROC is the entire z-plane except
possibly z=0 or z=∞.
Right sided sequences:The ROC extends outward from the outermost
finite pole in X(z) to z=∞.
Left sided sequences:The ROC extends inward from the innermost
nonzero pole in X(z) to z=0.

More on Rational z-Transform
Re
Im
a
bc
Consider the rational z-transform
with the pole pattern:
Find the possible
ROC’s

More on Rational z-Transform
Re
Im
a
bc
Consider the rational z-transform
with the pole pattern:
Case 1: A right sided Sequence.

More on Rational z-Transform
Re
Im
a
bc
Consider the rational z-transform
with the pole pattern:
Case 2: A left sided Sequence.

More on Rational z-Transform
Re
Im
a
bc
Consider the rational z-transform
with the pole pattern:
Case 3: A two sided Sequence.

More on Rational z-Transform
Re
Im
a
bc
Consider the rational z-transform
with the pole pattern:
Case 4: Another two sided Sequence.

The z-Transform
IMPORTANT
Z-TRANSFORM
PAIRS

Z-Transform Pairs
Sequence z-Transform ROC
)(nδ 1
All z
)(mn−δ
m
z
− All z except 0 (if m>0)
or ∞(if m<0)
)(nu 1
1
1

−z
1||>z
)1(−−−nu 1
1
1

−z
1||<z
)(nua
n
1
1
1

−az
||||az>
)1(−−− nua
n
1
1
1

−az
||||az<

Z-Transform Pairs
Sequence z-Transform ROC
)(][cos
0nunω
21
0
1
0
]cos2[1
][cos1
−−

+ω−
ω−
zz
z
1||>z
)(][sin
0
nunω
21
0
1
0
]cos2[1
][sin
−−

+ω−
ω
zz
z
1||>z
)(]cos[
0
nunr
n
ω 221
0
1
0
]cos2[1
]cos[1
−−

+ω−
ω−
zrzr
zr
rz>||
)(]sin[
0
nunr
n
ω 221
0
1
0
]cos2[1
]sin[
−−

+ω−
ω
zrzr
zr
rz>||


 −≤≤
otherwise0
10 Nna
n
1
1
1




az
za
NN
0||>z

Signal Type ROC
Finite- Duration Signals
Infinite- Duration Signals
Causal
Anticausal
Two-sided
Causal
Anticausal
Two-sided
Entire z- plane
Except z = 0
Entire z- plane
Except z = infinity
Entire z- plane
Except z = 0
And z = infinity
|z| < r
1
|z| > r
2
r
2< |z| < r
1

Some Common z- Transform Pairs
Sequence Transform ROC
1. δ[n] 1 all z
2. u[n] z/(z-1) |z|>1
3. -u[-n-1] z/(z-1) |z|<1
4. δ[n-m] z
-m
all z except 0 if m>0 or ฅif m<0
5. a
n
u[n] z/(z-a) |z|>|a|
6. -a
n
u[-n-1] z/(z-a) |z|<|a|
7. na
n
u[n] az/(z-a)
2
|z|>|a|
8. -na
n
u[-n-1] az/(z-a)
2
|z|<|a|
9. [cosω
0n]u[n] (z
2
-[cosω
0]z)/(z
2
-[2cosω
0]z+1) |z|>1
10. [sinω
0n]u[n] [sinω
0]z)/(z
2
-[2cosω
0]z+1) |z|>1
11. [r
n
cosω
0n]u[n] (z
2
-[rcosω
0]z)/(z
2
-[2rcosω
0]z+r
2
) |z|>r
12. [r
n
sinω
0n]u[n] [rsinω
0]z)/(z
2
-[2rcosω
0]z+r
2
) |z|>r
13. a
n
u[n] -a
n
u[n-N] (z
N
-a
N
)/z
N-1
(z-a) |z|>0

The z-Transform
INVERSE Z-
TRANSFORM

Inverse Z-Transform by Partial Fraction Expansion
Assume that a given z-transform can be expressed as
Apply partial fractional expansion
First term exist only if M>N
◦B
ris obtained by long division
Second term represents all first order poles
Third term represents an order s pole
◦There will be a similar term for every high- order pole
Each term can be inverse transformed by inspection
()


=

=

=
N
k
k
k
M
k
k
k
za
zb
zX
0
0
()
( )
∑∑∑
=

≠=


=


+

+=
s
1m
m
1
i
m
N
ik,1k
1
k
k
NM
0r
r
r
zd1
C
zd1
A
zBzX

Partial Fractional Expression
Coefficients are given as
Easier to understand with examples
()
( )
∑∑∑
=

≠=


=
−−
+

+=
s
1m
m
1
i
m
N
ik,1k
1
k
k
NM
0r
r
r
zd1
C
zd1
A
zBzX
( )()
kdz
1
kk
zXzd1A
=

−=
( )()
( ) ()[ ]
1
i
dw
1s
ims
ms
ms
i
m
wXwd1
dw
d
d!ms
1
C

=



−






−−
=

Example: 2
nd
Order Z-Transform
◦Order of nominator is smaller than denominator (in terms of z
-1
)
◦No higher order pole
()
2
1
z :ROC
2
1
1
4
1
1
1
11
>






−






=
−−
zz
zX
()







+







=
−− 1
2
1
1
z
2
1
1
A
z
4
1
1
A
zX
() 1
4
1
2
1
1
1
zXz
4
1
1A
1
4
1
z
1
1
−=















=





−=

=

() 2
2
1
4
1
1
1
zXz
2
1
1A
1
2
1
z
1
2
=















=





−=

=

Example Continued
ROC extends to infinity
◦Indicates right sided sequence
()
2
1
z
z
2
1
1
2
z
4
1
1
1
zX11
>







+








=
−−
[] [] []nu
4
1
-nu
2
1
2nx
nn












=

Example #2
Long division to obtain B
o
()
( )
( )
1z
z1z
2
1
1
z1
z
2
1
z
2
3
1
zz21
zX
11
2
1
21
21
>
−






+
=
+−
++
=
−−

−−
−−
1z5
2z3z
2
1z2z1z
2
3
z
2
1
1
12
12
12

+−
+++−

−−
−−
−−
()
( )
11
1
z1z
2
1
1
z51
2zX
−−

−






+−
+=
()
1
2
1
1
z1
A
z
2
1
1
A
2zX



+

+=
() 9zXz
2
1
1A
2
1
z
1
1
−=





−=
=

( ) ()8zXz1A
1z
1
2
=−=
=

Example #2 Continued
ROC extends to infinity
◦Indicates right-sides sequence
() 1z
z1
8
z
2
1
1
9
2zX
1
1
>

+

−=


[] [] [][]n8u-nu
2
1
9n2nx
n






−δ=

An Example – Complete Solution
3
86zz
1414z3z
limU(z)limc
2
2
zz
0
=
+−
+−
==
∞→∞→
4-z
1414z3z
86zz
1414z3z
2)(z(z)U
2
2
2
2
+−
=
+−
+−
−=
2-z
1414z3z
86zz
1414z3z
4)(z(z)U
2
2
2
4
+−
=
+−
+−
−= 1
4-2
1421423
(2)Uc
2
21
=
+⋅−⋅
==
86zz
1414z3z
U(z)
2
2
+−
+−
=
4z
c
2z
c
cU(z)
21
0

+

+=
3
2-4
1441443
(4)Uc
2
42 =
+⋅−⋅
==
4z
3
2z
1
3U(z)

+

+=



>⋅+
=
=
−−
0k,432
0k3,
u(k)
1k1k

Inverse Z-Transform by Power Series Expansion
The z-transform is power series
In expanded form
Z-transforms of this form can generally be inversed easily
Especially useful for finite-length series
Example
() []∑

−∞=

=
n
n
z nxzX
() [] [] [][] []  ++++−+−+=
−− 2112
2 1 0 1 2 zxzxxzxzxzX
() ( )( )
12
1112
z
2
1
1z
2
1
z
z1z1z
2
1
1z zX

−−−
+−−=
−+





−=
[][ ] [][] []1n
2
1
n1n
2
1
2nnx −δ+δ−+δ−+δ=
[]









=
=
=−
−=−
−=
=
2n0
1n
2
1
0n1
1n
2
1
2n1
nx

Z-Transform Properties: Linearity
Notation
Linearity
◦Note that the ROC of combined sequence may be larger than either ROC
◦This would happen if some pole/zero cancellation occurs

Example:
◦Both sequences are right- sided
◦Both sequences have a pole z=a
◦Both have a ROC defined as |z|>|a|
◦In the combined sequence the pole at z=a cancels with a zero at z=a
◦The combined ROC is the entire z plane except z=0
We did make use of this property already, where?
[] ()
x
Z
RROC zXnx =→←
[] [] () ()
21 xx21
Z
21
RRROC zbXzaXnbxnax ∩=+→←+
[] [] []N-nua-nuanx
nn
=

Z-Transform Properties: Time Shifting
Here n
ois an integer
◦If positive the sequence is shifted right
◦If negative the sequence is shifted left
The ROC can change the new term may
◦Add or remove poles at z=0 or z=∞
Example
[ ] ()
x
nZ
o
RROC zXznnx
o
=→←−

()
4
1
z
z
4
1
1
1
z zX1
1
>













=


[] []1-nu
4
1
nx
1-n






=

Z-Transform Properties: Multiplication by Exponential
C is scaled by |z
o|
All pole/zero locations are scaled
If z
ois a positive real number: z-plane shrinks or expands
If z
ois a complex number with unit magnitude it rotates
Example: We know the z-transform pair
Let’s find the z- transform of
[] ()
xoo
Zn
oRzROCzzXnxz =→← /
[] 1z:ROC
z-1
1
nu
1-
Z
>→←
[] () []() []( ) []nure
2
1
nure
2
1
nuncosrnx
n
j
n
j
o
n
ooω−ω
+=ω=
() rz
zre1
2/1
zre1
2/1
zX
1j1j
oo
>

+

=
−ω−−ω

Z-Transform Properties: Differentiation
Example: We want the inverse z-transform of
Let’s differentiate to obtain rational expression
Making use of z-transform properties and ROC
[]
()
x
Z
RROC
dz
zdX
znnx =−→←
() ( ) az az1logzX
1
>+=

() ()
1
1
1
2
az1
1
az
dz
zdX
z
az1
az
dz
zdX




+
=−⇒
+

=
[] () []1nuaannx
1n
−−=

[]() []1nu
n
a
1nx
n
1n
−−=

Z-Transform Properties: Conjugation
Example
[] ()
x
**Z*
RROC zXnx =→←
() []
() [] []
() []() [] [] {}nxZz nxz nxzX
z nxz nxzX
z nxzX
n
n
n
n
n
n
n
n
n
n


−∞=
−∗

−∞=

∗∗∗

−∞=



−∞=
−∗

−∞=

===
=








=
=∑∑
∑∑

Z-Transform Properties: Time Reversal
ROC is inverted
Example:
Time reversed version of
[] ()
x
Z
R
1
ROC z/1Xnx =→←−
[] [] nuanx
n
−=

[]nua
n
()
1
11-
1-1
az
za-1
za-
az1
1
zX



<=

=

Z-Transform Properties: Convolution
Convolution in time domain is multiplication in z-domain
Example:Let’scalculate the convolution of
Multiplications of z-transforms is
ROC: if |a|<1 ROC is |z|>1 if |a|>1 ROC is |z|>|a|
Partial fractional expansion of Y(z)
[][] ()()
2
x1x21
Z
21
RR:ROC zXzXnxnx ∩→←∗
[] [] [][]nunx and nuanx
2
n
1 ==
() az:ROC
az1
1
zX
11
>

=
− () 1z:ROC
z1
1
zX
12
>

=

() ()()
( )( )
1121
z1az1
1
zXzXzY
−−
−−
==
() 1z :ROC asume
az1
1
z1
1
a1
1
zY
11
>







−−
=
−−
[] [] []( ) nuanu
a1
1
ny
1n+


=

The z-Transform
Z-TRANSFORM THEOREMS
AND PROPERTIES

Linearity
xRzzXnx ∈= ),()]([Z
y
RzzYny ∈= ),()]([Z
yxRRzzbYzaXnbynax ∩∈+=+ ),()()]()([Z
Overlay of
the above two
ROC’s

Shift
xRzzXnx ∈= ),()]([Z
x
n
RzzXznnx ∈=+ )()]([
0
0
Z

Multiplication by an Exponential Sequence
+
<<=
xx-
RzRzXnx || ),()]([Z
x
nRazzaXnxa ⋅∈=

|| )()]([
1
Z

Differentiation of X(z)
xRzzXnx ∈= ),()]([Z
xRz
dz
zdX
znnx ∈−=
)(
)]([Z

Conjugation
xRzzXnx ∈= ),()]([Z
x
RzzXnx ∈= *)(*)](*[Z

Reversal
xRzzXnx ∈= ),()]([Z
xRzzXnx /1 )()]([
1
∈=−

Z

Real and Imaginary Parts
xRzzXnx ∈= ),()]([Z
x
RzzXzXnxe ∈+= *)](*)([)]([
2
1
R
xj
RzzXzXnx ∈−= *)](*)([)]([
2
1
Im

Initial Value Theorem
0for ,0)( <= nnx
)(lim)0( zXx
z∞→
=

Convolution of Sequences
xRzzXnx ∈= ),()]([Z
y
RzzYny ∈= ),()]([Z
yx
RRzzYzXnynx ∩∈= )()()](*)([Z

Convolution of Sequences


−∞=
−=
k
knykxnynx )()()(*)(
∑∑

−∞=


−∞=






−=
n
n
k
zknykxnynx )()()](*)([Z
∑∑

−∞=


−∞=
−=
k
n
n
zknykx )()(
∑ ∑

−∞=


−∞=

=
k
n
n
k
znyzkx )()(
)()(zYzX=

The z-Transform
SYSTEM
FUNCTION

Signal Characteristics from Z-
Transform
If U(z) is a rational function, and
Then Y(z) is a rational function, too
Poles are more important –determine key characteristics of y(k)
m)u(kb...1)u(kbn)y(ka...1)y(kay(k)
m1n1−++−+−++−=


=
=


==
m
1j
j
n
1i
i
)p(z
)z(z
D(z)
N(z)
Y(z)
zeros
poles

Why are poles important?



=
=
=−
+=


==
m
1j j
j
0m
1j
j
n
1i
i
pz
c
c
)p(z
)z(z
D(z)
N(z)
Y(z)

=
×+×=
m
1j
1-k
jjimpulse0
pc(k)ucY(k)
Z
-1
Z domain
Time domain
poles
component
s

Various pole values (1 )
-1 0 1 2 3 4 5 6 7 8 9
0
0.5
1
1.5
2
2.5
-1 0 1 2 3 4 5 6 7 8 9
0
0.2
0.4
0.6
0.8
1
-1 0 1 2 3 4 5 6 7 8 9
0
0.2
0.4
0.6
0.8
1
-1 0 1 2 3 4 5 6 7 8 9
-2. 5
-2
-1. 5
-1
-0. 5
0
0.5
1
1.5
2
2.5
-1 0 1 2 3 4 5 6 7 8 9
-1
-0. 8
-0. 6
-0. 4
-0. 2
0
0.2
0.4
0.6
0.8
1
-1 0 1 2 3 4 5 6 7 8 9
-1
-0. 8
-0. 6
-0. 4
-0. 2
0
0.2
0.4
0.6
0.8
1
p=1.1
p=1
p=0.9
p=-1.1
p=-1
p=-0.9

Various pole values (2 )
-1 0 1 2 3 4 5 6 7 8 9
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
-1 0 1 2 3 4 5 6 7 8 9
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
-1 0 1 2 3 4 5 6 7 8 9
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
p=0.9
p=0.6
p=0.3
-1 0 1 2 3 4 5 6 7 8 9
-1
-0. 8
-0. 6
-0. 4
-0. 2
0
0.2
0.4
0.6
0.8
1
-1 0 1 2 3 4 5 6 7 8 9
-1
-0. 8
-0. 6
-0. 4
-0. 2
0
0.2
0.4
0.6
0.8
1
-1 0 1 2 3 4 5 6 7 8 9
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
p=-0.9
p=-0.6
p=-0.3

Conclusion for Real Poles
If and only if all poles’absolute values are smaller than 1, y(k)
converges to 0
The smaller the poles are, the faster the corresponding component in
y(k) converges
A negative pole’s corresponding component is oscillating, while a
positive pole’s corresponding component is monotonous

How fast does it converge?
U(k)=a
k
, consider u(k)≈0 when the absolute value of u(k) is smaller than
or equal to 2% of u(0)’s absolute value
|a|ln
4
k
3.912ln0.02|a|kln
0.02|a|
k


−==
=
11
0.36
4
|0.7|ln
4
k
0.7a






=
Rememb
er
This!
0 2 4 6 8 10 12
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
y( k)=0.7
k
y(11)=0.0198

When There Are Complex Poles …
U(z)
za...za1
zb...zb
Y(z)
n
n
1
1
m
m
1
1
−−
−−
−−−
++
= c)...bz(az
2
++
2a
4acbb
z
2
−±−
=
0,4acb
2
≥−
)
2a
4acbb
)(z
2a
4acbb
a(zcbzaz
22
2
−−−

−+−
−=++
0,4acb
2
<− )
2a
b4acib
)(z
2a
b4acib
a(zcbzaz
22
2 −−−

−+−
−=++If
If
Or in polar coordinates,
)irr)(zirra(zcbzaz
2
θθθθ sincossincos +−−−=++

What If Poles Are Complex
If Y(z)=N(z)/D(z), and coefficients of both D(z) and N(z) are all real numbers, if
p is a pole, then p’ s complex conjugate must also be a pole
◦Complex poles appear in pairs


=
=
+−
−+
+

+=
+−
+
−−
+

+=
l
1j
22
j
j
0
l
1j j
j
0
r)z(2rz
)rdz(zbzr
pz
c
c
irrz
c'
irrz
c
pz
c
cY(z)
θ
θθ
θθθθ
cos
cossin
sincossincos
coskθdrsinkθbrpc(k)ucy(k)
kk
m
1j
1-k
jjimpulse0 ++×+×= ∑
=
Z
-1
Time domain

An Example
0 2 4 6 8 10 12 14 16 18 20
-1
-0.5
0
0.5
1
1.5
2
)
3

cos(0.8)
3

sin(0.82y(k)
0.640.8zz
zz
Y(z)
kk
2
2
⋅+⋅⋅=
+−
+
=
Z-Domain: Complex Poles
Time-Domain:
Exponentially Modulated Sin/C

Poles Everywhere

Observations
Using poles to characterize a signal
◦The smaller is |r|, the faster converges the signal
◦|r| < 1 , converge
◦|r| > 1 , does not converge, unbounded
◦|r|=1?
◦When the angle increase from 0 to pi, the frequency of oscillation increases
◦Extremes –0, does not oscillate, pi, oscillate at the maximum frequency

Change Angles
0.9-0.9 Re
Im
0 5 10 15
-1
-0. 8
-0. 6
-0. 4
-0. 2
0
0. 2
0. 4
0. 6
0. 8
1
0 5 10 15
-1
-0. 8
-0. 6
-0. 4
-0. 2
0
0. 2
0. 4
0. 6
0. 8
1
0 5 10 15
-1
-0. 8
-0. 6
-0. 4
-0. 2
0
0. 2
0. 4
0. 6
0. 8
1
0 5 10 15
-1
-0. 8
-0. 6
-0. 4
-0. 2
0
0. 2
0. 4
0. 6
0. 8
1
0 5 10 15
-1
-0. 8
-0. 6
-0. 4
-0. 2
0
0. 2
0. 4
0. 6
0. 8
1
0 5 10 15
-1
-0. 8
-0. 6
-0. 4
-0. 2
0
0. 2
0. 4
0. 6
0. 8
1
0 5 10 15
-1
-0. 8
-0. 6
-0. 4
-0. 2
0
0. 2
0. 4
0. 6
0. 8
1
0 5 10 15
-1
-0. 8
-0. 6
-0. 4
-0. 2
0
0. 2
0. 4
0. 6
0. 8
1
0 5 10 15
-1
-0. 8
-0. 6
-0. 4
-0. 2
0
0. 2
0. 4
0. 6
0. 8
1

0 2 4 6 8 10 12 14
-6
-4
-2
0
2
4
6
8
10
12
Changing Absolute Value
Im
Re
1
0 5 10 15
-1
-0. 8
-0. 6
-0. 4
-0. 2
0
0. 2
0. 4
0. 6
0. 8
1
0 5 10 15
-1
-0. 8
-0. 6
-0. 4
-0. 2
0
0. 2
0. 4
0. 6
0. 8
1
0 5 10 15
-1
-0. 8
-0. 6
-0. 4
-0. 2
0
0. 2
0. 4
0. 6
0. 8
1
0 5 10 15
-1
-0. 8
-0. 6
-0. 4
-0. 2
0
0. 2
0. 4
0. 6
0. 8
1
0 2 4 6 8 10 12 14
-3
-2
-1
0
1
2
3
4

Conclusion for Complex Poles
A complex pole appears in pair with its complex conjugate
The Z
-1
-transform generates a combination of exponentially modulated
sin and cos terms
The exponential base is the absolute value of the complex pole
The frequency of the sinusoid is the angle of the complex pole (divided
by 2π)

Steady-State Analysis
If a signal finally converges, what value does it converge to?
When it does not converge
◦Any |p
j|is greater than 1
◦Any |r| is greater than or equal to 1
When it does converge
◦If all |p
j|’s and |r|’s are smaller than 1, it converges to 0
◦If only one p
jis 1, then the signal converges to c
j
◦If more than one real pole is 1 , the signal does not converge … (e.g. the ramp signal)
θθkdrkbr
kk
cossin++×+×=∑
=
m
1j
1-k
jjimpulse0
pc(k)ucy(k)
21
-1
)z(1
z

An Example
kk
0.9)(30.52u(k)
0.9z
3z
0.5z
z
1z
2z
U(z)
−⋅++=
+
+

+

=
0 10 20 30 40 50 60
-1
0
1
2
3
4
5
6
converge to 2

Final Value Theorem
Enable us to decide whether a system has a steady state error (y
ss-r
ss)

Final Value Theorem
1
Theorem: If all of the poles of (1 ) ( ) lie within the unit circle, then
lim ( ) lim ( 1) ( )
kz
zYz
yk z Yz


= − 
2
11
0.11 0.11
()
1.6 0.6 ( 1)( 0.6)
0.11
( 1) ( )| | 0.275
0.6
zz
zz
Yz
z z zz
z
z Yz
z
= =
−−
= =
−+ −−

−= =−

0 5 10 15
-0.35
-0.3
-0.25
-0.2
-0.15
-0.1
-0.05
0
k
y(k)
If any pole of (1-z)Y(z) lies out of or ON the
unit circle, y(k) does not converge!

What Can We Infer from TF?
Almost everything we want to know
◦Stability
◦Steady-State
◦Transients
◦Settling time
◦Overshoot
◦…

Shift-Invariant System
h(n)
x(n) y(n)=x(n)*h(n)
X(z) Y(z)=X(z)H(z)
H(z)

Shift-Invariant System
H(z)
X(z) Y(z)
)(
)(
)(
zX
zY
zH=

N
th
-Order Difference Equation
∑∑
==
−=−
M
r
r
N
k
k
rnxbknya
00
)()(
∑∑
=

=

=
M
r
r
r
N
k
k
k
zbzXzazY
00
)()(
∑∑=
=

=

N
k
k
k
M
r
r
r
zazbzH
00
)(

Representation in Factored
Form


=

=



=
N
k
r
M
r
r
zd
zcA
zH
1
1
1
1
)1(
)1(
)(
Contributes polesat 0 and zerosat c
r
Contributes zerosat 0 and polesat d
r

Stable and Causal Systems


=

=



=
N
k
r
M
r
r
zd
zcA
zH
1
1
1
1
)1(
)1(
)(
Re
Im
Causal Systems : ROC extends outward from the outermost pole.

Stable and Causal Systems


=

=



=
N
k
r
M
r
r
zd
zcA
zH
1
1
1
1
)1(
)1(
)(
Re
Im
Stable Systems : ROC includes the unit circle.
1

Thanks!
Reference :
https://akademik.adu.edu.tr/fakulte/muhendislik/personel/uploads/yilmaz.kalkan/dsp3-1577359228.ppt