2_Electromagnetic waves and propagation Lectures_part1_1.pdf

3ACompany1 0 views 33 slides Oct 14, 2025
Slide 1
Slide 1 of 33
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33

About This Presentation

Wave


Slide Content

LECTURES ON
ELECTROMAGNETIC WAVES
AND WAVE PROPAGATION
Assoc. Prof. Yasser Mahmoud Madany
Senior Member, IEEE
URSI Senior Member
Founder and Chair of the IEEE Egypt AP-S/MTT-S Joint Chapter
Founder and Counselor of the IEEE AL Ryada Student Branch

PART ONE
Maxwell’s Equations and
Electromagnetic Waves

INTRODUCTION
❑Staticelectricfieldhasapplicationsin:
❖Cathode rayoscilloscopesfordeflecting
chargedparticles.
❖Inkjetprinterstoincreasethespeedofprinting
andimproveprintquality.
❑Staticmagneticfieldhasapplicationsin:
❖Magneticseparatorstoseparatemagnetic
materialsfromnon-magneticmaterials.
❖Cyclotronsforimpartinghighenergytocharged
particles.

INTRODUCTION
❑Time-varyingfieldsconstituteelectromagnetic(EM)waves
whichhavewideapplicationsinallthecommunications,
radarsandalsoinBio-medicalengineering.
❑EMwavesareproducedbytime-varyingcurrents.
❑Inbrief,itmaybenotedthat:
❖Staticchargesproduceelectrostaticfields.
❖Steadycurrents(DCcurrents)producemagneto-static
fields.
❖Staticmagneticcharges(magneticdipoles)also
producemagneto-staticfields.
❖Time-varyingcurrentsproduceEMwavesorEMfields.

THE FIELDS ഥ�,ഥ�,ഥ�AND ഥ??????IN STATIC FORM
Coordinate
/ Field
CartesianCylindricalSpherical
Cartesian
Time-
varying
Electric
Field,ഥ�
ഥ�(�,�,�) ഥ�(�,∅,�) ഥ�(�,�,∅) ഥ�(�,�,�,�)
Magnetic
Field, ഥ�
ഥ�(�,�,�) ഥ�(�,∅,�) ഥ�(�,�,∅) ഥ�(�,�,�,�)
Electric Flux
Density, ഥ�
ഥ�(�,�,�) ഥ�(�,∅,�) ഥ�(�,�,∅) ഥ�(�,�,�,�)
Magnetic
Flux Density,
ഥ??????
ഥ??????(�,�,�) ഥ??????(�,∅,�) ഥ??????(�,�,∅) ഥ??????(�,�,�,�)

EQUATION OF CONTINUITY FOR TIME-VARYING
FIELDS
❑Consideraclosedsurfaceenclosingacharge�and
thereexistsanoutwardflowofcurrentgivenby
�=ර
�
ҧ�.�ത�
❑Thepreviousequationknownasequationofcontinuityin
integralform,where
�isthecurrentflowingawaythroughaclosedsurface
(A).
ҧ�istheconductioncurrentdensity(A/m
2
).
�ത�isthedifferentialareaonthesurfacewhosedirection
isalwaysoutwardandnormaltothesurface.

❑Asthereisoutwardflowofcurrent,therewillbea
decreasetherateofchargeofwhichisgivenby
�=
−��
��
where�istheenclosedcharge(C).
❑Fromtheprincipleofconservativeofcharge,wehave
�=ර
�
ҧ�.�ത�=
−��
��
❑Fromdivergencetheorem,wehave

�
ҧ�.�ത�=න
�
??????.ҧ���

❑Hence,

�
??????.ҧ���=
−��
��
❑Bydefinition,
�=න
�
�
���
where�
�isthevolumechargedensity(C/m
3
).
❑So,

�
??????.ҧ���=න
�
−��
�
��
��=න
�
−ሶ�
���
❑Twovolumeintegralsareequalonlyiftheirintegrandsare
equal.So,theequationofcontinuityinpointformis
??????∙ҧ�=
−��
�
��
=−ሶ�
�

MAXWELL’S EQUATIONS FOR TIME-VARYING
FIELDS
❑Maxwell’sequationsindifferentialformaregivenby
??????×ഥ�=
�ഥ�
��
+ҧ??????=
ሶഥ�+ҧ?????? (1)
??????×ഥ�=
−�ഥ??????
��
=−
ሶഥ?????? (2)
??????∙ഥ�=�
� (3)
??????∙ഥ??????=� (4)
where
ഥ�isthemagneticfieldstrength(A/m).
ഥ�istheelectricfluxdensity(C/m
2
).

MAXWELL’S EQUATIONS FOR TIME-VARYING
FIELDS
where:
ሶഥ�=
�ഥ�
��
isthedisplacementelectriccurrentdensity(A/m
2
).
ҧ�istheconductioncurrentdensity(A/m
2
).
ഥ�istheelectricfieldstrength(V/m).
ഥ??????isthemagneticfluxdensity(wb/m
2
)or(Tesla).
ሶഥ??????=
�ഥ??????
��
isthetime-derivativeofmagneticfluxdensity(wb/m
2
.sec).Also,
ሶഥ??????isthemagneticcurrentdensity(V/m
2
)or(Tesla/sec).
�
�isthevolumechargedensity(C/m
3
)

MAXWELL’S EQUATIONS FOR TIME-VARYING
FIELDS
❑Maxwell’sequationsinintegralformaregivenby
ׯ
??????
ഥ�.�ഥ??????=ׯ
�
ሶഥ�+ҧ??????.�ത�(1)
ׯ
??????
ഥ�.�ഥ??????=−ׯ
�
ሶഥ??????.�ത�(2)
ׯ
�
ഥ�.�ത�=׬
�
�
���(3)
ׯ
�
ഥ??????.�ത�=� (4)
where
�ഥ??????isthedifferentiallength.
�ത�isthedifferentialsurfaceareawhosedirectionisalways
outwardandnormaltothesurface.

CONVERSION OF DIFFERENTIAL FORM OF
MAXWELL’S EQUATIONS TO INTEGRAL FORM
❑ConsiderthefirstMaxwell’sequation
??????×ഥ�=
ሶഥ�+ҧ??????
❑Takesurface integral on both sides
ׯ
�
??????×ഥ�.�ത�=ׯ
�
ሶഥ�+ҧ??????.�ത�
❑ApplyingStokes’ theorem, we can write

�
??????×ഥ�.�ത�=ර
??????
ഥ�.�ത??????
❑Therefore, the first low

??????
ഥ�.�ത??????=ර
�
ሶഥ�+ҧ??????.�ത�

❑ConsiderthesecondMaxwell’sequation
??????×ഥ�=−
ሶഥ??????
❑Takesurface integral on both sides
ׯ
�
??????×ഥ�.�ത�=−ׯ
�
ሶഥ??????.�ത�
❑ApplyingStokes’ theorem, we can write

�
??????×ഥ�.�ത�=ර
??????
ഥ�.�ത??????
❑Therefore, the second low

??????
ഥ�.�ത??????=−ර
�
ሶഥ??????.�ത�

❑ConsiderthethirdMaxwell’sequation
??????∙ഥ�=�
�
❑Takevolume integral on both sides

�
??????∙ഥ���=න
�
�
���
❑Applyingdivergence theorem, we can write

�
??????∙ഥ���=ර
�
ഥ�.�ത�
❑Therefore, the third low

�
ഥ�.�ത�=න
�
�
���

❑ConsiderthefourthMaxwell’sequation
??????∙ഥ??????=�
❑Takevolume integral on both sides

�
??????∙ഥ??????��=�
❑Applyingdivergence theorem, we can write

�
??????∙ഥ??????��=ර
�
ഥ??????.�ത�
❑Therefore, the fourth low

�
ഥ??????.�ത�=�

MAXWELL’S EQUATIONS FOR STATIC FIELDS
??????×ഥ�=ҧ??????⇔

??????
ഥ�.�ത??????=ර
�
ҧ??????.�ത�
??????×ഥ�=�⇔

??????
ഥ�.�ത??????=�
??????∙ഥ�=�
�⇔

�
ഥ�.�ത�=න
�
�
���
??????∙ഥ??????=�⇔

�
ഥ??????.�ത�=�

CHARACTERISTICS OF FREE SPACE
Parameter Symbol Value
Relative permittivity ??????
� 1
Relative permeability ??????
� 1
Conductivity ?????? 0
Conduction current density ҧ�0
Volumecharge density �
� 0
Intrinsic or characteristic
impedance
�����??????��????????????

MAXWELL’S EQUATIONS FOR FREE SPACE
??????×ഥ�=
ሶഥ�⇔

??????
ഥ�.�ത??????=ර
�
ሶഥ�.�ത�
??????×ഥ�=−
ሶഥ??????⇔

??????
ഥ�.�ത??????=−ර
�
ሶഥ??????.�ത�
??????∙ഥ�=�⇔

�
ഥ�.�ത�=�
??????∙ഥ??????=�⇔

�
ഥ??????.�ത�=�

MAXWELL’S EQUATIONS FOR STATIC FIELDS IN
FREE SPACE
??????×ഥ�=�⇔

??????
ഥ�.�ത??????=�
??????×ഥ�=�⇔

??????
ഥ�.�ത??????=�
??????∙ഥ�=�⇔

�
ഥ�.�ത�=�
??????∙ഥ??????=�⇔

�
ഥ??????.�ത�=�

PROOF OF MAXWELL’S EQUATIONS
❑First,fromAmpere’scircuitallaw,wehave
??????×ഥ�=ҧ??????
❑Takedot product on both sides
??????.??????×ഥ�=??????.ҧ??????
❑As the divergence of curlof a vector is zero,
??????.ҧ??????=�
❑But the equation of continuity in point form
??????∙ҧ�=
−��
�
��
=−ሶ�
�
❑This means that if ??????×ഥ�=ҧ??????istrue, we get ??????.ҧ??????=�.
❑Astheequationofcontinuityismorefundamental,Ampere’s
circuitallawshouldbemodified.

❑ModifyingAmpere’scircuitallaw,wehave
??????×ഥ�=ҧ??????+ഥ�
❑Takedot product on both sides
??????.??????×ഥ�=??????.ҧ??????+??????.ഥ�
❑As the divergence of curlof a vector is zero,
??????.ҧ??????+??????.ഥ�=�
❑Substitutingthevalueof??????.ҧ??????fromtheequationof
continuityinthepreviousequation,
??????∙ഥ�+−ሶ�
�=�OR ??????∙ഥ�=ሶ�
�

❑ButthepointformofGauss’slaw
??????.ഥ�=�
�OR??????.
ሶഥ�=ሶ�
�
❑Then,
??????.ഥ�=??????.
ሶഥ�
❑Thedivergenceoftwovectorsareequalonlyifthe
vectorsareidentical.
ഥ�=
ሶഥ�
❑Substitutingthevalueofഥ�,
??????×ഥ�=
ሶഥ�+ҧ??????

❑Second,accordingtoFaraday’slaw
���=−
�∅
��
,∅∶����������������
❑By definition,
���=ර
??????
ഥ�.�ഥ??????
❑Then,

??????
ഥ�.�ഥ??????=−
�∅
��
❑But,
∅=ׯ
�
ഥ??????.�ത�OR −
�∅
��
=−ׯ
�
�ഥ??????
��
.�ത�
❑So,

??????
ഥ�.�ഥ??????=−ර
�
ሶഥ??????.�ത�

❑ApplyingStokes’ theorem, we get

�
??????×ഥ�.�ത�=ර
??????
ഥ�.�ഥ??????
❑Hence,

�
??????×ഥ�.�ത�=−ර
�
ሶഥ??????.�ത�
❑Twosurfaceintegralsareequalonlyiftheirintegrandsare
equal,
??????×ഥ�=−
ሶഥ??????

❑Third,fromGauss’slawinelectricfield
ׯ
�
ഥ�.�ത�=�=׬
�
�
���
❑Applyingdivergence theorem, we get

�
ഥ�.�ത�=න
�
??????∙ഥ���=න
�
�
���
❑Twovolumeintegralsareequalonlyiftheirintegrandsare
equal,
??????∙ഥ�=�
�
❑Fourth,fromGauss’slawformagneticfield[themagneticflux
linesareaclosedloop]

�
ഥ??????.�ത�=�
❑Applyingdivergence theorem, we get
׬
�
??????∙ഥ??????��=�OR ??????∙ഥ??????=�

SINUSOIDAL TIME-VARYING FIELDS
❑Inpractice,electricandmagneticfieldsvary
sinusoidally.
❑Anyperiodicvariationcanbedescribedintermsof
sinusoidalvariations.
❑Thefieldscanberepresentedby
෩ഥ�=�
�??????????????????��OR
෩ഥ�=�
������
where
�: Angular frequency, �=���
�: Frequency variation of the field.
�
�: The maximum field strength.

❑Itisalsopossibletorepresentthefieldsusingthe
phasornotation.
❑Thetime-varyingfield
෩ഥ�(�,�)isrelatedtophasorfield
ഥ�(�)as
෩ഥ�(�,�)=��ഥ���
���
OR
෩ഥ�(�,�)=��ഥ���
���
where
�: Angular frequency.

MAXWELL’S EQUATIONS IN PHASOR FORM
❑ConsiderthefirstMaxwell’sequation
??????×
෩ഥ�=
෩ሶഥ�+ሚҧ??????
❑If
෩ഥ�=��ഥ��
���
෩ഥ�=��ഥ��
���
෨ҧ�=��ҧ��
���
Then
??????×��ഥ��
���
=
�
��
��ഥ��
���
+��ҧ��
���
❑Interchangingtheoperationoftakingtherealpart,weget
��??????×ഥ�−��ഥ�−ҧ��
���
=�
∴??????×ഥ�=��ഥ�+ҧ�

❑ConsiderthesecondMaxwell’sequation
??????×
෩ഥ�=−
෩ሶഥ??????
❑If
෩ഥ�=��ഥ��
���
෩ഥ??????=��ഥ??????�
���
❑Then
??????×��ഥ��
���
=−
�
��
��ഥ??????�
���
❑Interchangingtheoperationoftakingtherealpart,we
get
��??????×ഥ�+��ഥ??????�
���
=�
∴??????×ഥ�=−��ഥ??????

❑ConsiderthethirdMaxwell’sequation
??????∙
෩ഥ�=�
�
❑If
෩ഥ�=��ഥ��
���
❑Then
??????∙��ഥ��
���
=�
�
❑Interchangingtheoperationoftakingtherealpart,we
get
��??????∙ഥ��
���
=�
�
∴??????∙ഥ�=�
�

❑ConsiderthefourthMaxwell’sequation
??????∙
෩ഥ??????=�
❑If
෩ഥ??????=��ഥ??????�
���
❑Then
??????∙��ഥ??????�
���
=�
❑Interchangingtheoperationoftakingtherealpart,we
get
��??????∙ഥ??????�
���
=�
∴??????∙ഥ??????=�

❑Insummary,Maxwell’sequationsinphasorformare
asfollows:
??????×ഥ�=��ഥ�+ҧ�
??????×ഥ�=−��ഥ??????
??????∙ഥ�=�
�
??????∙ഥ??????=�

The Part (1) will be
continued …
Thanks
Tags