Baseline: Simple model: Historical Average (HA), Gradient Boosting Decision Tree(GBDT ) [1] , Gate Recurrent Unit (GRU) [2] . Spatio -temporal GNN: DCRNN [3] , GraphWaveNet [4] , STGODE [5] . Neural point-process model: NHTPP [6] , RMTPP [7] , THPP [8] , FNN-TPP [9] . EXPERIMENT AND RESULT EXPERIMENT [1] Ye, J., Chow, J. H., Chen, J., & Zheng, Z. (2009, November). Stochastic gradient boosted distributed decision trees. In Proceedings of the 18th ACM conference on Information and knowledge management (pp. 2061-2064).. [2] Cho, K., Van Merriënboer , B., Gulcehre , C., Bahdanau , D., Bougares , F., Schwenk , H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078. [3] Li, Y., Yu, R., Shahabi , C., & Liu, Y. (2017). Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926. [4] Wu, Z., Pan, S., Long, G., Jiang, J., & Zhang, C. (2019). Graph wavenet for deep spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121. [5] Fang, Z., Long, Q., Song, G., & Xie, K. (2021, August). Spatial-temporal graph ode networks for traffic flow forecasting. In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining (pp. 364-373). [6] Mei, H., & Eisner, J. M. (2017). The neural hawkes process: A neurally self-modulating multivariate point process. Advances in neural information processing systems, 30. [7] Du, N., Dai, H., Trivedi, R., Upadhyay, U., Gomez-Rodriguez, M., & Song, L. (2016, August). Recurrent marked temporal point processes: Embedding event history to vector. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1555-1564). [8] Zuo , S., Jiang, H., Li, Z., Zhao, T., & Zha, H. (2020, November). Transformer hawkes process. In International conference on machine learning (pp. 11692-11702). PMLR. [9] Omi, T., & Aihara , K. (2019). Fully neural network based model for general temporal point processes. Advances in neural information processing systems, 32.