2nd review heat exchanger correlation new.pptx

agilansm2003 8 views 24 slides Sep 15, 2024
Slide 1
Slide 1 of 24
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24

About This Presentation

Heat excha


Slide Content

Heat Transfer Studies in Shell & Tube and Plate Type Heat Exchangers UNDER THE GUIDENCE OF Dr .R. MUTHUVELAYUDHAM PROFESSOR OF CHEMICAL ENGINEERING BY S.M.AGILAN (2037010004) K.RANJITH (2037010047) FEAT, ANNAMALAI UNIVERSITY

Shell and tube heat exchanger Common type of heat exchanger used in various industrial applications to transfer heat between two fluids. It consists of a shell (a large container) with a bundle of tubes inside it. The shell and tube heat exchanger works by facilitating the exchange of heat between two different fluids, one flowing inside the tubes (the tube-side fluid) and the other surrounding the outside of the tubes within the shell (the shell-side fluid)

Plate heat exchanger A plate exchanger consists of a serious of parallel plates that are placed one above the other so as to allow the formation of a series of channels for fluids to flow between them. The space between two adjacent plates forms the channel in which the fluid flows.

OBJECTIVE OF THE STUDY To compare the performance of shell & tube and plate heat exchangers. To check and validate the data obtained using various correlations available.

METHODOLOGY: Heating the oil at 60°C   Introducing feed in tube side (water) Introducing feed in shell side (hot oil) Heat transfer in heat exchangers at different flow rate & constant oil temperature Calculate the Nusselt number, Reynolds number & Prandtl number Prediction of heat transfer correlations in heat exchanger

SHELL & TUBE HEAT EXCHANGER S.NO FLOW RATE (LPM) WATER OUTLET TEMP (DEG. CEL) DENSITY (Kg/m3) VISCOSITY (NS/m2) THERMAL CONDUCTIVITY (W/Mk) Re Pr Nu 1 12 48 988.95 0.00056 0.639 14834 3.669 90.08 2 16 46 989.82 0.00058 0.636 19125 3.800 111.67 3 20 45 990.25 0.00060 0.6361 23766 3.949 134.57 4 25 43 991.09 0.00062 0.633 28294 4.1008 156.66 5 30 41 991.9 0.00064 0.629 33011 4.260 179.47 6 35 39 992.67 0.00067 0.627 36447 4.474 197.43 7 48 36 993.77 0.00071 0.623 47449 4.502 202.18 8 52 32 995.13 0.00076 o.617 48316 5.157 259.25

PLATE HEAT EXCHANGER S.NO FLOW RATE (LPM) WATER OUTLET TEMP (DEG. CEL) DENSITY (Kg/m3) VISCOSITY (NS/m2) THERMAL CONDUCTIVITY (W/Mk) Re Pr Nu 1 12 51 987.59 0.00054 0.643 570 3.516 39.339 2 16 49 988.5 0.00057 0.642 728.37 3.717 47.221 3 20 47 989.4 0.00058 0.636 880.22 3.818 54.085 4 25 46 989.82 0.00059 0.635 1107.26 3.890 63.464 5 30 45 990.25 0.00060 0.634 1287.3 3.962 70.631 6 35 44 990.67 0.00061 0.6345 1481.13 4.022 77.976 7 48 43 991.09 0.00062 0.631 1994.97 4.114 95.910 8 52 41 991.9 0.00064 0.629 2473.55 4.260 112.055

CORRELATIONS FOR WATER-OIL SYSTEM NAME FORMULAE CONDITIONS REFERENCE Dittus-Boelter Nu=0.023 Re 0.8 Pr 0.4 0.5 Pr< 120 2300<Re< Dittus,F.W . and L.M.K.Boelter (1954) Sieder -Tate Nu 0.027 Re 0.8 Pr 1/3 0.5 Pr< 120 2300=Re< Sieder,F.W and G.E.Tate (1936) Kays Nu=0.0155 Re 0.83 Pr 0.5 1< pr <20 turbulent flow Kays,W.M (1966) Petukhov-Popovs Where   K1=1+3.4  ε ; 0.5< Pr <2000 <Re<5* Petukhov,B.S.etal (1983) NAME FORMULAE CONDITIONS REFERENCE Dittus-Boelter Nu=0.023 Re 0.8 Pr 0.4 Dittus,F.W . and L.M.K.Boelter (1954) Sieder -Tate Nu 0.027 Re 0.8 Pr 1/3 Sieder,F.W and G.E.Tate (1936) Kays Nu=0.0155 Re 0.83 Pr 0.5 1< pr <20 turbulent flow Kays,W.M (1966) Petukhov-Popovs Petukhov,B.S.etal (1983)

NAME FORMULAE CONDITIONS hausemREFERENCE Hausen Nu=3.66+ 2100<Reynolds number< Hausen etal ( 2000 ) Braun Nu=0.058 Turbulent flow Braun.etal ( 1999 ) Okada Nu=0.314 Re 0.65 Pr 0.4 Turbulent flow Okada etal ( 1972 ) Griem Nu=0.0169 Re 0.8356 Pr 0.432 2<Prandtl number<100 Griem.etal ( 1996 ) NAME FORMULAE CONDITIONS hausemREFERENCE Hausen Hausen etal ( 2000 ) Braun Nu=0.058 Turbulent flow Braun.etal ( 1999 ) Okada Nu=0.314 Re 0.65 Pr 0.4 Turbulent flow Okada etal ( 1972 ) Griem Nu=0.0169 Re 0.8356 Pr 0.432 2<Prandtl number<100 Griem.etal ( 1996 ) Re 0.7 Pr 0.5

Reynolds number Exp. Nusselt Number Kays Braun Petukhov 14834 90.0839 86.05 92.38 89.02 19125 111.6795 108.13 112.32 110.41 23766 134.5765 132.01 133.3 135.75 28294 156.6627 155.48 153.47 159.69 33011 179.4716 180.1 174.26 184.09 36447 197.4344 200.38 191.39 203.52 48316 259.2552 271.85 250.32 276.73 Validating the Experimental Data With the Correlations

Reynolds number Exp.Nusselt Number Griem Ranz Okada Sleicher Rouse 14834 90.0839 90.63 114.7 274.28 299.9 19125 111.6795 113.77 137.48 328.1 412.2 23766 134.5765 138.71 148.2 383.73 554.5 28294 156.6627 163.11 163.54 436.32 722.8 33011 179.4716 188.62 178.72 489.72 930.5 36447 197.4344 209.27 190.7 532.62 1198.9 48316 259.2552 261.58 229.86 633.82 1534.3 Continuation

Reynolds Number Exp.Nusselt Number Okada Ranz Hausen Kays 570 39.339 38.7 23.91 4.54 5.632 728.37 47.221 46.23 27.08 4.8 7.098 880.22 54.085 54.34 29.82 5.03 8.418 1107.26 63.464 62.56 33.4 5.33 10.281 1287.3 70.631 69.34 36.06 5.57 11.757 1481.13 77.976 76.1 38.72 5.81 13.308 1994.97 95.91 94.3 44.94 6.39 17.234 2473.55 112.055 110.7 50.37 6.93 20.965 PLATE HEAT EXCHANGER CORRELATION

Referred equation to found the empirical equation Nu = Y = mx + C  

Re.Pr Exp.Nusselt Number 3336.62 90.08 4136.62 111.68 4984.32 134.58 5802.33 156.66 6647.09 179.47 7312.39 197.43 9602.02 259.26 Empirical equation for Shell and tube Heat exchanger

Exp.Nusselt Number Reynolds & Prandtl Number 39.34 242.6 47.22 300.64 54.08 352.92 63.46 426.66 70.63 484.23 77.98 544.43 95.91 696.08 Empirical equation for Plate Heat Exchanger

Suggested Empirical Equation for Water oil system Shell and tube heat exchanger empirical equation Nu = 0.027 – 0.014 Plate heat Exchanger empirical equation Nu = 0.1222 + 10.766  

Experimental Nu number Empirical Equation Nu number Experimental Nu number Empirical Equation Nu number 90.08 90.07 39.339 40.41 111.67 111.66 47.221 47.50 134.57 134.5 54.085 53.89 156.66 156.65 63.464 62.90 179.47 179.46 70.631 69.94 197.43 197.42 77.976 77.29 202.18 244.31 95.910 95.82 259.25 259.24 112.055 112.96 Shell & Tube PHE

REFERENCES: Determinig of Convective Heat Transfer Coefficients in Heat Exchangers Using the Wilson Plot Technique, In: Thermal and Flow Proesses in Large Steam Boilers. Modeling and Monitoring, J. Taler , (Ed.), ISBN 978-83-01-16479-9, Warszawa, Poland (in Polish) Smith, E. M. (1997). Thermal Design of Heat Exchangers: A Numerical Approach: Direct Sizing and Stepwise Rating, and Transients, John Wiley & Sons, ISBN 0-47-001616-7, New York, USA Shokouhmand , H.; Salimpour , M.R., Akhavan-Behabadi , M.A. (2008). Experimental Investigation of Shell and Coiled Tube Heat Exchangers Using Wilson Plots. International Communications in Heat and Mass Transfer, Vol.35, pp. 84–92, ISSN 0735- 1933 Ayub , Z. H. (2003). Plate heat exchanger literature survey and new heat transfer and pressure drop correlations for refrigerant evaporators. Heat transfer engineering, 24(5), 3-16. Jin , S., & Hrnjak , P. (2017a). Effect of end plates on heat transfer of plate heat exchanger. International Journal of Heat and Mass Transfer, 108, 740-748

Shah, R., & Sekulic , D. (2002). Fundamentals of heat transfer design. New York: John Wiley & Sons. Shah R.K., Focke W.W. (1988) Plate heat exchangers and their design theory. In R.K. Shah et al. (Eds.), Heat Transfer Equipment Design (227-254). Hemisphere, Washington: Hemisphere Publishing Corp. Okada, K., Ono, M., Tomimura , T., Okuma, T., Konno, H., & Ohtani , S. (1972). Design and heat transfer characteristics of new plate heat exchanger. Heat Transfer Japanese Research, 1(1), 90-95. Muley , A., & Manglik , R. M. (1999). Experimental study of turbulent flow heat transfer and pressure drop in a plate heat exchanger with chevron plates. Journal of Heat Transfer, 121 (1999), 110–117. Khan, T. S., Khan, M. S., Chyu , M. C., & Ayub , Z. H. (2010). Experimental investigation of single phase convective heat transfer coefficient in a corrugated plate heat exchanger for multiple plate configurations. Applied Thermal Engineering, 30(8-9), 1058-1065.

ACCEPT OUR ENDLESS GRATITUDE…