3.8 equations of circles.pptsdsdsewedcxgb

GenemarTanMarte 7 views 17 slides Nov 02, 2025
Slide 1
Slide 1 of 17
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17

About This Presentation

asdaswds


Slide Content

Lesson Objectives
•Write the standard form of the
equation of a circle.
•Graph a circle by hand and with a
calculator using the standard form of
the equation of a circle.
•Work with the general form of an
equation of a circle.

Definition
A Circle is a set of
points in the xy
plane that are a
fixed distance r from
a fixed point (h,k),
where (h,k) is the
center of the circle
and r is the radius.

Standard Form of a Circle
Center is at (h, k)

2 2
2
x h y k r   
r is the radius of the circle

Every binomial squared has been
multiplied out.
Every term is on the left side, set
equal to 0.
2 2
: 4 6 3 0    Example x y x y
General Form of a Circle

EX 1 Write the standard form for the equation of a
circle with center (3, -2) and a radius of 4.

2 2
2
+x h y k r  
  
22
2
3 + 2 4x y   

2 2
3 + 2 16x y  

EX 2 Write an equation of a circle with
center (-4, 0) and a diameter of 10.

2 2
2
+x h y k r  
 
2 2
2
4 + 0 5x y   

2
2
4+y 25x 

EX 3 Write an equation of a circle with
center (2, -9) and a radius of .11
  
222
2 9 11x y    

2 2
2
+x h y k r  

2 2
2+y+9 11x 

EX 4 Find the coordinates of the center and
the measure of the radius.

2 2
2
6 + 3 25x y  

The center is
The radius is
The equation is
5. Find the center, radius, &
equation of the circle.
(0, 0)
12
x
2
+ y
2
= 144

The center is
The radius is
The equation is
6. Find the center, radius, &
equation of the circle.
(1, -3)
7
(x – 1)
2
+ (y + 3)
2
= 49

7. Graph the circle, identify
the center & radius.
(x – 3)
2
+ (y – 2)
2
= 9
Center (3, 2)
Radius of 3

Converting from General Form to
Standard
1.Move the x terms together and the
y terms together.
2.Move C to the other side.
3.Complete the square (as needed)
for x.
4.Complete the square(as needed)
for y.
5.Factor the left & simplify the right.

2 2
( 8 ) 7  x x y
8. Write the standard equation of the circle.
State the center & radius.
2 2
8 7 0x y x   
Center: (4, 0) radius: 3
2 2
( 4) 9x y  
2 2
( 8 )16 16 7    x x y

  
2 2
4 6 3   x x y y
9. Write the standard equation of the circle.
State the center & radius.
2 2
4 6 3 0    x y x y
Center: (-2, 3) radius: 4

2 2
2 3 16   x y
  
2 2
4 6 9394 4      x x y y

  
2 2
8 2 10   x x y y
10. Write the standard equation of the circle.
State the center & radius.
2 2
2 2 16 4 20 0    x y x y

2 2
4 1 7   x y
  
2 2
8 2 1 116 16 10     x x y y
2 2
8 2 10 0    x y x y
:(4, 1) : 7 2.6 Center Radius

11. Write the general form of the equation of
the circle.

2 2
4 3 36   x y
2 2
8 16 6 9 36     x x y y
2 2
8 16 6 9 36 0      x x y y
2 2
8 6 11 0    x y x y
Tags