State Variable Selection for Electric circuits
20
Example1:
Writedownthestate-spaceequationsfortheseriesresistor-inductor
circuitbelow.
.
State Variable Selection for Electric circuits
21
Example2:
Writedownthestate-spaceequationsfortheseriesRLCcircuitbelow.
Fig a: The Series RLC Circuit
State Equations for Electric circuits
22
Fig b: The redrawn Series RLC Circuit;
With node b as the reference node
State Equations and Matrix Notation
23
Thestateequationsofasystemareasetofnfirst-orderdifferential
equations,wherenisthenumberofindependentstates.Thestate
equationsrepresentedbyaboveequationsareexpressedinmatrix
notation.FortheaboveseriesRLCcircuitfromthestateequations,we
getthematrixformasfollows:
State Equations in Matrix Notation
24
Where,
Here, x = n×1 column vector. A = n×n plant co-efficient matrix.
x = n×1 state vector. B = n×1 control matrix.
And input u = [u] is a one dimensional control vector
Output Equation in Matrix Notation
25
Iftheoutputquantityy(t)fortheRLCcircuitofFig.aisthevoltage
acrossthecapacitorv
C,then
State Equation for MIMO system
26
Theaboveequationsareforasingle-inputsingle-output(SISO)system.
Foramultiple-inputmultiple-output(MIMO)system,withminputs
andloutputs,theseequationsbecome
Where,
State Equations for Electric circuits
27
Example3:ObtainthestateequationforthecircuitinFig.C,wherei
2
isconsideredtobetheoutputofthissystem.theseriesRLCcircuit
below.
Fig C
Solution:
The assignedstate
variablesarex
1=i
1,x
2=i
2,
andx
3=v
C.Thus,twoloop
andonenodeequations
arewrittenasfollows:.
State Equations for Electric circuits
28
Thethreestatevariablesareindependent,andthesystemstateand
outputequationsare:
State Equations for Electric circuits
29
Example4:ObtainthestateequationsforthecircuitofFig.2.7.The
outputisthevoltagev1.Theinputorcontrolvariableisacurrent
sourcei(t).
Fig D
State Equations for Electric circuits
30
Solution:Theassignedstatevariablesarei1,i2,i3,v1,andv2.Three
loopequationsandtwonodeequationsarewritten:
WritingtheloopequationthroughL1,
L2,andL3,andthenintegrating
(multiplyingby1/D),gives
whereKisafunctionoftheinitial
conditions.Thisequationrevealsthat
oneinductorcurrentisdependentupon
theothertwoinductorcurrents.Thus,
thiscircuithasonlyfourindependent
physicalstatevariables,twoinductor
currentsandtwocapacitorvoltages.
State Equations for Electric circuits
31
Thefourindependentstatevariablesaredesignatedasx1=v1,x2=v2,
x3=i1,andx4=i2,andthecontrolvariableisu=i.
State Equations for Mechanical Systems
32
Example01:Considerthemechanicalsystemshown
inFigure3-16.Weassumethatthesystemislinear.
Theexternalforceu(t)istheinputtothesystem,
andthedisplacementy(t)ofthemassistheoutput.
Thedisplacementy(t)ismeasuredfromthe
equilibriumpositionintheabsenceoftheexternal
force.Thissystemisasingle-input-single-output
system.
Solution:Fromthediagram,thesystemequationis:
Thissystemisofsecondorder.Thismeansthatthe
systeminvolvestwointegrators.Letusdefinestate
variablesas:
State Equations for Mechanical Systems
33
Thenweobtain:
Or,
Theoutputequationis:
State Equations for Mechanical Systems
34
Invector-matrixform,thestateequationis:
State-Space Modeling of Servomotor
35
Figure:CircuitDiagramofaDCmotor
State-Space Modeling of Servomotor
36
State-Space Modeling of Servomotor
37
Figure: Inertia and friction as motor load
State-Space Modeling of Servomotor
38
State-Space Modeling of Servomotor
39
Thestate-spaceequationscanbederivedasfollows:
State-Space Modeling of Servomotor
40
Finally,thestate-spaceequationsinmatrixformcanbewrittenasfollows: