3.State-Space Representation of Systems.pdf

AbrormdFayiaz 47 views 41 slides Sep 29, 2024
Slide 1
Slide 1 of 41
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41

About This Presentation

Warp : Ply is preferred for warps

Weft : Singles can be usedWarp : Ply is preferred for warps

Weft : Singles can be usedWarp : Ply is preferred for warps

Weft : Singles can be usedWarp : Ply is preferred for warps

Weft : Singles can be usedWarp : Ply is preferred for warps

Weft : Singles can be...


Slide Content

1
EEE 2221
Mathematical Models of Systems: State-Space
Representation
Nayeema Hasan
Lecturer
Dept. of EEE, KUET.
Reference Books:
‘Modern Control Engineering’-by Katsuhiko Ogata.

Complex Variable and Complex Function
2

Euler’s Theorem
3

Euler’s Theorem
4

Laplace Transformation
5

Laplace Transformation
6

Laplace Transform of Different Functions
7

Laplace Transform of Different Functions
8

Laplace Transform of Different Functions
9

Properties of Laplace Transform
10

Properties of Laplace Transform
11

Properties of Laplace Transform
12

Modeling in State-Space
13
STATE:Thestateofasystemisamathematicalstructurecontainingaset
ofnvariablesx
1(t),x
2(t),...,x
i(t),...,x
n(t),calledthestatevariables,
suchthattheinitialvaluesx
i(t
0)ofthissetandthesysteminputsu
j(t)are
sufficienttodescribeuniquelythesystem’sfutureresponseoft≥t
0.
Aminimumsetofstatevariablesisrequiredtorepresentthesystem
accurately.Theminputs,u
1(t),u
2(t),...,u
j(t),...,u
m(t),aredeterministic;
i.e.,theyhavespecificvaluesforallvaluesoftimet≥t
0.
Generallytheinitialstartingtimet
0istakentobezero.
StateVariables.Thestatevariablesofadynamicsystemarethevariables
makingupthesmallestsetofvariablesthatdeterminethestateofthe
dynamicsystem.Ifatleastnvariablesx,x
1,x
2,...,x
n,areneededto
completelydescribethebehaviorofadynamicsystem(sothatoncethe
inputisgivenfortztoandtheinitialstateatt=toisspecified,thefuture
stateofthesystemiscompletelydetermined),thensuchnvariablesarea
setofstatevariables.

Modeling in State-Space
14
STATEVECTOR:Thesetofstatevariablesx
i(t)representstheelements
orcomponentsofthen-dimensionalstatevectorx(t);thatis,
Theorderofthesystemcharacteristicequationisn,andthestateequation
representationofthesystemconsistsofnfirst-orderdifferentialequations.
Whenalltheinputsu
j(t)toagivensystemarespecifiedfort>t
0,the
resultingstatevectoruniquelydeterminesthesystembehaviorforanyt>
t
0.

Modeling in State-Space
15
STATEVECTOR:Thesetofstatevariablesx
i(t)representstheelements
orcomponentsofthen-dimensionalstatevectorx(t);thatis,
Theorderofthesystemcharacteristicequationisn,andthestateequation
representationofthesystemconsistsofnfirst-orderdifferentialequations.
Whenalltheinputsu
j(t)toagivensystemarespecifiedfort>t
0,the
resultingstatevectoruniquelydeterminesthesystembehaviorforanyt>
t
0.

Modeling in State-Space
16
STATESPACE:Statespaceisdefinedasthen-dimensionalspaceinwhich
thecomponentsofthestatevectorrepresentitscoordinateaxes.Then-
dimensionalspacewhosecoordinateaxesconsistofthex
laxis,x
2axis,...,
x,axis,wherex
l,x
2,...,x
n,arestatevariables;iscalledastatespace.Any
statecanberepresentedbyapointinthestatespace.
STATETRAJECTORY:Statetrajectoryisdefinedasthepathproducedin
thestatespacebythestatevectorx(t)asitchangeswiththepassageof
time.
Statespaceandstatetrajectoryinthetwo-dimensionalcasearereferredto
asthephaseplaneandphasetrajectory,respectively.

First Step: Selection of State Variables
17

First Step: Selection of State Variables
18

First Step: Selection of State Variables
19

State Variable Selection for Electric circuits
20
Example1:
Writedownthestate-spaceequationsfortheseriesresistor-inductor
circuitbelow.
.

State Variable Selection for Electric circuits
21
Example2:
Writedownthestate-spaceequationsfortheseriesRLCcircuitbelow.
Fig a: The Series RLC Circuit

State Equations for Electric circuits
22
Fig b: The redrawn Series RLC Circuit;
With node b as the reference node

State Equations and Matrix Notation
23
Thestateequationsofasystemareasetofnfirst-orderdifferential
equations,wherenisthenumberofindependentstates.Thestate
equationsrepresentedbyaboveequationsareexpressedinmatrix
notation.FortheaboveseriesRLCcircuitfromthestateequations,we
getthematrixformasfollows:

State Equations in Matrix Notation
24
Where,
Here, x = n×1 column vector. A = n×n plant co-efficient matrix.
x = n×1 state vector. B = n×1 control matrix.
And input u = [u] is a one dimensional control vector

Output Equation in Matrix Notation
25
Iftheoutputquantityy(t)fortheRLCcircuitofFig.aisthevoltage
acrossthecapacitorv
C,then

State Equation for MIMO system
26
Theaboveequationsareforasingle-inputsingle-output(SISO)system.
Foramultiple-inputmultiple-output(MIMO)system,withminputs
andloutputs,theseequationsbecome
Where,

State Equations for Electric circuits
27
Example3:ObtainthestateequationforthecircuitinFig.C,wherei
2
isconsideredtobetheoutputofthissystem.theseriesRLCcircuit
below.
Fig C
Solution:
The assignedstate
variablesarex
1=i
1,x
2=i
2,
andx
3=v
C.Thus,twoloop
andonenodeequations
arewrittenasfollows:.

State Equations for Electric circuits
28
Thethreestatevariablesareindependent,andthesystemstateand
outputequationsare:

State Equations for Electric circuits
29
Example4:ObtainthestateequationsforthecircuitofFig.2.7.The
outputisthevoltagev1.Theinputorcontrolvariableisacurrent
sourcei(t).
Fig D

State Equations for Electric circuits
30
Solution:Theassignedstatevariablesarei1,i2,i3,v1,andv2.Three
loopequationsandtwonodeequationsarewritten:
WritingtheloopequationthroughL1,
L2,andL3,andthenintegrating
(multiplyingby1/D),gives
whereKisafunctionoftheinitial
conditions.Thisequationrevealsthat
oneinductorcurrentisdependentupon
theothertwoinductorcurrents.Thus,
thiscircuithasonlyfourindependent
physicalstatevariables,twoinductor
currentsandtwocapacitorvoltages.

State Equations for Electric circuits
31
Thefourindependentstatevariablesaredesignatedasx1=v1,x2=v2,
x3=i1,andx4=i2,andthecontrolvariableisu=i.

State Equations for Mechanical Systems
32
Example01:Considerthemechanicalsystemshown
inFigure3-16.Weassumethatthesystemislinear.
Theexternalforceu(t)istheinputtothesystem,
andthedisplacementy(t)ofthemassistheoutput.
Thedisplacementy(t)ismeasuredfromthe
equilibriumpositionintheabsenceoftheexternal
force.Thissystemisasingle-input-single-output
system.
Solution:Fromthediagram,thesystemequationis:
Thissystemisofsecondorder.Thismeansthatthe
systeminvolvestwointegrators.Letusdefinestate
variablesas:

State Equations for Mechanical Systems
33
Thenweobtain:
Or,
Theoutputequationis:

State Equations for Mechanical Systems
34
Invector-matrixform,thestateequationis:

State-Space Modeling of Servomotor
35
Figure:CircuitDiagramofaDCmotor

State-Space Modeling of Servomotor
36

State-Space Modeling of Servomotor
37
Figure: Inertia and friction as motor load

State-Space Modeling of Servomotor
38

State-Space Modeling of Servomotor
39
Thestate-spaceequationscanbederivedasfollows:

State-Space Modeling of Servomotor
40
Finally,thestate-spaceequationsinmatrixformcanbewrittenasfollows:

41