53 777 66bf19e55b524 GE 4 MODULE 1 LESSON 2 WEEK 3 .pdf

jenniieeeeesmilee 38 views 17 slides Aug 20, 2024
Slide 1
Slide 1 of 17
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17

About This Presentation

MATHEMATICS


Slide Content

MODULE LESSONS:
LESSON 1: PATTERNS AND NUMBERS IN NATURE AND THE WORLD
LESSON 2: THE FIBONACCI SEQUENCE
LESSON 3: MATHEMATICS FOR OUR WORLD

LEARNING OUTCOMES:
AFTER YOU HAVE COMPLETED THIS MODULE, YOU SHOULD BE ABLE TO :
▪IDENTIFY PATTERNS IN NATURE AND REGULARITIES;
▪ARTICULATE THE IMPORTANCE MATHEMATICS IN ONE’S LIFE;
▪ARGUE ABOUT THE NATURE OF MATHEMATICS, HOW IT IS REPRESENTED
AND USED; AND
▪EXPRESS APPRECIATION FOR MATHEMATICS AS A HUMAN ENDEAVOR.

Mathematics isuniversal.Mathematical
conceptsandinfluencescanbeseeninboth
natureandhumancreations,suchasart.
Seeingpatternsinnaturehasledmanyto
believethatsuchpatternsareevidenceof
divinecreation.Thislessonwillshowyouthe
mathematicsofart-relatedconceptslikethe
FibonacciSequenceandtheGoldenRatio.

LESSON 2: THE FIBONACCI SEQUENCE
AND THE GOLDEN RATIO
IN THIS LESSON, CHALLENGE YOURSELF TO:
a.EXAMINEFIBONACCISEQUENCEINNATUREANDART;AND
b.SOLVEEQUATIONS USINGFIBONACCISEQUENCE AND
GOLDENRATIORULE.

ACTIVITY 1: MEASURE ME
Get a ruler and measure the following by
centimeters(cm):
▪Distance from the ground to your navel
▪Distance from your navel to the top of your head
▪Distance from the ground to your knees
▪Length of your hand
▪Distance from your wrist to your elbow
▪Distances A, B, and C as indicated in the figure to the
right

Now, calculate the following ratios and write the results in the table
below:
1.
�??????������ ���� �ℎ� ������ �� ??????��� �����
�??????����������??????�����������ℎ������??????���ℎ���
=
2.
�??????������ ���� �ℎ� ������ �� ??????��� �����
�??????������ ���� �ℎ� ������ �� ??????��� �����
=
3.
�??????������ ���� ??????��� ��??????�� �� ??????��� �����
??????����ℎ �� ??????��� ℎ���
=
4.
�??????������ �
�??????������ �
=
5.
�??????������ �
�??????������ �
=

Ratio 1 Ratio 2 Ratio 3 Ratio 4 Ratio 5
Write your answer on each box, after you divide the values in activity 2.

FIBONACCI SEQUENCE
TheFibonaccisequenceisnamedafter
LeonardoofPisa,alsoknownasFibonacci,
whofirstobservedthepatternwhile
investigatinghowfastrabbitscouldbreed
underidealcircumstances.

Fibonacci’s1202bookLiberAbaciintroducedthe
sequencetoWesternEuropeanmathematics,although
ithadbeendescribedearlierinIndianMathematics.
Bydefinition,thefirsttwonumbersintheFibonacci
sequenceare1and1,andeachsubsequentnumberis
thesumoftheprevioustwo.Inmathematicalterms,the
sequence??????
�ofFibonaccinumbersisdefinedbythe
recurrencerelation??????
� =??????
�−1 +??????
�−2,withseedvalues
??????
1=1and??????
2 =1.

Starting with 1 and 1, the succeeding terms in the sequence can be
generated by adding the two numbers that came before the term:
1 + 1 = 2 1, 1, 2
1 + 2 = 3 1, 1, 2, 3
2 + 3 = 5 1, 1, 2, 3, 5
3 + 5 = 8 1, 1, 2, 3, 5, 8
5 + 8 = 13 1, 1, 2, 3, 5, 8, 13, …

TofindthenthFibonaccinumberwithoutusingtherecursion
formula,thefollowingisevaluatedusingacalculator:
??????
�=
(
1+5
2
)
�
−(
1−5
2
)
�
5
This form is known as the Binetform of the nth Fibonacci number.

EXAMPLE:
UseBinet’sformulatodeterminethe25thand30thFibonaccinumbers.
Solution:
a)25
th
Fibonaccinumber
??????
�=
(
1+5
2
)
??????
−(
1−5
2
)
??????
5
??????
25=
(
1+5
2
)
25
−(
1−5
2
)
25
5
??????
25=
(1.61803)
25
−(−0.61803)
25
5
??????
25=
167,761.0000059609
5
??????
25=75,025
b)30
th
Fibonaccinumber
??????
�=
(
1+5
2
)
??????
−(
1−5
2
)
??????
5
??????
30=
(
1+5
2
)
30
−(
1−5
2
)
30
5
??????
30=
(1.61803)
30
−(−0.61803)
30
5
??????
30=
1,860,498
5
??????
30=832,040

DID YOU KNOW?
TheFibonaccisequenceoccursmanytimesinnature.Takea
lookatsunflowers.Inparticular,payattentiontothe
arrangementoftheseedsinitshead.Doyounoticethatthey
formspirals?Incertainspecies,thereare21spiralsinthe
clockwisedirectionand34spiralsinthecounterclockwise
direction.
Heart of the Sunflower
You can observe the
phenomenon inthenumber
ofpetalsindaisies,cauliflower
florets,spiralsinpinecones,
andthebandswinding
aroundinpineapples.
Core of a daisy blossom

THE GOLDEN RATIO
Inmathematicsandthearts,twoquantitiesareinagoldenratioiftheirratioisthe
sameastheratiooftheirsumtothelargerofthetwoquantities.
Insymbols,aandb,where�>�>??????,areinagoldenratioif
�
�
=
�+�
�
.
ThegoldenratioisoftensymbolizedbytheGreekletter??????.Itisthe
number??????=�.??????�??????�??????….andtheirrationalnumber
1+5
2
.

The Mona Lisa
Thegoldenratioshowsupinart,
architecture,music,andnature.For
example,theancientGreeksthought
thatrectangleswhosesidesforma
goldenratiowerepleasingtolookat.
Manyartistsandarchitectshaveset
theirworkstoapproximatethegolden
ratio,alsobelievingthisproportionto
beaestheticallypleasing.

REFERENCE:
Noconand Nocon(2016). Essential Mathematics for the Modern World.
Bley, B. (2012, July 21). Sunflower Seed Patterns [Photograph]. Fine Art America.
https://fineartamerica.com/featured/sunflower-seed- patterns-bruce-bley.html
http://eacharya.inflibnet.ac.in/data-server/eacharya-
documents/53e0c6cbe413016f234436ed_INFIEP_8/37/ET/8_ENG -37-ET- V1-
S1__lesson.pdf
Peters, J. (2014, February 1). Golden Ratio [Illustration]. Research Gate.
https://www.researchgate.net/post/Is_the_beauty_of_patterns_or_ar
e_the_structures_in_patterns_the_most_important_source_of_mathem atics
Tags