Fuson, K. C., Wearne, D., Hiebert, J., Human, P., Murray, H., Olivier, A.,...Fennema, E.
(1997). Childrenās conceptual structures for multidigit numbers and methods of multidigit
addition and subtraction.Journal for Research in Mathematics Education,28, 130ā162.
Gambrell, L. B., Koskinen, P. S., & Kapinus, B. A. (1991). Retelling and the reading comprehen-
sion of proļ¬cient and less-proļ¬cient readers.The Journal of Educational Research,84(6),
356ā362.
Gelman, R., & Gallistel, R. C. (1978).The childās understanding of number. Cambridge, MA: Har-
vard University Press.
Gersten, R., Chard, D. J., Jayanthi, M., Baker, S. K., Morphy, P., & Flojo, J. (2009). Mathematics
instruction for students with learning disabilities: A meta-analysis of instructional
components.Review of Educational Research,79(3), 1202ā1242.
Gravemeijer, K. (1999). How emergent models may foster the constitution of formal
mathematics.Mathematical Thinking and Learning,1(2), 155ā177.
Gravemeijer, K. P. E., & van Galen, F. H. J. (2003). Facts and algorithms as products of studentsā
own mathematical activity. In J. Kilpatrick, W. G. Martin, & D. Schifter (Eds.),A research
companion to principles and standards for school mathematics(pp. 114ā122). Reston: VA:
NCTM.
Gray, E., & Tall, D. (1994). Duality, ambiguity, andļ¬exibility: Aāproceptualāview of
simple arithmetic.Journal for Research in Mathematics Education,25(2), 116ā140.
Gray, E. M. (1991). An analysis of diverging approaches to simple arithmetic: Preference and its
consequences.Educational Studies in Mathematics,22(6), 551ā574.
Hasselbring, T. S., Goin, L. I., & Bransford, J. D. (1988). Developing math automatically in learn-
ing handicapped children: The role of computerized drill and practice.Focus on Excep-
tional Children,20(6), 1ā7.
Hegarty, M., Mayer, R. E., & Monk, C. A. (1995). Comprehension of arithmetic word problems:
A comparison of successful and unsuccessful problem solvers.Journal of Educational
Psychology,87(1), 18.
Henry, V. J., & Brown, R. S. (2008). First-grade basic facts: An investigation into teaching and
learning of an accelerated, high-demand memorization standard.Journal for Research in
Mathematics Education,39(2), 153ā183.
Hiebert,J.,& Wearne, D. (1996). Instruction, understanding, and skill in multidigit addition and
subtraction.Cognition and Instruction,14(3), 251ā283.
Howe, R., & Epp, S. S. (2008). Taking place value seriously: Arithmetic, estimation and algebra.
Resources for RMET (Preparing Mathematicians to Educate Teachers). Retrieved from
www.maa.org/sites/default/ļ¬les/pdf/pmet/resources/PVHoweEpp-Nov2008.pdf
Hulbert, E. T., Petit, M. M., Ebby, C. B., Cunningham, E. P., & Laird, R. E. (2017).A focus on
multiplication and division: Bringing research to the classroom. New York: Taylor &
Francis.
Kalchman, M., Moss, J., & Case, R. (2001). Psychological models for the development of math-
ematical understanding: Rational numbers and functions. In S.M. Carver & D. Klahr
(Eds.),Cognition and instruction: Twenty-ļ¬ve years of progress(pp. 1ā38). Mahwah, NJ:
Lawrence Elbaum.
Kamii, C. (1982). Encouraging thinking in mathematics.Phi Delta Kappan,64(4), 247ā251.
Kamii, C., & Dominick, A. (1998). The harmful eļ¬ects of algorithms in grades 1ā4.The Teaching
and Learning of Algorithms in School Mathematics,19, 130ā140.
Kamii, C., & Joseph, L. L. (2004).Young children continue to reinvent arithmeticā2nd grade:
Implications of Piagetās theory. New York, NY: Teachers College Press.
Kamii, C. K. (1985).Young children reinvent arithmetic: Implications of Piagetās theory.
New York, NY: Teachers College Press.
Kamii, C. K. (1989).Young children continue to reinvent arithmetic, second grade. New York,
NY: Teachers College Press.
Kilpatrick, J., Swaļ¬ord, J., & Findell, B., (Eds.). (2001).Adding it up: Helping children learn
mathematicsNational Research Council (Ed.). Washington, DC: National Academy Press.
Klein, A. S., Beishuizen, M., & Treļ¬ers, A. (1998). The empty number line in Dutch second
grades: Realistic versus gradual program design.Journal for Research in Mathematics Edu-
cation,29, 443ā464.
Krebs, G., Squire, S., & Bryant, P. (2003). Childrenās understanding of the additive composition
of number and of the decimal structure: What is the relationship?International Journal of
Educational Research,39(7), 677ā694.