1 2 3 4 5 6
1(1,1,2,0)(2,1,3,-1)(3,1,4,-2)(4,1,5,-3)(5,1,6,-4)(6,1,7,-5)
2(2,1,3,1)(2,2,4,0)(3,2,5,-1)(4,2,6,-2)(5,2,7,-3)(6,2,8,-4)
3(3,1,4,2)(3,2,5,1)(3,3,6,0)(4,3,7,-1)(5,3,8,-2)(6,3,9,-3)
4(4,1,5,3)(4,2,6,2)(4,3,7,1)(4,4,8,0)(5,4,9,-1)(6,4,10,-2)
5(5,1,6,4)(5,2,7,3)(5,3,8,2)(5,4,9,1)(5,5,10,0)(6,5,11,-1)
6(6,1,7,5)(6,2,8,4)(6,3,9,3)(6,4,10,2)(6,5,11,1)(6,6,12,0)
Table 16: The possible values for the maximum, minimum, sum, and firstminus second die
observed when two dice are rolled.
Problem 8 (probabilities on dice)
The solution to this problem involves counting up the number of times thatXequals the
given value and then dividing by 6
2
= 36. For each part we have the following
Part (a):From table 16, for this part we find that
P{X= 1}=
1
36
; P{X= 2}=
3
12
; P{X= 3}=
5
36
;
P{X= 4}=
7
36
; P{X= 5}=
1
4
; P{X= 6}=
11
36
Part (b):From table 16, for this part we find that
P{X= 1}=
11
36
; P{X= 2}=
1
4
; P{X= 3}=
7
36
;
P{X= 4}=
1
12
; P{X= 5}=
7
36
; P{X= 6}=
1
36
Part (c):From table 16, for this part we find that
P{X= 2}=
1
36
; P{X= 3}=
1
18
; P{X= 4}=
1
12
;
P{X= 5}=
1
9
; P{X= 6}=
5
36
; P{X= 7}=
1
6
;
P{X= 8}=
5
36
; P{X= 9}=
1
9
; P{X= 10}=
1
12
;
P{X= 11}=
1
18
P{X= 12}=
1
36
:
Part (d):From table 16, for this part we find that
P{X=−5}=
1
36
; P{X=−4}=
1
18
; P{X=−3}=
1
9
;
P{X=−2}=
1
9
; P{X=−1}=
5
36
; P{X= 0}=
1
6
;
P{X= 1}=
5
36
; P{X= 2}=
1
9
; P{X= 3}=
1
12
;
P{X= 4}=
1
18
; P{X= 5}=
1
36
: