28
7. Wei, K., Serpooshan, V., Hurtado, C., Diez-Cuñado, M., Zhao, M., Maruyama, S., et al.:
Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature. 525(7570),
479–485 (2015). https://doi.org/10.1038/nature15372
8. Yu, W., Huang, X., Tian, X., Zhang, H., He, L., Wang, Y., et al.: GATA4 regulates Fgf16 to pro-
mote heart repair after injury. Development. 143(6), 936–949 (2016). https://doi.org/10.1242/
dev.130971
9. Laamme, M.A., Murry, C.E.: Heart regeneration. Nature. 473(7347), 326–335 (2011). https://
doi.org/10.1038/nature10147
10. Soonpaa, M.H., Kim, K.K., Pajak, L., Franklin, M., Field, L.J.: Cardiomyocyte DNA synthesis
and binucleation during murine development. Am. J. Phys. 271(5 Pt 2), H2183–H2189 (1996).
https://doi.org/10.1152/ajpheart.1996.271.5.H2183
11. Soonpaa, M.H., Field, L.J.: Survey of studies examining mammalian cardiomyocyte DNA
synthesis. Circ. Res. 83(1), 15–26 (1998). https://doi.org/10.1161/01.res.83.1.15
12. Zong, H., Espinosa, J.S., Su, H.H., Muzumdar, M.D., Luo, L.: Mosaic analysis with double
markers in mice. Cell. 121(3), 479–492 (2005). https://doi.org/10.1016/j.cell.2005.02.012
13. Ali, S.R., Hippenmeyer, S., Saadat, L.V., Luo, L., Weissman, I.L., Ardehali, R.: Existing car-
diomyocytes generate cardiomyocytes at a low rate after birth in mice. Proc. Natl. Acad. Sci.
U. S. A. 111(24), 8850–8855 (2014). https://doi.org/10.1073/pnas.1408233111
14. Weissman, I.L.: Stem cells: units of development, units of regeneration, and units in evolution.
Cell. 100(1), 157–168 (2000). https://doi.org/10.1016/s0092-8674(00)81692-x
15. Liu, C., Sage, J.C., Miller, M.R., Verhaak, R.G., Hippenmeyer, S., Vogel, H., et al.: Mosaic
analysis with double markers reveals tumor cell of origin in glioma. Cell. 146(2), 209–221
(2011). https://doi.org/10.1016/j.cell.2011.06.014
16. Mihalas, A.B., Hevner, R.F.: Clonal analysis reveals laminar fate multipotency and daugh-
ter cell apoptosis of mouse cortical intermediate progenitors. Development. 145(17) (2018).
https://doi.org/10.1242/dev.164335
17. Tasic, B., Miyamichi, K., Hippenmeyer, S., Dani, V.S., Zeng, H., Joo, W., et al.: Extensions
of MADM (mosaic analysis with double markers) in mice. PLoS One. 7(3), e33332 (2012).
https://doi.org/10.1371/journal.pone.0033332
18. Mohamed, T.M.A., Ang, Y.S., Radzinsky, E., Zhou, P., Huang, Y., Elfenbein, A., et al.:
Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regenera-
tion. Cell. 173(1), 104–116 (2018). https://doi.org/10.1016/j.cell.2018.02.014
19. Hippenmeyer, S., Johnson, R.L., Luo, L.: Mosaic analysis with double markers reveals
cell-type-speci c paternal growth dominance. Cell Rep. 3(3), 960–967 (2013). https://doi.
org/10.1016/j.celrep.2013.02.002
20. Laukoter, S., Pauler, F.M., Beattie, R., Amberg, N., Hansen, A.H., Streicher, C., et al.: Cell-
type speci city of genomic imprinting in cerebral cortex. Neuron. 107(6), 1160–1179 (2020).
https://doi.org/10.1016/j.neuron.2020.06.031
21. He, L., Nguyen, N.B., Ardehali, R., Zhou, B.: Heart regeneration by endogenous stem cells and
cardiomyocyte proliferation: controversy, fallacy, and Progress. Circulation. 142(3), 275–291
(2020). https://doi.org/10.1161/CIRCULATIONAHA.119.045566
22. Sereti, K.I., Nguyen, N.B., Kamran, P., Zhao, P., Ranjbarvaziri, S., Park, S., et al.: Analysis of
cardiomyocyte clonal expansion during mouse heart development and injury. Nat. Commun.
9(1), 754 (2018). https://doi.org/10.1038/s41467-018-02891-z
23. Nguyen, N., Fernandez, E., Ding, Y., Hsiai, T., Ardehali, R.: In vivo clonal analysis of car-
diomyocytes. In: Poss, K., Kühn, B. (eds.) Cardiac Regeneration: Methods and Protocols.
Methods in Molecular Biology, vol. 2158, pp. 243–256. Springer (2021)
24. Li, Y., Lv, Z., He, L., Huang, X., Zhang, S., Zhao, H., et al.: Genetic tracing identies early
segregation of the cardiomyocyte and nonmyocyte lineages. Circ. Res. 125(3), 343–355
(2019). https://doi.org/10.1161/CIRCRESAHA.119.315280
25. Wang, Y., Nanda, V., Direnzo, D., Ye, J., Xiao, S., Kojima, Y., et al.: Clonally expanding
smooth muscle cells promote atherosclerosis by escaping efferocytosis and activating the K. Kolluri et al.