Aula 1 - Estática dos Sólidos.pdf...............

CaioMoreira43 1 views 36 slides Sep 25, 2025
Slide 1
Slide 1 of 36
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36

About This Presentation

.....


Slide Content

4
o
bimestre
Aula 1
Física
Estática dos sólidos –Parte 1
Ensino
Médio

●Estática dos sólidos. ●Analisar a condição para que um
corpo material esteja em equilíbrio
em relação a um referencial.

No Antigo Egito, as mastabas eram
utilizadas como túmulos para os faraós. A
engenharia dessas construções
impressiona até hoje, principalmente pela
forma como os tijolos permanecem
empilhados de maneira estável ao longo
dos séculos. Nas próximas aulas, vamos
explorar os princípios básicos que explicam
esse fenômeno. Começaremos com
algumas perguntas:
a)Como se chamam os pares de forças
que garantem a estabilidade dos
blocos?
b)O equilíbrio dos corpos é fundamentado
na 1
a
Lei de Newton. Qual é o princípio
fundamental desta lei?
Uma mastaba egípcia.
Para começar
5 minutos
VIREM E CONVERSEM
© InnerPeaceSeeker/Getty Images

A estática dos sólidos se dedica à análise das condições de equilíbrio tanto de um ponto material
quanto de um corpo extenso. Nesta aula, trataremos, especificamente, do equilíbrio de um ponto
material. Dizemos que um ponto material está em equilíbrio quando está em repouso (equilíbrio
estático) ou em movimento retilíneo uniforme (equilíbrio dinâmico) em relação a um referencial,
ou seja, quando a resultante de todas as forças que atuam sobre ele é nula.
Para compreendermos melhor essa condição, recordaremos alguns conceitos relacionados à
soma de vetores. Sendo assim, considere três forças F
5
, F
6
e F
7
aplicadas a um ponto material P,
conforme a ilustração abaixo:
Equilíbrio do ponto material
Foco no conteúdo
DE OLHO NO MODELO
Produzido pela SEDUC-SP.

A soma vetorial das três forças aplicadas ao ponto material P resultará no vetor força
resultante (F
V
). Veja na imagem abaixo:
Foco no conteúdo
Podemos concluir que:
F
V
= F
5
+ F
6
+ F
7
Equilíbrio do ponto material
DE OLHO NO MODELO
Produzido pela SEDUC-SP.

Há várias maneiras de se determinar o vetor força resultante. Uma abordagem comumente
empregada é o método das projeções, que será apresentado a seguir. Considere, portanto,
duas forças coplanares F
5
e F
6
, aplicadas a um ponto P, conforme ilustrado abaixo:
Foco no conteúdo
Equilíbrio do ponto material
DE OLHO NO MODELO
Produzido pela SEDUC-SP.

Devem ser escolhidos dois eixos
ortogonais, x e y, no plano das forças
aplicadas ao ponto P, de forma que os
ângulos entre cada força e os eixos sejam
conhecidos. Cada um dos vetores (F
5
e F
6
)
é decomposto em suas projeções sobre os
eixos x e y.
O módulo das projeções de F
5
e F
6
é
calculado como:
F
5v
=F
5
cosθ
F
5w
=F
5
senθ
F
6v
=F
6
cosα
F
6w
=− F
6
senα
Decomposição dos vetores F
5
e F
6
.
Produzido pela SEDUC-SP.
Foco no conteúdo
Equilíbrio do ponto material

Efetuando a soma vetorial das
componentes de F
5
e F
6
em cada eixo,
teremos:
F
Vv
= F
5v
+ F
6v
F
Vw
= F
5w
+ F
6w
Onde:

F
Vv
e F
Vw
são as componentes da
força resultante F
V
nos eixos xe y,
respectivamente.
Decomposição dos vetores F
5
e F
6
.
Produzido pela SEDUC-SP.
Foco no conteúdo
Equilíbrio do ponto material

A intensidade (ou módulo) da força
resultante F
V
é calculada utilizando o
Teorema de Pitágoras, aplicando-se às
componentes nos eixos xe y:
F
V
=F
Vv
6
+F
Vw
6
Decomposição do vetor F
V
.
Produzido pela SEDUC-SP.
Foco no conteúdo
Equilíbrio do ponto material

Equilíbrio do ponto material
Para que um ponto material esteja em equilíbrio em relação a um referencial, é necessário
que a resultante das forças que atuam sobre ele seja nula, ou seja:
F
V
= F
5
+ F
6
+ F
7
+F
8
+⋯=0
Geometricamente:
Foco no conteúdo
Utilizamos a regra do
polígonopara
somarmos os vetores
geometricamente.
Como a soma
resultou em uma
figura fechada, a
resultante é nula.
DE OLHO NO MODELO
FICA A DICA
Produzido pela SEDUC-SP. Produzido pela SEDUC-SP.

Pause e responda
Qual é a condição necessária para que um ponto material permaneça
em equilíbrio estático?
Assinale a alternativa correta
A força resultante atuando
sobre ele seja diferente de zero.
A força resultante atuando
sobre ele seja nula.
Sobre este ponto material atuem
apenas duas forças.
O ponto material deve
permanecer em movimento
acelerado.

Pause e responda
Qual é a condição necessária para que um ponto material permaneça
em equilíbrio estático?
Assinale a alternativa correta
A força resultante atuando
sobre ele seja diferente de zero.
A força resultante atuando
sobre ele seja nula.
Sobre este ponto material atuem
apenas duas forças.
O ponto material deve
permanecer em movimento
acelerado.

(ENEM 2019) Slacklineé um esporte no qual o atleta deve se equilibrar e executar manobras
estando sobre uma fita esticada. Para a prática do esporte, as duas extremidades da fita são
fixadas de forma que ela fique a alguns centímetros do solo. Quando uma atleta de massa igual
a 80 kg está exatamente no meio da fita, essa se desloca verticalmente, formando um ângulo
de 10
°
com a horizontal, como esquematizado na figura. Sabe-se que a aceleração da
gravidade é igual a 10 m/s
2
, cos (10
°
) = 0,98 e sen (10
°
) = 0,17.
Na prática
5 minutos
TODO MUNDO ESCREVE
Veja no livro!Atividade 1

B
C
D
E
A
4,0 x 10
2
N
4,7 x 10
3
N
2,4 x 10
3
N
8,0 x 10
2
N
4,1 x 10
2
N
Qual é a força que a fita exerce em cada uma das árvores por causa da presença da
atleta?
Na prática

B
C
D
E
A
4,0 x 10
2
N
4,7 x 10
3
N
2,4 x 10
3
N
8,0 x 10
2
N
4,1 x 10
2
N
Correção:
Na prática
A atleta, nessa situação, considerado um ponto material, encontra-se
em equilíbrio. Sendo assim, a resultante das forças que atuam sobre ele
é nula. Ao decompormos a força de tração no eixo vertical, teremos:
T
1y
+ T
2y
= P
T
1y
= T
2y
= T
y
T
y
+ T
y
= P
2 ⋅T
y
= P, sendo: T
y
= T ⋅sen θ
Portanto: 2 ⋅T ⋅sen θ = P
2 ⋅T ⋅0,17 = 800
0,34 ⋅T = 800
T = 2,4 x 10
3
N
Produzido pela SEDUC-SP.

(UNESP 2010) Um professor de Física pendurou uma pequena esfera, pelo seu centro de
gravidade, ao teto da sala de aula, conforme a figura:
Na prática
5 minutos
TODO MUNDO ESCREVE
Veja no livro!Atividade 2

B
C
D
E
A
5 3
20 3
20
10 3
10
(UNESP 2010) Em um dos fios que sustentavam a esfera, ele acoplou um dinamômetro e
verificou que, com o sistema em equilíbrio, ele marcava 10 N. Qual o valor do peso, em
newtons, da esfera pendurada?
Na prática

B
C
D
E
A
5 3
20 3
20
10 3
10
Correção:
Como o sistema está em equilíbrio, a
força resultante é nula e o polígono
formado pelos vetores é fechado.
F
dinamômetro
= T
2
= 10 N
Do triângulo retângulo, temos:
sen 30°=
G.S.
LMT.
sen 30°=
X
6

T
0,5 =
X
6

T
10 = 0,5 ⋅P
P = 20 N
Na prática

Com base nos conteúdos vistos na aula
de hoje, responda às seguintes
perguntas:
●Qual é a condição necessária para
que um ponto material permaneça
em equilíbrio estático?
●Explique o equilíbrio dos blocos de
sustentação das mastabas, utilizando
o conceito de equilíbrio.
Vista detalhada de uma mastaba.
© InnerPeaceSeeker/Getty Images
Encerramento
5 minutos
VIREM E CONVERSEM

DOCA, R. H.; BISCUOLA, G. J.; VILLAS BÔAS, N. Tópicos de física, v. 1: mecânica. São Paulo:
Saraiva, 2012.
ESCOLA DE ESPECIALISTAS DE AERONÁUTICA (EEAR). Exame de Admissão ao Curso de
Formação de Sargentos da Aeronáutica, 2023. Controle de Tráfego Aéreo, Provas de Língua
Portuguesa, Língua Inglesa, Matemática e Física, Código 96. Disponível em:
https://ingresso.eear.fab.mil.br/SOO/escolaridade/CFS%201%202023/prova_cfs%201%202023_cod_96
_28%2006%202022%2008%2024%2058.pdf . Acesso em: 16 mar. 2025.
INSTITUTO NACIONAL DE ESTUDOS E PESQUISAS EDUCACIONAIS ANÍSIO TEIXEIRA (INEP).
Exame Nacional do Ensino Médio (Enem), 2019. Prova de Ciências da Natureza e suas Tecnologias,
Provade Matemática e suas Tecnologias, 2
o
dia, Caderno 7–Azul. Disponível em: https://www.curso-
objetivo.br/vestibular/resolucao-comentada/enem/2019/2dia/enem2019_2dia_prova_azul.pdf. Acesso
em: 16 mar. 2025.
LEMOV, D. Aula nota 10 3.0: 63 técnicas para melhorar a gestão da sala de aula. Porto Alegre: Penso,
2023.
ROSENSHINE, B. Principles of instruction: research-based strategies that all teachers should know.
American Educator, v. 36, n. 1, Washington, 2012. pp. 12-19. Disponível em:
https://www.aft.org/ae/spring2012. Acesso em: 16 mar. 2025.
Referências

SÃO PAULO (Estado). Secretaria da Educação. Currículo Paulista: etapa Ensino Médio, 2020.
Disponível em: https://efape.educacao.sp.gov.br/curriculopaulista/wp-
content/uploads/2023/02/CURR%C3%8DCULO-PAULISTA-etapa-Ensino-M%C3%A9dio_ISBN.pdf .
Acesso em: 16 mar. 2025.
UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO (UERJ). Vestibular Estadual, 2017. 2
a
fase,
Exame Discursivo, Prova de Física. Disponível em: https://www.vestibular.uerj.br/wp-
content/uploads/2019/03/2017_ED_Fisica.pdf. Acesso em: 16 mar. 2025.
UNIVERSIDADE ESTADUAL PAULISTA (UNESP). Vestibular, 2010. Prova de Conhecimentos Gerais.
Disponível em: https://www.curso-objetivo.br/vestibular/resolucao-
comentada/unesp/2010/1fase/UNESP_2010_1fase_prova.pdf. Acesso em: 16 mar. 2025.
Identidade visual: imagens © Getty Images.
Referências

A seguir, você encontra uma seleção de exercícios extras,
que ampliam as possibilidades de prática,deretomada e
aprofundamento do conteúdo estudado.
Aprofundando

(UERJ 2017 –Adaptada) No esquema, está representado um bloco de massa igual a 100 kg
em equilíbrio estático. Determine, em newtons, a tração no fio ideal AB. Dados g = 10 m/s²,
sen 30
°
=
5
6
e cos 30
°
=
7
6
Aprofundando
Veja no livro!

Representaremos as forças atuantes, conforme a condição de equilíbrio de um ponto
material. Chamaremos F
1
como a força no fio BC, Pcomo a força peso do bloco e Tcomo a
tração no fio AB.
Correção:
Aprofundando
Produzido pela SEDUC-SP.

A força ??????⃗
5
pode ser decomposta em ??????⃗
5?
e ??????⃗
5?
, como apresentado no diagrama abaixo:
Correção:
Aprofundando
Produzido pela SEDUC-SP.

A tração ??????pode ser escrita, pela decomposição vetorial, por meio da relação:
T = F
5v
→T = F
5
⋅cos 30°
No entanto, é necessário obter o valor de F
5
. Como sabemos a massa do bloco, temos que o
módulo da força Pé igual a 1000 N. Então, escrevemos:
P =F
5w
→P = F
5
⋅ sen 30°
F
5
=
T
qcl 74°
=
5444
5/6
=2000 N
Correção:
Aprofundando

Voltando ao cálculo de T :
T = F
5
⋅cos 30°
T = 2000
7
6
T = ???????????????????????? ?????? ??????
Correção:
Aprofundando

Para professores

Slide 2
Habilidade:
(EM13CNT204) Elaborar explicações, previsões e cálculos a respeito dos movimentos de
objetos na Terra, no Sistema Solar e no Universo, com base na análise das interações
gravitacionais, com ou sem o uso de dispositivos e aplicativos digitais (como softwares de
simulação e de realidade virtual, entre outros). (SÃO PAULO, 2020)

Slide 3
Tempo: 2 a 5 minutos.
Dinâmica de condução:Apresente as perguntas aos alunos e peça que as discutam em
duplas ou em grupos.
Expectativas de respostas: Professor(a), auxilie os alunos a relembrar os temas de
mecânica explorados anteriormente. Espera-se que os alunos respondam que o par de
forças atuantes nesta situação é o par ação-reação. A primeira Lei de Newton enuncia o
princípio da inércia, em que a força resultante em um corpo é nula.

Slide 11
Tempo: 2 a 3 minutos.
Dinâmica de condução:Apresente a questão aos alunos como forma de fixar o conteúdo
abordado nas seções anteriores. Em seguida, apresente a resolução.
Expectativas de respostas: Espera-se que os alunos respondam que a condição para que
o ponto material se mantenha em equilíbrio é a de que as forças resultantes sejam nulas.

Slide 13
Tempo: 5 a 10 minutos.
Dinâmica de condução:Apresente o exercício aos alunos como forma de fixar o conteúdo
abordado nas seções anteriores. Em seguida, apresente a resolução.
Expectativas de respostas: Apresentação das etapas de resolução do problema.

Slide 16
Tempo: 5 a 10 minutos.
Dinâmica de condução:Apresente o exercício aos alunos como forma de fixar o conteúdo
abordado nas seções anteriores. Em seguida, apresente a resolução.
Expectativas de respostas: Apresentação das etapas de resolução do problema.

Slide 19
Tempo: 3 a 5 minutos.
Dinâmica de condução:Proponha a atividade apresentada e oriente os alunos a
responder com suas próprias palavras.
Expectativas de respostas: Espera-se que ao final da aula os alunos identifiquem que a
condição para o equilíbrio do ponto material é a de que as forças resultantes sejam nulas.
Uma explicação, segundo o princípio de equilíbrio, é a de que os pares de força ação-
reação atuantes nos blocos se anulam; dessa forma, ao apoiar um bloco no outro, ele
permanecerá em equilíbrio.

Slide 23
Tempo: 5 a 10 minutos.
Dinâmica de condução:Apresente a questão de vestibular a seguir como forma de
aprofundar os conhecimentos. Em seguida, apresente a resolução.
Expectativas de respostas: É esperado que os alunos sejam capazes de relacionar a
questão com os conceitos apresentados no decorrer da aula.
Tags