BAHAN AJAR MODUL pp_pertdkuadrat.ppt

ssuser614d12 0 views 37 slides Oct 06, 2025
Slide 1
Slide 1 of 37
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37

About This Presentation

MATH


Slide Content

The Chinese University of
Hong Kong
EDD 5161R99EDD 5161R99
Group ProjectGroup Project
Chan Kwok Ping (S98118370)
Seto Fung Mei (S98038260)

Form 5 --- lecturing

Learning PrerequisitesLearning Prerequisites::
Sketching the graph of the corresponding
quadratic expressions.
Method of factorization.
Basic knowledge of Rectangular coordinate plane.
Students will be able to solve the quadratic
inequalities by graphical method.
Represent the solutions graphically.
Aims and Objectives:Aims and Objectives:

ContentContent
History (1) Sign of inequality
(2) Godfrey Harold Hardy
Inequality & Coordinate Plane
Solving Quadratic Inequality by Method of Graph
Sketching
Exercise

Method of
Graph sketching

Solve the quadratic inequality Solve the quadratic inequality
xx
2 2
– 5– 5x x + 6 > 0 graphically.+ 6 > 0 graphically.

Procedures:
Step (2):
we have y = (x – 2)(x – 3) ,
i.e. y = 0, when x = 2 or x = 3.
Factorize x
2
– 5x + 6,
The corresponding quadratic function is
y = x
2
– 5x + 6
Sketch the graph of y = x
2
– 5x + 6.
Step (1):
Step (3):
Step (4): Find the solution from the graph.

Sketch the graph Sketch the graph y =y = xx
2 2
– 5– 5x x + 6 .+ 6 .
x
y
0
6 5
2
  x x y
What is the solution of What is the solution of xx
2 2
– 5– 5x x + 6 > 0 + 6 > 0 ??
y = (x – 2)(x – 3) ,
 y = 0, when x = 2 or x = 3.

2 3

above the x-axis.so we choose the portion
x
y
0
We need to solve x
2
– 5x + 6 > 0,
The portion of the
graph above the x-axis
represents y > 0
(i.e. x
2
– 5x + 6 > 0)
The portion of the
graph below the x-axis
represents y < 0
(i.e. x
2
– 5x + 6 < 0)
2 3

x
y
0
When x < 2x < 2,
the curve is
above the x-axis
i.e., y > 0
x
2
– 5x + 6 > 0
When x > 3x > 3,
the curve is
above the x-axis
i.e., y > 0
x
2
– 5x + 6 > 0
2 3
65
2
 xxy

From the sketch, we obtain the solution

3xor2x

Graphical Solution:
0 2 3

Solve the quadratic inequality Solve the quadratic inequality
xx
2 2
– 5– 5xx + 6 < 0 graphically. + 6 < 0 graphically.
Same method as example 1 !!!Same method as example 1 !!!

x
y
0
6 5
2
  x x y
When 2 < x < 32 < x < 3,
the curve is
below the x-axis
i.e., y < 0
x
2
– 5x + 6 < 0
2 3

From the sketch, we obtain the solution

2 < x < 3

0 2 3
Graphical Solution:

Solve
Exercise 1:
.012 xx
x < –2 or x > 1
Answer:
x
y
0
1 2  x x y
0–2 1
Find the x-intercepts of the Find the x-intercepts of the
curve:curve:
(x + 2)(x – 1)=0(x + 2)(x – 1)=0
x = –2 or x = 1x = –2 or x = 1
–2 1

Solve
Exercise 2:
.012
2
xx
–3 < x < 4
Answer:
x
y
0
12
2
  x x y
0–3 4
Find the x-intercepts of the curve:Find the x-intercepts of the curve:
xx
22
– x – 12 = 0 – x – 12 = 0
(x + 3)(x – 4)=0(x + 3)(x – 4)=0
x = –3 or x = 4x = –3 or x = 4
–3 4

Solve
Exercise 3:

.10
7
22

xx
–7 < x < 5
Solution:
x
y
0
35 2
2
  x x y
0–7 5
Find the x-intercepts of the Find the x-intercepts of the
curve:curve:
(x + 7)(x – 5)=0(x + 7)(x – 5)=0
x = –7 or x = 5x = –7 or x = 5

10
7
22

xx
27102
2
xx
0352
2
xx
057 xx
–7 5

Solve
Exercise 4:
.3233  xxx
Solution:
x
y
0
35 2
2
  x x y
Find the x-intercepts of the Find the x-intercepts of the
curve:curve:
(x + 3)(3x – 2)=0(x + 3)(3x – 2)=0
x = –3 or x = 2/3x = –3 or x = 2/3
3233  xxx
03233  xxx
 0233  xx
–3 2
3
0–3 2
3
x  –3 or x 
2/3

y
x
originO
x - axis
x P( x , y )
The horizontal number line
is called the x-axis.
The vertical number line
is called the y-axis.
y - axis
The point of intersection of
the axes is called the origin O.
y
Any point P on the plane is described by
two numbers x and y called coordinates.

5
4
3
2
1
-4 -3 -2 -1 0 1 2 3 4

-1
-2
-3
-4
x
y
( 3, 1 )A
( 4, 3 )B
( 1, 2 )C
( 2, 5 )D
What are the sign of the x- and
y-coordinates of A,B,C and D?
(+,+)

5
4
3
2
1
-4 -3 -2 -1 0 1 2 3 4

-1
-2
-3
-4
x
y
(+,+)
E(4, 4 )
(3, 1 )F
(1, 2 )G
(2, 3 )H
What are the sign of the x- and
y-coordinates of E,F,G and H?
(,+)

5
4
3
2
1
-4 -3 -2 -1 0 1 2 3 4

-1
-2
-3
-4
x
y
(,+) (+,+)
I(4,2 )
(3, 5 )L
(1, 3)K
(2,1)J
What are the sign of the x- and
y-coordinates of I,J,K and L?
(,)

5
4
3
2
1
-4 -3 -2 -1 0 1 2 3 4

-1
-2
-3
-4
x
y
(,+) (+,+)
(,)
What are the sign of the x- and
y-coordinates of M,N,P and Q?
( 3,5 )Q
( 4,3 )
( 1,4 )M
( 2,1 )N
P (+,)

5
4
3
2
1
-4 -3 -2 -1 0 1 2 3 4

-1
-2
-3
-4
x
y
(,+) (+,+)
(,) (+,)
Shade the part that y>0y>0 (i.e.”++”).

5
4
3
2
1
-4 -3 -2 -1 0 1 2 3 4

-1
-2
-3
-4
x
y
(,+) (+,+)
(,) (+,)
Shade the part that y<0y<0 (i.e.””).

5
4
3
2
1
-4 -3 -2 -1 0 1 2 3 4

-1
-2
-3
-4
x
y
(,+) (+,+)
(,) (+,)
Shade the part that x>0x>0 (i.e.”++”).

5
4
3
2
1
-4 -3 -2 -1 0 1 2 3 4

-1
-2
-3
-4
x
y
(,+) (+,+)
(,) (+,)
Shade the part that x<0x<0 (i.e.””).

5
4
3
2
1
-4 -3 -2 -1 0 1 2 3 4

-1
-2
-3
-4
x
y
Shade the part that x<x<11.

5
4
3
2
1
-4 -3 -2 -1 0 1 2 3 4

-1
-2
-3
-4
x
y
Shade the part that x<2x<2.

5
4
3
2
1
-4 -3 -2 -1 0 1 2 3 4

-1
-2
-3
-4
x
y
Shade the part that x>1x>1.

5
4
3
2
1
-4 -3 -2 -1 0 1 2 3 4

-1
-2
-3
-4
x
y
Shade the part that 2<x<12<x<1.

5
4
3
2
1
-4 -3 -2 -1 0 1 2 3 4

-1
-2
-3
-4
x
y
Shade the part that 3<x<23<x<2.

5
4
3
2
1
-4 -3 -2 -1 0 1 2 3 4

-1
-2
-3
-4
x
y
Shade the part that xx<<2 or x>12 or x>1.

5
4
3
2
1
-4 -3 -2 -1 0 1 2 3 4

-1
-2
-3
-4
x
y
Shade the part that xx<<1 or x>41 or x>4.