2nd
July
,
U
:
LectureI
Steps
:
1)MassBalances
,
EnergyBalances
2)Equipmentreq
.
For
that
pot(vessel)
[VesselDesign
3
,
sing
thevessel
3)HazardConsiderations
"¥
Spillage
Y
IncorporateFactor
into
Design
Thedesign
exercise
will
use
lotsof
thumbrules
.
Sequenceofprocedureswillbe
imp
,
no
needtorememberdesigneq's
Remember
the
procedureforrussel
design
Easy
course
if
systematic
approach
.
HeatExchanger,
Datin
Column
it
e
Only
CourseContents
:3-6
Lectures
:
MBEBalances
↑
VesselDengn
-
-
HeatExchanger
o
o
-aDistillationColumnDesign
/
ProcessSafetyDesign
S
Process
Validation
flowcharts
,
ProcessFlowDiagram
:
Emp
TypesofFlowcharts/Diagrams
? streamsElequipments
->
screen
--
Mixer
s
Filter-
labelledbut
?
↑
no
ideaabout
>
Tank ?
-
mass
(quantivesrea.)
->
energyrea
->
enter;equipment
duxillary
equipments
O
+
Quersize
likeconveyerbetts
C
-
Undersize
->
processinstrumentation
automation
,
controldevices
usually
,
20
%
insculumin
anerobicfermentation
Upstream Production
Mi M2 My
M6main
->
Screen
--
Dryer-
Tank
10
,
000L
↓
↓
↓
↓
M3 Ms M7
Mi
=
M2
+M3
WorkingVol
=
6000L
M2
=
My
+M3
f
My
=
M6
+
M7 InoculumVol
=
0
.
2X6000L
=
1200L
or
Mi
=
M3
+
Ms
+
M7
+MG(Input-OutputModel)
↓
solvent/liquid/allowsfastermovement
offiltrate
5)lessretentionoffiltratein
the
filtercake)
In
>
Filter
>
Filter
cake
sturry
(Rawmaterial)
↓
!
Typical
schemeof
a
continuousWe
d
Filtrate
feltration
unit
process
.
·
materused
as
solvent
in
any
proces
,heat capareally
i
a
so
,
sequential
separationof
S-l
.
Slurry
-Filtration-wetCake-Dryer-Dry
cake
Extraction
:
Liquid-liquid
separation
(based
on
misubility)
Acetone
Water
(mix)
=
Toluene
lorganic
A
+
B
solventL
->
& So
Raffinate
Sigued
Meture-
A
+
B L
+
A
(Process
Liquid)
->
Extract(desired
pat
in
solvent
settles
ofheaverA
:
distributionfactors
%
A
is
more
miscible
un
A
,
Allwill
behigher
eg.AntibioticslikePenicillin
can
beextractedby1-1separation
Distillation
:
1-1
separation(based
on
valatility)
steam
(7)
extractingenergy
↑
-
>
more
volatilecomponent
M
Rebater
↑
-
IVIzes
volatilecomponent)
Steamfeed
T feed
·
AdsorptionColumn
:
S-l
separation
or
LiquidMeture(A
+
B)
Similar
schemefor
oCDesorption
"P
Spent
zand(B)
Adsorption
of ↑
B
directionreversed
in
case
of
gases
Gases
.T
eg
.Separating02
+
N2
nextureusingPSA
(PressureSwingAdsorption)
:
-
↑
(A
+
B)
stripping
&
feedsolvent..
- ↑
↑
-
A
isbeingstripped
outusing
L
mi
-
↑
+
A
A
+
B
Gfeedline
QuesMix
2streamsof
sucrose
sol'swithdiff
come.
Feedshaving
mass
fracofsucrose
ofOh
Feed2
"
Wewant100kG
sucrose
so
with0
.
3mas
fraeof
sucrose
.
CalcratioofFeed
1&2fordesired
F
,
(0
.
1)
Song
>
Fout
->
100kg
=
30kg
sucrose
Song
Fu
10
.
3)
RatioofF2toF2
=
1
:
/
50x(0
.
1)
+
50x10
.
3)
=
3
+25
=
30kgin
100
kg
sokg/h
=
0
.
3mas
fraction
~0
.
GkgAlleg
G9RgA/KUORY
-
OhgBlk
-
↑
Gorg/n uug/h&
-> mass
flow
rate
?
a
KgAIng
ausin
"
composition? b
kgB/
kg
0
.
5KgAlkg
------
0
.
5kg
Blkg
30kg/h
0
.
3
kgA/leg
everall
mass
balance
:
100+
30-40-30
0
.
7kgB/leg
-
x
=
0
=>
a
=
60kg/h
overall
comp
.
Balance
:
A
:
50+9
-
36-18
-
an
=
0 :outputstream
59
-
54
=
aX60
5
=
60 a 60kgth
a
=
%
=
365ugin
A
35kg/hB
Now
,
componentstream
①&
composition
B
:
50
+
21
-
4
-
12
-
bx
=
0
71
-
16
=
60b
55
=
60b
=
b
=
1
22
Eth
August
Enzyme
or
Biomas
catalyse
A
+
B
->
P
+
BP
aCgH1206
+
bNM3
+
cO2
ZdCuHyOz
NoteCa
,
My
,
Oz
,
Ns
,
+
fCO2
+
gHz8
in
a
celllikeE
.
coli
,
95
%
iscontributedbyCHON&5
%
by
otherelements
actualMW
=
Was
,
wash
,
centrifugethebromass
,
thendry
it
.
-
murobalance
->
accurateweight
(say
2
.
1
..
g)
#
Biomass
+
On t
&
ICHON)
gas
mixture
afterburning
O+
residual02
TCDThermal
Conductuity
Detectortomeasure
cone
ofNO
↓
NOz
&
marked
(removed
#
CO2
,
128
,
No
,
all
are
comingfrom
BM
UtofBiomass-(molesobtained
*
Molweightof
H/C/N]
=
cutof
O
in
BM
Toget
100%MWofBM
weconsider
5-10
%MWcontributedbymicronutrients
totheremaining90-93
%
obtainedbymicronutrients/
elements
landthenbalancethe
ear)
5
%
Ashcontent
*Excess&LuntingReactant
->
Reactor
Et
ResidualReactant
↓
ResidualReactant
?
-
X
=
Reactant
in-Reactant
out
=
Conversionfactor
Reactantin
to
improve
processeconomy
weX&
trytobringitclose
to
1.
SinglePath
System/Mult
Path
path
:
howmanytimes
areactorstream
ismoving
thruthesystem
?
ResidenceTime
SemiBatch/Fed
Batch
->
ConstVolume
(add
some
,
removesome
,
but
not
continuously)
->
VariableVolume
BatchTime(tb)
Residencetime(T)
(Batch
,
Semi-Batch)
CSTRS
:
BMisshearsensitive
,
we
can't
Heupinabove
a
certainlevel
,
whichmight
not
be
enoughto
keepBMfromsettling
so
sold-lea
separationwill
occur. -
BMsettles
->weremoveit
4)
put
it
for
recycle
->
--
- interacting
-
streams
purge/discardedBM
↓
non-interacting
streams
#Selectivity-rateof
desiredpt
a
pat
"¥
Instantaneous
anystream
,
calc.rates
"¥
performance
of
individual
process
units
OverallSelectivity
rateoof
desered/undesired
in
the
final
stream
ProcessDiagrams
->
ThemostprimitiveProcess
Diagram
will
haveinput/output
streams
representsprocess
infoconuselybyprowdingallrelevantdata
->
Dataomittedherein
thediagramwill
bepresent
in
theprocesssheet
.
TypesofProcessDiagram
:
1Input
/Output
Diagrams
boxes
2)FunctionalDiagram/flowsheet/chart)
definesfunctionsofindividual
units
3)Operations
Diagram(each
streamhasnumericalvalues
defined
,
whatgoing
standardsymbolswhere)
detaileddescriptionoffloorlines
·
insteadofboxes
unitehave
symbols
:filters
,
reactors
,
pumps
,
heatexchanger
,
etc
all
not
6
-
-
"
=>
-
heatexchanger pump
reactor
-
fetter
distillation
adsorption
unit
unit
4)
Process
InstrumentationDiagram
(Pnl)
/ControlLoops( P&IProcus&InstrumentationDiagram
ControlUnit
:
takes
feedback
fromthe
reactor
intermsofelectricalsignal
measuringsay
,
Do
value
.
ComparesttothesetPointvalue
,
E
takes
an
actionwhenthere's
a
differencebiw
Trueyield
a
CzHzOH
+
bO2-CHzCOOH+at2O
Ye
=
Males
ofActprocess Y
=
&frombalancea
storchometric
ea
usually
<
Yobs
whenonly
one
substratepresent
sometimes
,
when
2subs
①Batchmixing
process
200kgof10
%
wi
Methanol-watersolutionismusedwith100kgof
70
%
wiMethanol-watersolin
a
Batchmixingtank
.
Whatisthe
final
ant
I
compositionofthe
solution?
40
%
of200ng+70%%
of100kg
=
80+
70
=
150kg
Methanol
in
300kgsolution
=
50
%
w/wMethanol-
water
sol
(300ng)
Q1000kg
,
batchofpharmaceuticalpowderisdriedin
a
freezedryingoperation.
5%win
moisture
afterdrying
,
90%
ofthewater
is
removed
-
Calc.
Fina
batchcomposition
I cut
ofmoisture
removed
.
5
%Winwater
in
1000
kg=50kgwater
↓
90%
of
this
removed>
45kgremoved
↓
Skyremaining
5kgmosture
in
950hqpowder
=
-X100
=
0
.
52%
955
&
Gasleaving
a
fermenterat1atm
Pressureand
25temphasthefollowing
composition.
78
.
2%
N2
19
.2
%Oz
2
.
6%CO2
Calculatemass%offermenteroff-gas
.
If
you
have
a
CO2
absorptiontank
,
thenwhatwill
bethe
mass
ofN2El
②
in
theoutletstreamofabsorption
unit?
let
total
molesbes
0
.
7821
moleN2
~0
.
782xx289
=
20
.
384x&Total
=
27
.
6720g
0
.
192nmoles02
->
0
.
192x
x
329
=
6
.
144xG
I
0
.
026
x
molesCO2
->0
.
026rX44g
=
1
.
144xg
·
allCO2
is
absorbed
:
assy
assuming
new
total
mass
=
20
.
384
nNa
:
38x100
=
13
.
6
I
02
Max 100
=
22
.
20
%
newmass%:
CO2
:M
X100
=
U
.
13
%
Nux
. .
CsHi20s
+
aO2
+
bNHs
>
Cy.uH7
.
3 01
.
2
No
.
86
S
X
+
dH20
+
eCO2
conventionally
,
yieldsfor
gaseous
products
:
mol/mal
yields
forsolide/bq.
products
:
glg
OGiven
,
2/3rdofGlucose
'C'
goes
toBroman
Calculate
a
,
b
,
c
,
d
,
e
and
Yxs
,
YY/02
If
BMcontains
10%
ash
,
findits
actualMW
.
W
(obtainedfor
a
stoichiometric
balances
:
C-balance
:
6
=
4
.
4c
+e
:
Erdof
C
fromGlu
-
B
=>1
.
4c
=
4
=c
==
and
e
=
2
H-Balance
:
12
+
3b
=
7
+
ad
2d
-
3b
=
5
.
36
-
D
Obalance
:
6
+2a
= 1
.
2
+
d
+
2e
↑
6
-
1
-
4
=
d
-
2a
3
.
07
0
.
909
=
d
-
2a
-
②
2a
=
3
.
07
-
0
.
909
-
=
1
.
08
AvailableelectronbalanceE
Degrees
ofReduction
specific
toCcontainingempoe
+
4
+
1
-
2
CgHi20s
+
aO2
+
bNHs
-
>
Cy
.
u
H7
.
3 01
.
2
No
.
86
↓
max
oudiedstate
Ginammonia
120
+
e
CO2
+
y
-
4
↓
a
.
einc
=
4
V
=
available-percarbonatom
:
CH1206
=
@
+
2X1
+
6X-2
=
G
=(degreeof
reduction
a
->
0(NH3]
->
O
>
CwHnOyNz
+
aO2
+
bHgOuNicCHrOBNs
+
ACO2
+
substrate N-source
Biomass↓
eH2O
+
fCjHuOeNm
W
↓
of
1
.
organicpat
Vs
=
4w
+u
-
2y
-
3z GeneralBiochemicalRxn
VB
=
u+x
-
2B
-
38
-
ta
C
Availablee-balance
:
wUs-Ya
=
cVB
+
fjUp
TheoreticalOuygenDemand
a
=
wVs-cVB-fjUp
of
NH3istheN-source U
ManyfacultativeorganismsproduceCHy(methane)from
C
inlow
EN2O fromN
O2
conc.
CHy-18X
greenhouse
potentialthanCO2
N20
->
270x
Also
,
Ratof
available
e inreactant
i
wVs
-
Ya
=
1
CVB
+
fjUp
Theoretical
MaxPotYield(considerBM&02Fraction
zero)
frax
=
WUs
:
Up
Butinreality
,
some
CO2 I
water
will
be
produced(someO2willbe
consumed)
Oues)BiomassconvertsGlu
->
CO2
+
120
al
metabolic
rxnof
Gluis
the
common
resperation
rxnin
presence
of
O2
.
Metabolic
vexn
for
glucose
Thecell
compositionis
CH200
.
55
No
.
2
+
5/ash
.
Yield
of
BMfromsubstrateis
0
.
5919
If
notmentioned
theoreticalobserved
NH3
as
Nitrogen
source
CalculateO2demandwithgrowthElcompare
withdemandwithoutgrowth
.im ca
justresperation
CoMizO6
+
aO2
+
bNH3
e
cCH200
.
35
No
.
2
+
dCO2teH2O
-180gsubstrate 12
+
2+
16(0
.
55)
+
14(0
.
2)
"¥
gogBM
=
236
=
26
.
9glmoa
=>26
.
9xc
=
90 VB
=
y
+
2
-
2(0
-
55)
-
3(02)
=
4
.
3
c
=
3
.
34
TheoreticalO2demandwithgrowth
a
=
ebe
Upo
U
a
=
24
-
14
.
362
=
2
.
4095mal
Y
TheoreticalO2demandw/Ogrowth
/just
respiration(
CoH1206
+
602
->
6CO2
+
6120
↓
a
=
6
mal
8thAugust
-
usually
-
Stainlesssteel
Iwithglasslining
or
highgradeforinertness
316L
-
Production
vessel
woodenvesselsdeliberatelyused
inbrabies
toenhancetaste
,
aroma
disposablereactors
can
alsobeused
eg
forMammalian
cellproduction.
(but
very
expensive
airinlet
tempbrobe
DOProbl
PH
->
HeadPlate
-
rubbergasket
almostall
- accessoriesimpellers
are
placed
on
thehead
plate
Callholes
on
headplateto
Li
not
create000
,
00
-
S
unnecessarypressure
on
reactorwalls)
GPressureunbalance
toarrest
deflectionof
a
longshaftrodintall
reactors
,
a
ballbearingis
addedatthebottom
.
but
unnecessary
shaftweight(in
theemptyworkingvolheadspace
creates
load
on
themotor
.
..
forlargescalesystems
:
BOTTOMmountedshafts
arepreferred
.
with
mechanicalsealtopreventleakage
-largescale
-
designconsiderations noglassjacket(uneven/draste
change
in
tempblu
instead,
&steam
coil
or
electric
la
en
reactor
us
jacket
can
create
thermal
B
000,
00
-
S
heaterstress
that
breakstheglass
Jacket(
·
drain
or
"¥
Bottommountedor
coolantcoil
discardvalue
w
mech.
seal
PH
,
tempEDOsensors
atmultiplelocations
Log
mean
DO
emp
Do
-
one
atthetop
,
one
DO
?
largescalereactoratthebottom
,
cm
their
log
mean
diff.
Pressureat
PPh
:very
tallliquid
height
Temp
·
)
pro
so
Dowill
besignificantlyaffected
Control
:
log
mean
Dowillbecalculated.
signal
receiver
<
comparator
-
actuator/activator
DO
control
actuatoractivateseither
:
increase
motorspeed
orflow
rateofO2thrusparger
pHcontrol
actuatoractivates
either
:
alkal
pump
it
pump
Tempcontralactuatoractivateseither
:
heatingcoil
orcoolingjacket
depending
on
themag/sign
ofthe
error
value
Drawafunctionaldiagramfor
YeastProductionin
a
large
scalefermenter
:
eachstreamis
&)
Deniallin
welldefinedwith
numbers
Efunction
Inoculum
-
Offgas
Clarfer-
>
Sterilizer
-
1
fermenter
Brothfilter
filtrate
->
unit
names
Slurry
->mass
streams
Molasses ↓ labelled
↑ Biomass
->
energy
can
be
Af omitted
Now
,
convertthe
functionaldiagramto
an
OperationalDiagram
"¥
mass
Elenergy
inputsspecified
numerically?
Inoculum
-
Affgas
/min
Clarfer-
>
Sterilizer
-
fermenter
brothfilter
filtrate
1 orSlurry
Malaseslgth regin
↓
↑ Biomass
Air4/min
Youshould
beableto
make
FunctionalDiagrams
&Operational
wirBiomas
usgiven
ofeach
unit=90%, $
2tonnesof40%.
conc
Slurry
needstobeeg
f Spreparedperday
,
make
an
operationaldiagramfor
thisprocess
ofyeart
&functional production
.
12thAugust
Processflowsheet
is
Itspresentationmustbeaccurate
,
comprehensive
a
complete
similar
to
a
logical
diagram
.
BlockDiagramis
thesimplestformofrepresentationof
a
processwhereeach
blockrepresents
a
single
pieceofequipment
Incertain
cases
,
a
singleblock
canbeusedtodescribe
a
complete
operational
stage
.
Usefulfor
representing
simple
processes
.
Butforcomplex
processes
,
itsutilityis
limited.
III
OperationalDiagram/Pictorial
detailed
flow
chetudfordesign
operationwhere
up
drawn
s
BS1553
-or
ANST/AmericanNationalStandardInstitute)
British
Standard
for
set
of
symbols
-
-
-
-
L
-
C
O
weight
ElectricalLoadingSpray Rotary
G
devicedevice device device movement
6
↑
H
Boundary
zine-
Stirring
Discharge
to
Equipment
device AtmosphereBranch
or
3
- -
I =
HE
------
------
T
-------
------
+S
~ ~
>
Pressure TrayColumn
↓ Vessel
Shell
&TubeHE
Fluch
- Contact
a
=
#
1x
E
->
-
-
It
/
-=
~
-
T
↓
↓ Absorption
simplecolumn Russel
withpackedbed
representation
-
S
a ----
streame
information
in
boxes
y
compulsory/mandatory
+
optionalunfo
one
typeofduignpractice
anothertypeofdengnpractice
:
2
-1
S----
y
12345
E
EssentialInformation OptionalInfo
·
StreamComposition
Mass
·
Malar%Composition
·
FlowRateof
eachcomponent(mostlyrg1h)
·
PhysicalPropertydata
Oor wocanty
,
I
,
surface
tension
StreamComposition
as
mightfraction
·
StreamEnthalpy
·
TotalStreamFlowRate
(mostly
Mass
flow
Rate
kg/h)StreamName
StreamTemperature
·
StreamOperatingPressure/Required
OperatingPressure
#
Whilegivingphysical
propertydata
,
we
report
mean
valuesofphysicalproperties
StandardPractices
indrawing
:
2.
Equipmentshould
bedrawnapproximatelytoscale
2
.
Principal
Equipment(usuallyreactor)should
bedrawn
in
itscorrectposition
la
proportionalityfactorforsizeshould
be
followed
across
equipments)
3.Connectorsto
beusedbluseparatesheets
1000-
lon
next
page) 10
markedproperlywithhighprecision
E
basiccalculationshouldshowproper
mass
&energybalances(accurate)
Eltimedependentparametershould
be
rational
&
common
foralloperatinglines.
similaruntconventionsacrosssupplylines
,
backedby
proper
rationale
assumptionsshouldbelisted
atthebottomof
the
table
.
->
for
continuousoperation
,
Imaynotbementored(can
be
calculated
~
butforBatchoperation
,
to
mustbementionedatthebottom/
in
thetable
->
servicewhitesmaynotbedescribed
in
the
main
sheet
-
Symbolsforthemeg
SUI
can
beexplained
in
a
separatesheet
.
Abbreviations
forSymbols
:
Reactor
-
R
HeatExchanger
-
HE
Column
-
C
Felter-F
uncommon
abbreviations
can
beexplainedatthebottomofthesheet
.
follow
theclassandpracticeregularly
.
14thAugust2024
Flowsheet
calculations
Streamflowsandcompositioncalculatedfrommaterialbalance&diff
designequs
obtainedfrom
the
process&equipmentdesignconstraints
②typesofdeugnconstraints
:
externalEinternal
designconstraints
Withinexternalconstraints
we
have
·
potspecifications
,
safety
considerations
affectdegn
nations
->
greennorms,
effluent"
(
000
effluentis
environmentallysafeIegproducing
Penicillin G
outofallotherpenicillins
directlylinkedtoproductionprocess
-Withininternal
constraints
:
-
process
stoichiometry
-
exnconversions
I
yeeld
-
chemicalequilibria
-
Physical
"
-
energybalanceconstraints
Elgenerallimitations
on
equipmentdesign
->
authoritiesaudit
process
plants
[GMOnorms)
O
external
constraintsneedtobedealt
with
even
thetheymaynotaffectthepot
yeld/
qualitydirectlybut
whothe
process
maynotbe
allowedtobesetup
effluenttreatmentmayneedtreatment&equipments
willneedtobedesigned
orrecyling
leventho
no
directlinkoftheeffluentto
productioncapacity)
more
more
constrainespopupateachscale-upstep
eg
.
mass
transfer
,
heattransferconstraints
selection
ofparameters/crucial
us
auxillary
weakly
dependent
Strongly
dependentparamete
equipmentde
aparameters
or
streams
are
the
ones
associatedwith
equipmentdesignwhose
performancecanbe
assumed
,
or
approximatedw/oentroducing
ugnificant
error
in
theflow
sheet
Geg
.
assumingdensityfor
dilutea
solutionsto
beclose
to
thatofwater
:
assumptions
inP
of
liquidthat'sunchanging
won'tbe
problematic
Calendaryear
us
ProductionYear
I
calendaryear
-
dauntime
operationaldays
,
operationalhours
Capacity
per
hourI
alculatedfromhere
/flow
rates
etc)
some
unplannedshutdownsmaybe
accountedforin
a
contigencymargin
C
(emergency/contingencyfactor
CapitalDepreciation
Payingyour
Expenditure
inInvestmentemployees
evenCapital
on
unproducturedays
:.
Bare
minimumdowntime
,
only
what
isrequiredfor
maintenance
.
yield
or
molt
per eg
overall
50%
yield
&paper
molRawmaterial
=>
forevery1kgpot
,
2kg
raw
materialneeded
alsocalledscale-upfactor?
scalingfactor
scalingfactor
canbe
usedto
estimate
raw
materialrequirementfor
scale-up
or
scale-down
Eachscaleneedstobe
optimisedseparately
El
a
realisticvalueforyieldiscalculated
say,
atlabscale toget
10
,
000kg
antibiotic?
20
,
000kgraw
material
zkg
raw
materi
aa
->
"¥
,
10
,
000ng
antibiotic
0
.
5 kg/kg
yeld
say
now
,
0
.
4
ge
optimise
usuallyyield
goesdownasme
scale
up
BUT
largerscalesystems
can
becontrolled
betterwithcontrolsystems
C5)
y
thepot
is
favored
ina
controlledsituationthat
canbebetteroptimised
at
a
larger
scalethenthat
might
givehigheryield
egproductionof
ETOHby
a
microderophile
easier
in
largerscalewhere
low
DO
can
bebetter
controlledrelate
toshaes
a
Softwares
:
ASDEgoodformakingflow
sheets
Chemdraw,
P&IDiagram
:
Piping&InstrumentationDiagram
criteriaforselectingpiping
material(costlyinvestment
·
mechanicalstrength
·
chemicalproperties(shouldbe
inert
Wi
easy
maintenance
·
typical
case
of
flowlines
so
sedimentation
,
scaleformation
,
frictionallossshould
beminimumtoreducepumpingcasts
pumps
,
values
,
otheraccessoriestocontrolflow
:
instrumentation
a
P
&IDiagramshouldhave
:
all
process
equipmentidentifiedby
an
equipmentnumber
,
and
equipment
drawnmustbe
roughlyin
proper
locationof
nozzles
,
values
,
pumps
shouldbeshown
000allpipesshouldbe
identifiedby
a
specificlinenumber
O
-
o
Repesize
,
materialofconstructionEl
diff.accessoriesofpipes
shouldbe
oO
undicated
(union
,
elbow
,
T/Yjoints
,
sockets
T
Jointhassuddendirectionchange
(909
-
max
pressuredrop
-
chancesofprecipitationofhighwsoety
leg
=>
chancesofclogging
..
Yfountpreferred
over
T
accessoriesofpiping
:
socket
me
en
a
-
um
union
preferred
if
it
needs
tobeopenedfrequently
↑
--
>
"¥
itispreferrednottoposition
a
valuehere
butcreationofbypass
line
can
bedonetocreatebetter
control
on
thedeliverylinewo
excess
pressure
on
thepump
delivery
line
>
XD
->
bypass
line
failureofpower
willleadtovaluesto
not
workelectricvalues
depending
on
theneed
d
~
failto
openvalues
solenoidvalues
use
->
fail
toclose electromagnets
#allvalues
with
an
identification
number
,
type
type
can
beshowedwith
a
symbol
orbe
includedin
thecodeusedfor
identification
ancillaryfittingslikesideglasses
(watch
glass
,
strainertofeltersolidmaterials
fromthefeed
,
moisturetrap
,
steamtrap)
"
,,,,1 can
be
numbered
I
describedbelow
/ANA
,
ANZ...
#Pumpsshouldbeidentified
,
w
their
respective
symbol/codenumber.
AllcontrolloopsEltheirinstrumentsIf
dealing
in
simple
processes
,
keep
utility
Elservice
lines
in
thePnI
drag.
for
complex
processes
,
service dutilitylines
can
have
aseparatedragbuttheir
connectionsmustbeshown
on
theequipmentwithnumbers.
Samenumbering
conventions
must
beused
across
difflevelsofcomplexdrags
1
.
c
.
same
numbering
scheme
forblock
-
functionalsoperational
-
Pn7drag.
N FailsOpen
-
Power
Failure-
Value ~ FailsShut
-
=
MaintainPosition
LocallyMountedPanelMounted
/InstrumentationControlUnit
I
when
asp
.
levelofvalueneedsto ControlUnit
mounted
remain
open
allthe
time
,
solenoid
mounted
locally)
somewhere
valuescan'tbeused
or
needpowerbackup)
on
thesystemelse
itself
MechanicalparameterstoconsiderforPipingDesign
:
BBL732
ASSIGNMENT
AMBIKABATRA
2021BB10329
Set
BBLT32ProblemstoPractice
AmbikaBatra
2021BB10329
@
Gasleaving
a
fermenterat
...
1atm
25
°
C
comportion
:
18
.
2%
Na &
19
.
2%Oz
mole
%
2
.
6%CO2
fromIdeal
GasLaw
,
PV
=
nRT
P
=
1atth
&van
R
=
0
.
0821LatmK
"mel'
T
=
298K
considering1m3ofoff-gas
:vol
%
will
beproportionalto
mole
.
in1ms
off-gas, andin
100molesofgas
:
0
.
782
m3
:
Na 78
.
2moles
:
N2
0
.
192m3
:
Oz 19
.
2moles
:
02
0
.
026m3
:
Coa 2
.
6
moles
:
CO2
a)
MassComposition
:
calculating
mass
ofcomponents
: mass
N2
:10
.
2x
98
=
2189o
2189
.
6*100
=
75
.
0%
2918
.
4
02
:
19
.
2X329
mee =
GlUUg
X100
=
2%
CO2
:
2
.
6X44glmal
=
114
.
4g
Y
Y
X100
=
3
b)
mass
of
CO2
in
each
[m
ofoffgas
CO2
:
Vol
xno
of
molesof
gas
(PV
=
nRT)
In1m3of
gas
,
volofCO2
=
0
.
026
m
·:
PV
=
nRT
wecan
calc
.
I
(no
ofmolesofCO2
in
thisvolume
1
atmx
0
.
026
X1031
=
n
10
.
0821
(am)
28
n
=
2
=
1
.
06males
0
.
0821X298
Xyng/mel
=
4675g
CO2
SinceNaremainsunreacted,
76
.
7%
ofAkg
remains
unchanged
=
0
.
767Akg
in
offgas
.
MassBalanceTable
:
(kg)
In
StreamGluO2N2CO2 Gum
CellsNH3H2O
Total
Feed ?000 00?
20
,
000
F
Air
00
.
233A0
.
767A
O A
Pot
-
---880
O
offgas
-
-
-
- - -
g
Total F
+
A
OUT
StreamGluO2N2CO2 Gum
CellsNH3H2O Total
Feed
-
-Air
i
-
Pot P
offgasO
?
0
.
737A?
O00 O 1258
Total
0
.
737A 0
.
0359 1250
+
Pkg
Yoz/ge
=
-0
.
23
g/g
YNH3/Gl
=
-
0
.
01g/g
final
gum
conc.
in
Pot
=
3
.
5%
=
0
.
035Pkg
ugum/Glu
=
0
.
75glg
:
0
.
35ggum
is
produced
per
1g
Gluconsumed,
Yals/Gm
=
0
.
09glg
YCO2/Ge
=
0
.
27 glg
YH20/glu
=
0
.
13glg
=>5
g
Glucomumed
=
0
.
0467P
hgGluIn
OverallMB
:
F
+
A
=
P+
Affgas-Q
NH3consumed
=
-0
.
01gigX0
.
0467PRgGlu
=
0
.
000467PkgNH3
F
=
20
,
000kgwater
+
0
.
0467PGlu
+0
.
000467PNH3
TheoreticalOuygenDemand
a
=
wVs-cVB-fjUp
of
NH3istheN-source U
MolaryeldofBM
is
thestouch-coefffor
BMofstorch
-
Coeff
ofsubstrate
=
1
VBforCH1
.
800
.
53
No
=
u
+
184
-
2(0
.
53)
-
310
.
2)
=
4
.
14
2
a
=
G(u)
-
3
.
36(4
.
14)
=
2
.
52
Y
..Ofdemandwithgrowth
=
2
.
52gmal02/gmd
Glu
Inthe
absenceof
growth
,
no
Glu
is
consumedforBNsynthesisItallofitis
oxdisedto
CO2
+
H20
aspertheresperation
eqh
:.
O2demandW/Ogrowth
=
GymolO2/gma
Glu
b)
EtOH
as
substrate
fractionalallocationoffrom
subs
to
subs
TBM
subs
to
of a=
WVs
MaxpombleBM
yieldis
whenallesgofromsubs
2
BM
1
.
e
.
In
absenceof02
=>1
=
C
&wopatformation
WVs
CaM30H
:.
Smax
=
=
=
6
forEtOH
,
Vs
=
6 forGlu
,
Vs
=
&
UB
=
4
.
14
VB
=
U
.
14
W
=
2 w
=
6
Cmax
=
u
Cmax
=x
u
=
5
.
80grnd/gmd
=
2
.
9gmd/gmd=
26
.
78g
=
1
.
69g
o
=
32678
=
0
.
80g
onmass
base
.
YSH
*
2) YXsal)
And
CH3COOM
+
NH3
-> Bromass
+ T
H20
+
CH
ICH
1.
400
.
u
No
.
2)
Y
CO2/s
=
0
.
67kg/kg
=
0
.
67gly
=
167g
=
0
.
911small goal
ugimal
Togimal
CH3COOH
+
bNHz
->
cCHinOo
.
uNo
.
2
+
dCO2
+
eHzO
+
fCHu
↓
0
.
914
performingelementalbalances
:
c
=
2
=
c+0
.
914
+
f
-
0
-
f
=
1
.
086
-
C
i
Hi n+3b
=
1
.
4c
+2e
+
If
-
②
u
+0
.
6c
=
14c
+
2e
+
4(1
.
086
-
c)
0
:
2
=
0
.
4c
+
2(0
.
9(4)
+e
-
-
2
-
1.828
=
0
-
4c
+e
-
N
:
b
=
0
.
2
-
&:
0
.
6c-1
.
4c
-
2e
+
yc
=
4
.
344
-
48
:
04c
+e
=
0
.
172
3.20
-
2e
=
0
.
344
-
②"
I=
0
-
172
f
=
0
.
91 =>
YCHy/X
=
0
.
914qmal/goal
b
=
0
.
0344
e
=
0
.
1032
MaxPossibleYeldofMethane
is
whenallfromsubs
-
pot
orn
=
fi
j
=
1
CHU
Up
=
4+4
=
S
Tfmax
=
CH3COOH
Us
=
8
+
4
-
4
==
gmo/gid
=
..91
.
4%of
max
yield.
=
4
Ans13
:
all
Crubs-
>
BM
↑
0-96-6 012
.
76
CH2OG
+
bNHz
-,
Chis6005yNo16
+
d
+
eH2O
VB
=
y
+
1
.
56+0
.
54(2)
+0
.
161
-
3)
=
4
MWofcells
=
12
+
1
.
36+0
.
54(16)
+0
.
16
/14)
=
25
.
73
glad
0
.
95
Performingelemental
balances
:
Actual
YXs
=
G gmal/gmal
6
=
C
I
=
0
.
86
g19
b
=
0
.
16c
=
0
.
16x6
=
0
.
96
6
=
0
.
54(6)
+e
=
e
=
2
.
76 (max
=
w
=
=
Ggmalgn
a
&
loss
of
material
dueto
erosion
productioncost
1
.EffectofStress
2.
Erosion
3.
High
TempOxidation Operatingtemp
Clowalloysteelshowhightempoudation
rapidly
->
<500
°
whereas
Crcontainingalloys
can
withstandhighertemp
>500%
chromealloys
4.HydrogenEmbrittlement
-lossofdubblyof
a
material
caused
by
absorption
Hydrogenassistedembrittlement
majorissueswithmetalhealth.
SelectionofMaterialforCorrosionResistance
:
factors
:
1)Temp 5.Oxidation/Reduction
2)
Pressure
S
.
Slurry/PureLiquid
,
3)pH 7.Mixingof
liquid
ina
reactor
4)Purityofalloy
,
impurities
present8
.
Contaminationligorousmixing
O
willcreate
abberations
on
wall)
MaterialofConstruction
:
1)
Tron
2)Steel
->
difftypesbased
on
compositionI
c content
i)LowCarbonSteel
(MildSteel/MS)
easy
transformationwelding
,
bending
strength
,
ductility
,
workability
.
g
notresistanttocorrosion
can
beused
inindustrialenvironmentswithlesscorrosivematerials
/solvents
eg.organsolvents
ii)
StainlessStul(SS)
mostcommonly
used
inindustry
.
Crcontent12%
resistscorrosion
inadd"tobeingstrong
,
Ihaving
good
workability
,
ductility
it
is
alsoresistantto
corrosion
.
YangCr
%Usesresistanceto
corrosionbutshouldn'tbeTsedbeyond
20%
otherwisemechanicalproperties
are
compromisedIstrength
,
duckling
Add"ofNi-
>
Resistancetocorrosioninreducingenvironment
Add"ofCr
>
"
""Oxdiing"
MengC%
.
beyond
a
point
-
buttleness
C%maintained
<1%
confers
strength
Cry"
>12
%*
20%
Nix
.
"
<10
%
Crackpropagation
in
brittlematerials
Ferritic
->
13-20%
Cr No
Nickel
10
·
1
%C
RestFe
Austentic
->
18-20
%
Cr
NoCarbon
mostcommonlyused >7%
Ne used
inmildCorrosue
env.
Mortensitic12-10?%Op
esNi
22
%
No
Type
sav
also1818steelSS
0
.
2-0
.
4%C
SS301
or
18/8SS
Deignstress
shouldnotexceed
Mechanical
stress
StrengthofSS
(N/mm)
Temp
is
a
crucialfactorin
strength
Temp
(oc)
300 400 500 600
MS 77
6
e
-SS304
or
18/8108 62(
prometoThermalstress/
Monalmetal?
Ni-CuAlloywithN2
:
Cu
=
2
:
1
:
significantimprovement
in
corrosionresistance
food
industrystillwes
e
containers
alloyreatoras
->
C
gettleachedintofood&YesNututionalvalue?
->
Antibacterialproperties
Cu-Su
:
Bronze
Scannotdeal
w
ammoniacalenvironment
Su-In
:
BrassdelH2SOuproblematic
can
handlealkalineconditions
Allining/based
alloys
are
highlycorrosionresistantbutlowtensilestrength
Al
basedalloys
can
beusedin
:
TextileIndustries
I
strengthnotvumpbutanti-corrosion
Food
StorageofReactureMaterials
Duralumin
:
improvedtensilestrengthE
also
corrosion
resistant
FRP
:
FiberReinforcedPlastics
Tease
or
Cfiber
Ases
mechanicalstrengthofThermosettingplastics
(asmuch
as
MS
advantage
:
cheap
.
piping
,
flow
ofadnesseliquid
,
high
pressureliquid
Disadvantages Advantages
->
plasticsare
flammable
I
-
GoodResistancetocorrosion
->
interact
withorganic
solvents
socan'tbeused
-
Mech
.
Strength
can
beusedby
O
withthem
(
can
dissolve
in
someorganic
reinforang
with
fibers
solvents)
Is
easilyhandledilmineral
acide,alkalis
EpoxyResins(expensive)but
goodresistancetoAlkalis
->
strength
~
MS
~
muchhigher
corrosion
resistance.
Gaskets
Rubber
,
metal
,
asbestes
softmaterialthatshowsgoodstretchability
Naturalrubber
canalsobeusedforpiping
->
and
,
alkalitolerated
->
but
notresistantto
cone
HNO3
or
organeacids
heatresistantbricks(refractorymateriallined)
es
Pyrolysesreactor800-900
SS/MS/Titanium
vesselwith
inner
wallmadeofandresitantbrucks
or
-externally
asbestos(refractorymaterial)
providesMech
.
Strength
Coating
:
barrier
biwthe
materialI
outside
en
When
we
requireprotectionfromand
,
heat
,
light
,
ete
Microwave
over
cavityisprotectedwith
a
ceramicpaint?
thermalpaint
provides
thermalstability
stableat
1100
%
C
PowdercoatedMStoprotectMSfromCorrosion
Spraypainting
g
Hughtempspraypainting decreasescrack
Metalexposedtohightempthenspray
painted propagation
intermediate
compounds
(Primers)firstpainted
(Binder
1-
kindbendtopaint
tometal
Thus
iseadhesion
of
thepainttothe
metal
.
"¥
ItAugust
MechanicalDesignof
ProcessEquipment
StaticLoad
W
W
STRESS
W
&
↓
f
=
wA
↓
near
stre a
at area
↑
W
↑ ↓
+
s
=
W
A
W ofchange
in
dimension
occurs
CompressionTension
duetofs
,
thenextentof
deformation
is
measuredbystrain
STRAIN
=
*
dimension
dimension
THERMALSTRESS
-1-E
E
metal
rodfixedin
placebut
temp
dimensioncan'tchangebut
stress
buildingup.
↑
Temp=coffof
linear
panin
a f
=
ExXt
↓
f
=
Thermal
Stress
Modulusofelasticity
if
freerod
:
ItwillfreelyexpandXL
4)
=
LXOt
stram
=
=
XXt
E
=
stre tram
ot
+
E
=
-f
=
Edit
beam
------
neutral
axes
umaginaryplanewheretensile
&
compr
.
stress
is
zero
neutralplane
Stress
causedbybendingEn---o
M
=
M
=
f
=
f
M
=
Bendingmoment
=
Momentofresistanceatthecross-sectionbeingconsidered
I
=
Momentof
inertia/second
momentof
area
of
cross-sectionabout
the
neutralaxis
f
=
Tensile/Compressure
bendingstressat
a
distance'Y'from
the
neutralaxis
z
=
Z
=
Modulusofsection
STRUTS? failuredueto
↓
h
compres
a
Crippling
or
Buckling
longitudinal
compressionmay
cause
Structe
5
CripplingLoad
or
BucklingLoad
Short
struts
-
failureofthe
material
duetodirectload
p
=
fo
A
↓
↓
->
A
=
xnal
area
Itoload
LoadCompressive
stress-
mod
ofelasticity
P
=
a
<El-Mol
Fuler'sformula
"¥
lengthof
body/Light
ofchamber
LongStruts
↓
↓d
C= Sufferingrunge
preventbuckling
-
-
-
our
ultunate
objective
is
tocale-Thicknessof
materialbytakingcumulative
stressexperiencedby
a
body
(I
can
withtand
it
+
IPYincperyearcorrosion
value
Isafety
factor
E
-applied
torque
=
Torsional
stress
I
=
"¥G
L
Ip
E
T =
appliedtorque
Tp
=
polarsecondmoment
,
of
area
fs
=
shearstressatradius
i
G
=
modulusof
rigidity
T
=
-I
O
=
angleof
twist
overthe
length's'
=
fsZp Ip
=
Ep
=
polarmomentofsection
M
P R
Todd
17
z
T
+H
...
--H2
fz=Spy<R(3m
+
)
- (m]
fu
=
3by((3m+
(R]
fz
and
fo
are
maximum
when
yismaximum
El
n
is
min
.
fz
=
fu
=3
33MR R
the
=
poisson'sratio
Crateofthestrainin
transversedirtothatof
longitudinaldirection
Uniformlyloaded
and
filled
at
theedges
:
stressatthecentre
oftheplate
:
fu
=
fz
=
M=
=
parson'srai
a
stressatthearcumference
:
fr
=(fr=
Perforated
plate
Maxi
stress
in
perforatedplate
g
Sp(pitch)
feax
=
max"
stress
insolid
00
ligament
effeciency
-
Rectangularplate
unformlyloaded
,
supported
atthe
perimeter.
-max
=
]
+
a
Generalequforthicknessofflatplate
t
=
CDP/fmax
Y
thickness
C
=
constant
;depends
on
edgesupport
(when
M
=
0.3typicallyfor
steel
of
eagesare
completely
rigid
c
=
0
.
43
ofedgesarefreetorotate
-
c
=
0
.
56
D
=
Effectureplatediameter
f
=
Maxmallowable
stress
(designstress)
1
.
e
-
calcCumulativestressX
safetyfactor
andSeptember
,
2024
1)CrumferentialStress/Hoop
Stress
2)RadialStress
3)
AvalStress/Longitudinal
stress
Thumbrule
:
Ratio
ofthicknesstointernal
diameter
is
less
thanI
,
then
it
may
be
assumedthatthehoop
stressandlongitudinal
stressareconstoverthe
thicknessofthe
cylender
theRadial
stress
issmallI
can
beneglected.
ThinCylinder
:
1)HoopStress
-internal
pressure
HoopStress
Ap
=
Pe
internal
diameterIt
thicknessof
cylinder
2)
Aval
stress
fa
=
P=
f
for
a
thin
sphericalShell
:
fp
=
fa
=
b
thin
sphericalshellunder
internal
pressure.
for
a
thick
cylinderunder
internal
pressure
innerouterdiasRadialstrus
fr
=
A-BR2
A
,
Bcounts
00g
Ovarysignificantly R
:
anyradues
Hoopstress
fp
=
A
+
BR
Axial
stress
fa
=
p
Ri
:
internaldia
R2-R&
Re
:
externaldia
A
=
PiRR-boR2
IR2
-
RY)
Po
B
=
/Po
-
pi)RiR
E
Pir
(R?-Ri)
thehighest
strees
Obtained
is
consideredthedaughstress
For
THICK)
spherical
shell
e
as
ind
once
internal
pressure
RadialStree
Fr
=
A
isfixed
.
A&B
will
beconstants
for
a
system
fp
=
A
+3
90'bend
in
pipe
:
suddenchange
in
flowdirleadstomuchhigher
amt
ofstresscome.
-
Frregularityin
stress
distribution
duetoabrupt
changesofformiscalled
stress
concentration
Themax
valueofstressatsuchpaintisgiven
by
a
stressconcentrationfactork.
K
=
ratio
of2difffactors
=
highestvalueofthestressat
a
specific
point
nominal
stressgivenby
elementary
ea
forminimal
crossection
eg
=
outputport
g
-riveted
plate
for
watchglass
StandardsforReigningPressureVessels
:
standard
Standard
code
forUPVisIS2823andspecificationforformedendandtanks
UnfredPressureVessel
andnormalpressureVessel
,
standardcode
is[S4049
SpecificationforFlangeforvesselandequipmentis254869and154870
StandardforManholeandInspectionOpeningDesignforChemicalEquipment
:
2S3133
CodeofPracticeforDeign
,
FabricationElErectionofVerticalMilestellCylindrical
Welded
Ou
StorageTank
:
75803
SpecificationsofShell&TubeTypeHeatExchanger[S4503
Theexerciseofdesigningstandards
istohour
a
failsafe
reference
DesignCriteriadepend
on
ElasticAnalys
assumptions
:
materialissotropic
homogeneous
workingcond"
are
withinthe
clastic
range(extendingbeyondto
plasticlimitcreatesfadure
valueoftheloadforwhichmaterial
goes
totheplasticregion(beyond
clastic
lunt)
=
collapseload
or
bursting
pressure
of
a
materialis
under
certaincyclicloading
,
we
needto
ensurewe
don't
go
beyondclasticbut
.
Cyclicloadingshould
betested
in
such
a
waytomakesure
elasticlimit
Corrosionallowance
:
extrathicknessaddedto
counter
corrosion
forC-steel&CastFrom
:
1
.
5
mm
extreme
cases
ofdealingwithsupercorrosue
:
2X1
.
5
=
3
mmuquid
forhighalloysteel&non-ferrousmaterial
:
nocorrosion
allowancerea.
of
thickness
30mmthenalsocorrosionallowanceis
necessary.
5
componentsofvesseldesign
Shell
&
Head/Cover
Vessel
-
>
Nozzle
Daugh
Tat
short
->
"¥
mostcommon
in
vessels
Rivetedjoints
,
flangejoints
,
weldingjoints
00000
0
Radiography
EfficiencyofJoints
is
heckedbyX-RayforWeldedJointsElof
nogape
/
cracks
are
foundthroughoutthe
vessels
thenjointefficiencyconsidered
100
%
of
checked
ona
fewspots
by
Radiography
:
n
=
85%
1
11
by
nakedeye
:
50-85
%
Inoradiography)
forRivetedJoint
:n
=
70
-
85%
u
=
50-70%
=
IIIIII
ButtJoint LapJoint
5thSeptember
,
2024
.
Rivetedjoint
lesseff
.
thanwelded
joint
?
rivets
E
y
=
75
-
80% n
=
50 - 70%
ButtJaunt LapJoint
-
-
(lessefficient
,
-
-
there
can
be
00sheet
slipping
E
Howisjoint
efficiencycalculated?
O
based
on
stressbearingcapacity
JointEfficiency
X-RayInspection
can
monitorminute
cracks
··
certifies
100%
efficiency
whenthere's
no
crackfound.X-Raymontoring
tosubstantiate
the
claimof
100
%
y
,
X-Raycheckingneedstobe
done.
J
:
Jointefficiency(1
ofX-Rayconfirms100%,ofninualinspection
based
efficiency
is
considered
,
we
can'tstandardise
it
Ihastoconsidered
1.
Weldedjoints
>
RivetedJoints
sometimesthe
,
some
materialsnot
suitableforweldingImayneedtosufficewith
Riveting
.
Cylindricalallsubjectedtointernal
pressure
stresses
:
fp
=
H fa
=
PD(t)
4t
Hoop) (Axal)
Common
convention
:
tensile
stress(+
)
O
compressur
(-)
Ap
=
2fa
:Apishigher
,
then
it'll
be
considered
as
the
max
possible
stressusedtocalculate
thickness.
fp
=
f
r
design
stress
(maxstress
CYLINDER
Jointyt=p
=
p
Di
+
t
=
Do
f
=
y
=
P
=
Pi
=
pDo SPHERICALSHELL
4f]4f]-p
-
ness
considerable
Letofcontent
,
any
externalload
,
piping
I
deadut
.
bending
dueto
wind
Additional
factors(
1)InternalPr
2)Witofcontents
,
externalload
3)Piping
4)Wind
Stressesbecome
:
->
only
dueto
internalpressure
as
before
?
fp
=
p(Di
+
t)(t) fa
,=
p
(t)
dusto
internal
pressure
2t
fac
=
W
(t)
whycompressive?
7)
t(Di
+
t)
on
cylinderwalls
,
not
base
plate
witofcontent
,
vessel
->
bendingmoment
.
loadI
axs
ofvessel
fas
=
it onesectionexperiences
O
tencile
,
othercompressive
Total
fa
=
faitfaz
+
fas
to
ethis
mind
>
tensile
-scomp
particularlyformind
:
tooffectthewindstress
weneedto
createcertainatof
torque
.ts
=
1
torque
TItDi/Ditt)
stressthat
will
offsetstressdueto
wind
Isis
effective/netstress
in
bothradual
&analdirn
.
instead
,
fasonlyaxial
↓
f+
&
fp
aresame
ShearStrain
EnergyTheory:
BrownelledYoung
Failure
of
thespecimensubjected
to
any
,
combinationofloadwhenthe
max
O
shearing
stressat
anypointreachesthe
failurepointequaltothatdeveloped
O
atyieldingin
an
axial
,
tensile
orcompressuretestofthe
same
material
Cateriaforthistheory
Fr
calculation
fre
=
Ifp-Epfa
+
fa
+
3fs)
Isheaustra
Energy
They
is
fr(Tensile)
Apit(permissible)
fa(Tensile)
Sp
,
/Permissible
fa/compressive)
<
fc
(permissible)
tfo(permissible)
=
-
-M2)
(Dolt)
forAlloySteel
E
:
Elasticity
U
:
passon'sratio
SS316
t
-t
-
·
Forrosion
allowance
↓
to
-> 10
↓next
higheravailable
thickness
ofto
comes
outtobeour
degn
thickness
thatsatufes
stress
requirement
C
and
us
<30mm
(then
corrosionallowanceadded
ofdealingwith
corrosuemat
.
->vacuum
NEGATIVEPRESSUREinthevessel/orexternal
pressure
can
createdeformationofthebody
->
eitherMethicknessfurther
or
->
·
-
rigsatweakpoints
(calledstiffeningrings)
I
use
=
to
avoidlobeformation
(buckling/crippling)
material
lesscost
lobeformation
canoccur
by
excessivestress
-
-
critical
pressure
forbuckling/lobeformation
L
V
Pc
=
+((m
=1)
+
emM
n
=
no
·
oflokes
it
0
.
1
I 18
L/D
forPNID
:
eachstudent
will
have
a
uniqueprodcapacity
for
entereprod.processof
yeart/select
one
outofthe3
yearts)definedprod"capacity
Stateassumptions
&Septem
2024
POIDs
ITableto
explainindividualequipment
names
1Tabletoexplain
mass
&energy
input
,
outputs
symbolstorememberfromPerry'sHandbook
:
Utility
Line
Reactor
eg
.37
%
C
run
temp
,
but
felter
,
centrifuge ambienttemp28%,calc.energy
distillationcol
,
mixingtank requirements(
+
energyloss
O
heat
enchanger
,dryer,chilles assumptions
or
state
if
neglected
centry
,
reciprocatingpump
Boiler
,
diff.values
,
nomenclatureofdiffcontrollers
stirring
energy
requirementsfor
deffreactorvolumes
1fonne/day
capacity(YeastBiomass)
->
Reactorcapacitychosensay
:
10
,
0001
lookupfromtheatternetthe
kindof
energy
requirementsof
stirrerfor10kLreactor saccordingly
scale
upor
down
in
exam
I
stateassumption
-
similarly
,
pressuredroprequiredto
filter
a
5%-10%BMSlurry.
Energy
Requirementsforspecificunits
you'reexpectedtoknowballparksofenergyreg
.
fordiffunitsforreference
values
2)thenscaleup
I
downin
exam
[internet
sources]
1000Lreactor
usuallyrequires1Hpmotor
"¥
10
,
000Lreactormayrequire7-20HP
motor
/reasonable)
but
100HP(unreasonable)
so
ofyoudon'tknowclosetoaccuratevaluesfor
some
reference
,
youwantbeabletoscaleup/down
with
any
accuracy
.
you
could
assumeeffeciency
ofallequipmentstobe
88%
oranme
it
accessory
-
cue
DONOT
givevariablesto
giveidea
aboutpump
capacity
SetPoint
Valuesnot
requiredfor
controllers
butsp
.
symbolsshould
Stirrer
controller Jbutcontrolloopsshouldbecloud&equipment
pHcontrollermustbeconnectedtorespectivecontrols
ElectricHeatingCoils
easer
for
energybalances
(higher
energy
efficiencybut
some
usHeatExchangers safety&cleaning
concerns
↓
localisedhotspotsmaygive
lower
energyeff-but
safer problems
w
nutrientmedia
qual
&heats
more
evenly scale
form"
oncalls
hard
to
clan
.
~
someunitsmayrequireheat
,
somemayneed needsproperearthing.
heat
extraction
:
heat
recoveryunitpossible
i
heretenchangersbutnotwithheatingcals
(so,
,
processeconomymisebetter
BrowniePointsforestimatingheatrequirements
usingHeatExchanger
.
Rational
guess
regardingaeration
rea
eg10
,
000Lreador
->
calclea
vol
(working)
say
,
9800L
&
rum
->
soyou
knowvolof
air
neededtobepumped
"¥
Energyveeq
forblower
to
supply&X9800L
Typically
,
ofratio
=
1forCSTRtypereactor
20
%emptyhead
spaceextra
for
acroble
vxns
sayworkingrol
=
10
,
000L
20%
head
=>
reactorvol
=
10
,
0001
+2000L
I
12
,
000L
-
=
1
calculatelength
-
>
then
use
itforovercominghydrostate
head
&
cale
.Blowercapacity
YeastPrep
:
Inoculumtransferrequired
atmultipleplaces
howdoyou
decidewhichpup
us
used?
->
10-200Xmore
expensive
CentrugalPump
cheaper
.ButDiaphragmPump
or
PeristalticPumpgoodforsterity
(BasseReg.
Staterationale
,
justificationforequipmentselection
Dewaivingmostlydonebyfelt/centrifugforBM
(yeasts
dryer
atmax
10-50
%
c
:
Pandrying
byevaporation
or
ethyleneoxidegas/SO2to
kill
bacteria
,
I
contamination.
the
amtofethyleneoxide
we'reusing
toI
shelf
life
ofspies
-
manycountries
banningIndian
spires
.ElEthylene
oudeis
a
known
carcinogen.
notrationalto
connder80-85
%
yforfiltration/separationunits
.
Consider
closeto95-96
%.
Scrapingsolidcatewentrecove100%
BM
.
Multistage
filtrationmayachieve
-
100%
If
felter
care
is
highly
compressible(eg
.
biomass)
Pressuredropdyffrom
uncompressible
cake
.
felteraidunparts
some
uncompressibilitytocompr
.
Materials(hard
mat.
as
felterand
If
we
addbetsofgrains(eg
.
tiles
,
diatomaceous
earth
,
glassbeads
,
smallparticles
that
createchannelsthat
and
filtration
.
O
You
can
improve
filtrationeasilyusingfilteraidif
youpotofinterest
is
feltrate
I
enterested
in
BM
:
felterand
(heavierswillneedtobeseparated
density
diff
-
settles?
I
separatesout
.
#
choosingequipment-wiseefficiency
:
BROWNIEPoints
The
more
detailIthoughtyouputintoyourP&ID
,
thebetter
.
Minor
20POID
(5
Func
,
5OperationalDiag
,
10P&
I
30marks
-
10marks
O
->
1 Ques
from
PuressMass&EnergyBalances
(likeassignment
~
High
Pressure
VesselDesign
eachsymbol
wdneedsnomenclature
typeofvalueusedneeds
tobementioned
.
Pipediameters
can
beomitted.
Iflowcontrolvalues
or
ON/OFFvalues
consideroverallboxesformultiunit
operations
(in
M&EBalances
(
startMEBcalc.onlyafter
drawing
blockdiagrams(don't
jumpinto
cales,
mastere-balances
,
stoichiometry
,
degreeofreductions
calc
.
consider
what
can
beconsidered
overall
insteadofcomponent
balances)
POST-MINORS
Wednesday
,
23thSept
Thursday
,
26thSept.
&
Design
a
shell/vessel)
andheadplate
.InternalDiaofshell
=
1200mm11
.
2 m)
G
&Material
ofConstructions
&
%Cr
18%
Ni
Permissible
stressof
thismaterial130 N/mm2
If
InternalPrusure
=
0
.
3
N/mm
?
Jountn
=
85
%
notofvessel
=
3200kg
torque Calculatethickness
I
due
tooffect
,
piping
,
mind
=
900Nm
Thicknessofshellcalculation
-
internaldesignpressurst
=
pi
internaldia
2f]-p
Jointy
design
or
permissible
stress
un
gett
=
0
.
33
N/mm2X1200
mm
2X130N/mm2X0
.
85
-
0
.
33N/mm2
t
=
X100
mm
=
1797
mm
/but
not
a
standards
a
vessel
dia(m)
MinimumVesselThicknessRecommendation(mm)
A
"¥
↓
1
-
2
->
curt
=
1
.
8mm
<
7mm
ours
2
-
2
.
5
1
~but
minimumrequired
is
2
.
5
-
3 forhigh
pressurevessel
1200mm3-3
.
5 12 design
80
1
.
2
m
soour
+
=
7mm
-If
we'reusing
this
vesseljust
inch
peryear
?forstorage&no
p:requirement
from
datasheetyoucouldcheckIPV
?
then
we
couldsafelydoublethe
yearlycorrosion calculated&
use
It
=
Imm
CorrosionAllowance
-
30%
so
t
=
+0
.
3t
=
7mm
+G
.
Imm
=
9
.
Imm
->
liberty
tochoose
amm
:
alreadysafety
-had
it
been
9
.
5mm
go
for10mm
for
SS
,
nocorrosion
allowancerequired
so
Imm
straightawayisshellThickness
Usingthist
,
cheek
if
allconditions
are
satisfied
I fr
criteriasatisfied
ofnot
-go
fornextthickness(9mm)I
checkagain
.
fs
=
pt
:)Di
+
t)
fa
=
fi
+
fz
+
+3
fr
=
[fR-ftfa
+
fa
+
3fs2]'2
ofquestionmentionsSSMoC
-
nocorrosion
allowance
rea
7 1
"some
otherMoC
-
corrosionallowanceforthatmaterial
""does
NOT
mentionMoC-state
assumptionsabout
yourMOCthen
consider
its
CA
first
calc.fr
and
fo
thencompare
,
ofbelowacceptablestressthen
elsego
for
next
higherthickness.
shellthickness
comes
outtobe9mm?
G
Head">=shellthickness
HeadThicknesscalc
:
(Ans-14
.
37
mm-
then
chooseclosestnext
levelfromstandard
table)
th
=
pu
w=
1/3+
Refe
numrasead
#Safety
factorfor
thehead
is
the
same
(10
%
)
:
same
designpressure
is
used
=
0
.
33N/mm2
x
(1200mm)
x
1
.
771 ↓
13
+d
2X
130
N/mm2
X1
=
2
.
697
mm
↑(3
+
10)
=
1
.
7706
#
if
mentionedthevessel/headisexperiencing
entpressurebutnotmentioned
Nowmuch
,
thenusuallyconsidered
1
.
6-1
.
7times
the
internal
pressure
#y
mentionedthoroughly
checked
byradiography
,
then=I
11
checkedat
some
places thenJ
=
85%
11
l
"by
nakedeyethen-50-85
%
-Sir's
Solution
pipe
jointsea
undersse
->
but
pressurecanmake
these
slip
for
pressures
upto20kg/cm2
Fe
tocounteract
interprese
either
riveting
Beyondthis
,
or
welding
Standardsfor
piping
joints
[S6392-64??
1S4864-4869(Standardsforflanges)
Flat
RingGasket
.
0
.
5 mm-3mm
eg
in
blenders
,
miners
,
grinders thickness
lunhioningtoprevent
abrasion)
Below120°
>
Rubber
,
Paper
upto350
-
Asbestos
About
350
-
Metals(soft)
Temp
,
settingstress
are
factorsto
choosegasket
material
ServatedGasket
M
- ↑serrationto
maintain
roughness
-
-
Sufficientlockingto
notgetleakage
- ·"smoothnessis
good
,
but
roughnessisbetter"
-
Zia(2024)
LaminatedGasket
sandwichedmaterials
duetochange
inelastic
properties
in
thegasket
-
metal
tolerant
tovariablepressures
/highlow
-
>
asbestos(diffelasticity)
O
-
met
al
more
flexible
Corrugated
GasketConetypeofselfsealinggasketwhich
can
work
in
highertemp
a
flexible
pressure
Eltemperatureranges(both
corrugated
&serrated
Self
-sealing
ket
IUthOct
,
2024
FLANGEDeign
-
Design
Steps
1)Selectionofgasket
2)Flangefaung
3)Betting
4)HubProperties
3)
Flange
with
a
eness
Maindesignconsiderations
are
O
1)
to
improvethecontactpressureatthegasket-flangeinterfall
under
all
serviceconditions
&topreventleakage
2)to
create
lightly
enforced
wooverstressingthebalt
3)to
ensure
structuralintegrity
oftheflangeIminimise
deflectionofflanges
1)elasticReaction
:
withinelasticlimits
gasket
onlythegaret
surface
willtry
to
fill
theurregularitiesoftheflangefaces
2)
PlasticReaction
gasket
is
overstrued
I
itsmassbecomesplastic
3)SpringyReaction
GasketiscompletelyenclosedwithintheflangeIbehaves
like
confinedfluid
for
estimating
sezingofgaskets&determiningthe
no
E
diaofbatts
1)
AtmosphericPressure
2)
Operating
Pressure
1)
Underatmosphericconditions
gasketreaction
Wa
=
Ag
-
sealing
stress
(seatingstuss)
Wp
=
AgYp
+
Anp
We
use
Hooke'sLawtogive
us
relationshipsblumaterial
properties
Xy
=
Ya
-
Yp
XT
=
T
"¥
-
Ya-Yp
->
modulus
UT
=
0L
+
2Δf ofelasticity
↓
>
changein ofgasketY
change
change
in
in
deflection
weam
forclasue
or
gasketbalt
offlange springy
rxn
(d
not
plastic
Micknesslength rxn)
I
dueto
lightening)
"¥
lengthofbalt
"¥
change
inboltload
,
varieswith
pressure
0
=
1W
T
modulusofelasticity
ofbelt
XArea
ofcrossectofbolt
&W
=
Wp-Wa
change
W
Y
under
un
baltunder
atmpressure
loadoperating
=LAW
pressure
&W
=
Wp-Wa
Of
=
c&W
=
AgYp
+
Anp-AgYa
↓
=
Ag(Yp-Ya)
+
Anpconst
(deflectionfactoroffraa
OW
=
Anp-OYAg
-
relatedtogasket
nowwe
haveDW
ito
DY
wecan
replaceIW
in
expressions
its #
wecan
geteverything
expressed
its
Y
.
Yaisalways
greaterthan
Yp
.is
significantforrubber(
:Egsmall)aT
u
large
formetallicgaskets,
I
can
be
neglected
(i
Eg
vhighformetals
aturns
is
small