BBL732_Ambika very useful for biotech.pdf

sparshvyas2004 8 views 252 slides Sep 15, 2025
Slide 1
Slide 1 of 252
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147
Slide 148
148
Slide 149
149
Slide 150
150
Slide 151
151
Slide 152
152
Slide 153
153
Slide 154
154
Slide 155
155
Slide 156
156
Slide 157
157
Slide 158
158
Slide 159
159
Slide 160
160
Slide 161
161
Slide 162
162
Slide 163
163
Slide 164
164
Slide 165
165
Slide 166
166
Slide 167
167
Slide 168
168
Slide 169
169
Slide 170
170
Slide 171
171
Slide 172
172
Slide 173
173
Slide 174
174
Slide 175
175
Slide 176
176
Slide 177
177
Slide 178
178
Slide 179
179
Slide 180
180
Slide 181
181
Slide 182
182
Slide 183
183
Slide 184
184
Slide 185
185
Slide 186
186
Slide 187
187
Slide 188
188
Slide 189
189
Slide 190
190
Slide 191
191
Slide 192
192
Slide 193
193
Slide 194
194
Slide 195
195
Slide 196
196
Slide 197
197
Slide 198
198
Slide 199
199
Slide 200
200
Slide 201
201
Slide 202
202
Slide 203
203
Slide 204
204
Slide 205
205
Slide 206
206
Slide 207
207
Slide 208
208
Slide 209
209
Slide 210
210
Slide 211
211
Slide 212
212
Slide 213
213
Slide 214
214
Slide 215
215
Slide 216
216
Slide 217
217
Slide 218
218
Slide 219
219
Slide 220
220
Slide 221
221
Slide 222
222
Slide 223
223
Slide 224
224
Slide 225
225
Slide 226
226
Slide 227
227
Slide 228
228
Slide 229
229
Slide 230
230
Slide 231
231
Slide 232
232
Slide 233
233
Slide 234
234
Slide 235
235
Slide 236
236
Slide 237
237
Slide 238
238
Slide 239
239
Slide 240
240
Slide 241
241
Slide 242
242
Slide 243
243
Slide 244
244
Slide 245
245
Slide 246
246
Slide 247
247
Slide 248
248
Slide 249
249
Slide 250
250
Slide 251
251
Slide 252
252

About This Presentation

please read to learn


Slide Content

2nd
July
,
U
:
LectureI
Steps
:
1)MassBalances
,
EnergyBalances
2)Equipmentreq
.
For
that
pot(vessel)
[VesselDesign
3
,
sing
thevessel
3)HazardConsiderations

Spillage
Y
IncorporateFactor
into
Design
Thedesign
exercise
will
use
lotsof
thumbrules
.
Sequenceofprocedureswillbe
imp
,
no
needtorememberdesigneq's
Remember
the
procedureforrussel
design
Easy
course
if
systematic
approach
.

HeatExchanger,
Datin
Column
it
e
Only
CourseContents
:3-6
Lectures
:
MBEBalances

VesselDengn
-
-
HeatExchanger
o
o
-aDistillationColumnDesign
/
ProcessSafetyDesign
S
Process
Validation
flowcharts
,
ProcessFlowDiagram
:
Emp

TypesofFlowcharts/Diagrams
? streamsElequipments
->
screen
--
Mixer
s
Filter-
labelledbut
?

no
ideaabout
>
Tank ?
-
mass
(quantivesrea.)
->
energyrea
->
enter;equipment
duxillary
equipments
O
+
Quersize
likeconveyerbetts
C
-
Undersize
->
processinstrumentation
automation
,
controldevices

Specificuniversally
acceptedsymbolswill
beused
eg
#
:
screen
primitivedrag.
can
beenriched.
mostadvancedflowdesignshaveinfo
aboutprocessinstrumentationEcontrol
danses
->
blueprintof
entire
plant
PNI
diagram
?
P&I

EveryWednesday3-3Tutorial
[Practical
Component)
[NoLab] is
the
tutorialitself
M&EBalances
:
Input/output
Models
Issbehaviors
-
arithmetic
(also
us
models)
->
differential(timedimension)
alsospacecoordinates
->
partialdiffer
.
(2
,
t)

unusedsubstrateposits
2
problems
-
wasted
raw
material
-
expensivedownstream
no
thumbrules
,
systemspecificsubstraterequirements

COURSEPOLICY
:
1)75%attendancepreferred(1
gradedown
if
significantlylowattendance
Nomarksforattendance
2)Minor
38 Agradeabove80
Major
30
(Absolute
Assignments40
-
SurpriseQuizzes
-
some
asignments
3)Textbooks
:
1)
PlantEquipmentDesign(Brownelle
&Young)
2)
Could
?&Richardson(Vol6)

Tutsfrom
Week2
-25thJuly
Upstream ProductionDownstream
Screen
toseparatesoud
fractionsBatchReactor
Filter(s-1
separations
Washing
Step
Distillation)-1
separation
Dryer IS-sSep

usually
,
20
%
insculumin
anerobicfermentation
Upstream Production
Mi M2 My
M6main
->
Screen
--
Dryer-
Tank
10
,
000L




M3 Ms M7
Mi
=
M2
+M3
WorkingVol
=
6000L
M2
=
My
+M3
f
My
=
M6
+
M7 InoculumVol
=
0
.
2X6000L
=
1200L
or
Mi
=
M3
+
Ms
+
M7
+MG(Input-OutputModel)


solvent/liquid/allowsfastermovement
offiltrate
5)lessretentionoffiltratein
the
filtercake)
In
>
Filter
>
Filter
cake
sturry
(Rawmaterial)

!
Typical
schemeof
a
continuousWe
d
Filtrate
feltration
unit
process
.

lossofwash
liquidistypicallynegligible
centrifugealsohas
a
similarscheme
(s-l
separation)
·
DryerMoisture

Moist/
Wet
Call
->
Dryer-> Dry
cake

·
materused
as
solvent
in
any
proces
,heat capareally
i
a
so
,
sequential
separationof
S-l
.
Slurry
-Filtration-wetCake-Dryer-Dry
cake

Extraction
:
Liquid-liquid
separation
(based
on
misubility)
Acetone
Water
(mix)
=
Toluene
lorganic
A
+
B
solventL
->
& So
Raffinate
Sigued
Meture-
A
+
B L
+
A
(Process
Liquid)
->
Extract(desired
pat
in
solvent
settles
ofheaverA
:
distributionfactors
%
A
is
more
miscible
un
A
,
Allwill
behigher

eg.AntibioticslikePenicillin
can
beextractedby1-1separation
Distillation
:
1-1
separation(based
on
valatility)
steam
(7)
extractingenergy

-
>
more
volatilecomponent
M
Rebater

-
IVIzes
volatilecomponent)
Steamfeed
T feed

·
AdsorptionColumn
:
S-l
separation
or
LiquidMeture(A
+
B)
Similar
schemefor
oCDesorption
"P
Spent
zand(B)

Adsorption
of ↑
B
directionreversed
in
case
of
gases
Gases
.T
eg
.Separating02
+
N2
nextureusingPSA
(PressureSwingAdsorption)
:
-

(A
+
B)

stripping
&
feedsolvent..
- ↑

-
A
isbeingstripped
outusing
L
mi
-

+
A
A
+
B
Gfeedline

QuesMix
2streamsof
sucrose
sol'swithdiff
come.
Feedshaving
mass
fracofsucrose
ofOh
Feed2
"
Wewant100kG
sucrose
so
with0
.
3mas
fraeof
sucrose
.
CalcratioofFeed
1&2fordesired
F
,
(0
.
1)
Song
>
Fout
->
100kg
=
30kg
sucrose
Song
Fu
10
.
3)
RatioofF2toF2
=
1
:
/

50x(0
.
1)
+
50x10
.
3)
=
3
+25
=
30kgin
100
kg
sokg/h
=
0
.
3mas
fraction
~0
.
GkgAlleg
G9RgA/KUORY
-
OhgBlk
-

Gorg/n uug/h&
-> mass
flow
rate
?
a
KgAIng
ausin
"
composition? b
kgB/
kg
0
.
5KgAlkg
------
0
.
5kg
Blkg
30kg/h
0
.
3
kgA/leg
everall
mass
balance
:
100+
30-40-30
0
.
7kgB/leg
-
x
=
0
=>
a
=
60kg/h

overall
comp
.
Balance
:
A
:
50+9
-
36-18
-
an
=
0 :outputstream
59
-
54
=
aX60
5
=
60 a 60kgth
a
=
%
=
365ugin
A
35kg/hB
Now
,
componentstream
①&
composition
B
:
50
+
21
-
4
-
12
-
bx
=
0
71
-
16
=
60b
55
=
60b
=
b
=
1
22

Eth
August
Enzyme
or
Biomas
catalyse
A
+
B
->
P
+
BP
aCgH1206
+
bNM3
+
cO2
ZdCuHyOz
NoteCa
,
My
,
Oz
,
Ns
,
+
fCO2
+
gHz8
in
a
celllikeE
.
coli
,
95
%
iscontributedbyCHON&5
%
by
otherelements
actualMW
=
Was
,

wash
,
centrifugethebromass
,
thendry
it
.
-
murobalance
->
accurateweight
(say
2
.
1
..
g)
#
Biomass
+
On t
&
ICHON)
gas
mixture
afterburning
O+
residual02
TCDThermal
Conductuity
Detectortomeasure
cone
ofNO

NOz
&
marked
(removed

#
CO2
,
128
,
No
,
all
are
comingfrom
BM
UtofBiomass-(molesobtained
*
Molweightof
H/C/N]
=
cutof
O
in
BM
Toget
100%MWofBM
weconsider
5-10
%MWcontributedbymicronutrients
totheremaining90-93
%
obtainedbymicronutrients/
elements
landthenbalancethe
ear)
5
%
Ashcontent
*Excess&LuntingReactant

->
Reactor
Et
ResidualReactant

ResidualReactant
?
-
X
=
Reactant
in-Reactant
out
=
Conversionfactor
Reactantin
to
improve
processeconomy
weX&
trytobringitclose
to
1.
SinglePath
System/Mult
Path

path
:
howmanytimes
areactorstream
ismoving
thruthesystem
?
ResidenceTime
SemiBatch/Fed
Batch
->
ConstVolume
(add
some
,
removesome
,
but
not
continuously)
->
VariableVolume

BatchTime(tb)
Residencetime(T)
(Batch
,
Semi-Batch)
CSTRS
:
BMisshearsensitive
,
we
can't
Heupinabove
a
certainlevel
,
whichmight
not
be
enoughto
keepBMfromsettling
so
sold-lea
separationwill
occur. -
BMsettles
->weremoveit
4)
put
it
for
recycle
->
--
- interacting
-
streams
purge/discardedBM

non-interacting
streams

#Selectivity-rateof
desiredpt
a
pat

Instantaneous
anystream
,
calc.rates

performance
of
individual
process
units
OverallSelectivity
rateoof
desered/undesired
in
the
final
stream

ProcessDiagrams
->
ThemostprimitiveProcess
Diagram
will
haveinput/output
streams
representsprocess
infoconuselybyprowdingallrelevantdata
->
Dataomittedherein
thediagramwill
bepresent
in
theprocesssheet
.
TypesofProcessDiagram
:
1Input
/Output
Diagrams
boxes
2)FunctionalDiagram/flowsheet/chart)
definesfunctionsofindividual
units
3)Operations
Diagram(each
streamhasnumericalvalues
defined
,
whatgoing
standardsymbolswhere)
detaileddescriptionoffloorlines
·
insteadofboxes
unitehave
symbols
:filters
,
reactors
,
pumps
,
heatexchanger
,
etc
all
not

6
-
-
"
=>
-
heatexchanger pump
reactor
-
fetter
distillation
adsorption
unit
unit
4)
Process
InstrumentationDiagram
(Pnl)
/ControlLoops( P&IProcus&InstrumentationDiagram
ControlUnit
:
takes
feedback
fromthe
reactor
intermsofelectricalsignal
measuringsay
,
Do
value
.
ComparesttothesetPointvalue
,
E
takes
an
actionwhenthere's
a
differencebiw

Tutorial
I
①E
.
coliisaddedtovigorouslyaerated
mediumcontaining10g/LEtOHandafter
sometime
,
the
ETOH
come.
becomes291Land7
·
5g/Laceticacidis
produced.
Howdoestheobservedyieldof
acetic
acidfrom
EtOH
compare
with
the
theoreticalyield
?
CzHsOH
+
O2
->
CH3COOH
+
H2O
Imal Imol
SgEtOH
-
7
.
5gAcH

->
Ee
=
5X60=>
7
.
59/60g/mol
7
.
5 x46
-
89/46gimo
=
0
.
718

Trueyield
a
CzHzOH
+
bO2-CHzCOOH+at2O
Ye
=
Males
ofActprocess Y
=
&frombalancea
storchometric
ea
usually
<
Yobs
whenonly
one
substratepresent
sometimes
,
when
2subs

①Batchmixing
process
200kgof10
%
wi
Methanol-watersolutionismusedwith100kgof
70
%
wiMethanol-watersolin
a
Batchmixingtank
.
Whatisthe
final
ant
I
compositionofthe
solution?
40
%
of200ng+70%%
of100kg
=
80+
70
=
150kg
Methanol
in
300kgsolution
=
50
%
w/wMethanol-
water
sol
(300ng)

Q1000kg
,
batchofpharmaceuticalpowderisdriedin
a
freezedryingoperation.
5%win
moisture
afterdrying
,
90%
ofthewater
is
removed
-
Calc.
Fina
batchcomposition
I cut
ofmoisture
removed
.
5
%Winwater
in
1000
kg=50kgwater

90%
of
this
removed>
45kgremoved

Skyremaining
5kgmosture
in
950hqpowder
=
-X100
=
0
.
52%
955

&
Gasleaving
a
fermenterat1atm
Pressureand
25temphasthefollowing
composition.
78
.
2%
N2
19
.2
%Oz
2
.
6%CO2
Calculatemass%offermenteroff-gas
.
If
you
have
a
CO2
absorptiontank
,
thenwhatwill
bethe
mass
ofN2El

in
theoutletstreamofabsorption
unit?
let
total
molesbes
0
.
7821
moleN2
~0
.
782xx289
=
20
.
384x&Total
=
27
.
6720g
0
.
192nmoles02
->
0
.
192x
x
329
=
6
.
144xG
I
0
.
026
x
molesCO2
->0
.
026rX44g
=
1
.
144xg

·
allCO2
is
absorbed
:
assy
assuming
new
total
mass
=
20
.
384
nNa
:
38x100
=
13
.
6
I
02
Max 100
=
22
.
20
%
newmass%:
CO2
:M
X100
=
U
.
13
%
Nux
. .

CsHi20s
+
aO2
+
bNHs
>
Cy.uH7
.
3 01
.
2
No
.
86
S
X
+
dH20
+
eCO2
conventionally
,
yieldsfor
gaseous
products
:
mol/mal
yields
forsolide/bq.
products
:
glg
OGiven
,
2/3rdofGlucose
'C'
goes
toBroman
Calculate
a
,
b
,
c
,
d
,
e
and
Yxs
,
YY/02
If
BMcontains
10%
ash
,
findits
actualMW
.
W
(obtainedfor
a

stoichiometric
balances
:
C-balance
:
6
=
4
.
4c
+e
:
Erdof
C
fromGlu
-
B
=>1
.
4c
=
4
=c
==
and
e
=
2
H-Balance
:
12
+
3b
=
7
+
ad
2d
-
3b
=
5
.
36
-
D

Obalance
:
6
+2a
= 1
.
2
+
d
+
2e

6
-
1
-
4
=
d
-
2a
3
.
07
0
.
909
=
d
-
2a
-

2a
=
3
.
07
-
0
.
909
-
=
1
.
08

Nbalance
:
36
=
0
.
86x1
1-2(6
=
0
.
26
putting
inQ
2d
-
3(0
.
26)
=
5
.
36
2d
=
6
.
14-
=
3
.
07

AvailableelectronbalanceE
Degrees
ofReduction
specific
toCcontainingempoe
+
4
+
1
-
2
CgHi20s
+
aO2
+
bNHs
-
>
Cy
.
u
H7
.
3 01
.
2
No
.
86

max
oudiedstate
Ginammonia
120
+
e
CO2
+
y
-
4

a
.
einc
=
4
V
=
available-percarbonatom
:
CH1206
=
@
+
2X1
+
6X-2
=
G
=(degreeof
reduction
a

->
0(NH3]
->
O
>
CwHnOyNz
+
aO2
+
bHgOuNicCHrOBNs
+
ACO2
+
substrate N-source
Biomass↓
eH2O
+
fCjHuOeNm
W

of
1
.
organicpat
Vs
=
4w
+u
-
2y
-
3z GeneralBiochemicalRxn
VB
=
u+x
-
2B
-
38
-
ta
C
Availablee-balance
:
wUs-Ya
=
cVB
+
fjUp
TheoreticalOuygenDemand
a
=
wVs-cVB-fjUp
of
NH3istheN-source U

ManyfacultativeorganismsproduceCHy(methane)from
C
inlow
EN2O fromN
O2
conc.
CHy-18X
greenhouse
potentialthanCO2
N20
->
270x
Also
,
Ratof
available
e inreactant
i
wVs
-
Ya
=
1
CVB
+
fjUp

substrated
wrs
=
cVB
+
fiUp
+
a
1
=
(c)
+
(+)
forMaxBiomassproduction Theoretical
negligibleproductionofotherpots MaxBromassYield
CaxUB
=
1
=
Cmax
=
W
VB

Theoretical
MaxPotYield(considerBM&02Fraction
zero)
frax
=
WUs
:
Up
Butinreality
,
some
CO2 I
water
will
be
produced(someO2willbe
consumed)

Oues)BiomassconvertsGlu
->
CO2
+
120
al
metabolic
rxnof
Gluis
the
common
resperation
rxnin
presence
of
O2
.
Metabolic
vexn
for
glucose
Thecell
compositionis
CH200
.
55
No
.
2
+
5/ash
.
Yield
of
BMfromsubstrateis
0
.
5919
If
notmentioned
theoreticalobserved
NH3
as
Nitrogen
source
CalculateO2demandwithgrowthElcompare
withdemandwithoutgrowth
.im ca
justresperation
CoMizO6
+
aO2
+
bNH3
e
cCH200
.
35
No
.
2
+
dCO2teH2O
-180gsubstrate 12
+
2+
16(0
.
55)
+
14(0
.
2)

gogBM
=
236
=
26
.
9glmoa
=>26
.
9xc
=
90 VB
=
y
+
2
-
2(0
-
55)
-
3(02)
=
4
.
3
c
=
3
.
34

TheoreticalO2demandwithgrowth
a
=
ebe
Upo
U
a
=
24
-
14
.
362
=
2
.
4095mal
Y
TheoreticalO2demandw/Ogrowth
/just
respiration(
CoH1206
+
602
->
6CO2
+
6120

a
=
6
mal

8thAugust
-
usually
-
Stainlesssteel
Iwithglasslining
or
highgradeforinertness
316L
-
Production
vessel
woodenvesselsdeliberatelyused
inbrabies
toenhancetaste
,
aroma
disposablereactors
can
alsobeused
eg
forMammalian
cellproduction.
(but
very
expensive

airinlet
tempbrobe
DOProbl
PH
->
HeadPlate
-
rubbergasket
almostall
- accessoriesimpellers
are
placed
on
thehead
plate
Callholes
on
headplateto
Li
not
create000
,
00
-
S
unnecessarypressure
on
reactorwalls)
GPressureunbalance

toarrest
deflectionof
a
longshaftrodintall
reactors
,
a
ballbearingis
addedatthebottom
.
but
unnecessary
shaftweight(in
theemptyworkingvolheadspace
creates
load
on
themotor
.
..
forlargescalesystems
:
BOTTOMmountedshafts
arepreferred
.
with
mechanicalsealtopreventleakage
-largescale
-
designconsiderations noglassjacket(uneven/draste
change
in
tempblu
instead,
&steam
coil
or
electric
la
en
reactor
us
jacket
can
create
thermal
B
000,
00
-
S
heaterstress
that
breakstheglass
Jacket(
·
drain
or

Bottommountedor
coolantcoil
discardvalue
w
mech.
seal

PH
,
tempEDOsensors
atmultiplelocations
Log
mean
DO
emp
Do
-
one
atthetop
,
one
DO
?
largescalereactoratthebottom
,
cm
their
log
mean
diff.
Pressureat
PPh
:very
tallliquid
height
Temp
·
)
pro
so
Dowill
besignificantlyaffected
Control
:
log
mean
Dowillbecalculated.
signal
receiver
<
comparator
-
actuator/activator

DO
control
actuatoractivateseither
:
increase
motorspeed
orflow
rateofO2thrusparger
pHcontrol
actuatoractivates
either
:
alkal
pump
it
pump
Tempcontralactuatoractivateseither
:
heatingcoil
orcoolingjacket
depending
on
themag/sign
ofthe
error
value

Drawafunctionaldiagramfor
YeastProductionin
a
large
scalefermenter
:
eachstreamis
&)
Deniallin
welldefinedwith
numbers
Efunction
Inoculum
-
Offgas
Clarfer-
>
Sterilizer
-
1
fermenter
Brothfilter
filtrate
->
unit
names
Slurry
->mass
streams
Molasses ↓ labelled
↑ Biomass
->
energy
can
be
Af omitted

Now
,
convertthe
functionaldiagramto
an
OperationalDiagram

mass
Elenergy
inputsspecified
numerically?
Inoculum
-
Affgas
/min
Clarfer-
>
Sterilizer
-
fermenter
brothfilter
filtrate
1 orSlurry
Malaseslgth regin

↑ Biomass
Air4/min

Youshould
beableto
make
FunctionalDiagrams
&Operational
wirBiomas
usgiven
ofeach
unit=90%, $
2tonnesof40%.
conc
Slurry
needstobeeg
f Spreparedperday
,
make
an
operationaldiagramfor
thisprocess
ofyeart
&functional production
.

12thAugust
Processflowsheet
is
Itspresentationmustbeaccurate
,
comprehensive
a
complete
similar
to
a
logical
diagram
.
BlockDiagramis
thesimplestformofrepresentationof
a
processwhereeach

blockrepresents
a
single
pieceofequipment
Incertain
cases
,
a
singleblock
canbeusedtodescribe
a
complete
operational
stage
.
Usefulfor
representing
simple
processes
.
Butforcomplex
processes
,
itsutilityis
limited.
III
OperationalDiagram/Pictorial
detailed
flow
chetudfordesign
operationwhere
up
drawn
s
BS1553
-or
ANST/AmericanNationalStandardInstitute)
British
Standard
for
set
of
symbols

-
-
-
-
L
-
C
O
weight
ElectricalLoadingSpray Rotary
G
devicedevice device device movement
6

H
Boundary
zine-
Stirring
Discharge
to
Equipment
device AtmosphereBranch

or
3
- -
I =
HE
------
------
T
-------
------
+S
~ ~
>
Pressure TrayColumn
↓ Vessel
Shell
&TubeHE

Fluch
- Contact
a
=
#
1x
E
->
-
-
It
/
-=
~
-
T

↓ Absorption
simplecolumn Russel
withpackedbed
representation

-
-

>
↓ ↓
00
OpenTank
Clarir
or
SettlingTank&
-
DometypeGasHolder
CentrifugalPump Rotary
Pump
orRotary
compressor?

ElectricMotor
ReaprocatingPump
RollCrusher
.....
x
Filter Filter
Press
RibbonBlender
-
RotaryFilter

T
#
1111%
->
"¥ ↓
Centrifugal
compressor Cyclone
separator
BeltConveyor
ScrewConveyor


-

-
-
-
-
=-
Bowl
Turbine
/
Centrifuge


3
T
Elevator
-~ ~
Reactor

-
S
a ----
streame
information
in
boxes
y
compulsory/mandatory
+
optionalunfo
one
typeofduignpractice

anothertypeofdengnpractice
:
2
-1
S----
y
12345
E

EssentialInformation OptionalInfo
·
StreamComposition
Mass
·
Malar%Composition
·
FlowRateof
eachcomponent(mostlyrg1h)
·
PhysicalPropertydata
Oor wocanty
,
I
,
surface
tension
StreamComposition
as
mightfraction
·
StreamEnthalpy
·
TotalStreamFlowRate
(mostly
Mass
flow
Rate
kg/h)StreamName
StreamTemperature
·
StreamOperatingPressure/Required
OperatingPressure

#
Whilegivingphysical
propertydata
,
we
report
mean
valuesofphysicalproperties
StandardPractices
indrawing
:
2.
Equipmentshould
bedrawnapproximatelytoscale
2
.
Principal
Equipment(usuallyreactor)should
bedrawn
in
itscorrectposition
la
proportionalityfactorforsizeshould
be
followed
across
equipments)
3.Connectorsto
beusedbluseparatesheets
1000-
lon
next
page) 10

markedproperlywithhighprecision
E
basiccalculationshouldshowproper
mass
&energybalances(accurate)
Eltimedependentparametershould
be
rational
&
common
foralloperatinglines.
similaruntconventionsacrosssupplylines
,
backedby
proper
rationale
assumptionsshouldbelisted
atthebottomof
the
table
.
->
for
continuousoperation
,
Imaynotbementored(can
be
calculated
~
butforBatchoperation
,
to
mustbementionedatthebottom/
in
thetable
->
servicewhitesmaynotbedescribed
in
the
main
sheet
-
Symbolsforthemeg
SUI
can
beexplained
in
a
separatesheet
.

Abbreviations
forSymbols
:
Reactor
-
R
HeatExchanger
-
HE
Column
-
C
Felter-F
uncommon
abbreviations
can
beexplainedatthebottomofthesheet
.

follow
theclassandpracticeregularly
.
14thAugust2024
Flowsheet
calculations
Streamflowsandcompositioncalculatedfrommaterialbalance&diff
designequs
obtainedfrom
the
process&equipmentdesignconstraints
②typesofdeugnconstraints
:
externalEinternal
designconstraints
Withinexternalconstraints
we
have
·
potspecifications
,
safety
considerations
affectdegn
nations
->
greennorms,
effluent"
(
000
effluentis
environmentallysafeIegproducing
Penicillin G
outofallotherpenicillins

directlylinkedtoproductionprocess
-Withininternal
constraints
:
-
process
stoichiometry
-
exnconversions
I
yeeld
-
chemicalequilibria
-
Physical
"
-
energybalanceconstraints
Elgenerallimitations
on
equipmentdesign
->
authoritiesaudit
process
plants
[GMOnorms)
O
external
constraintsneedtobedealt
with
even
thetheymaynotaffectthepot
yeld/
qualitydirectlybut
whothe
process
maynotbe
allowedtobesetup

effluenttreatmentmayneedtreatment&equipments
willneedtobedesigned
orrecyling
leventho
no
directlinkoftheeffluentto
productioncapacity)
more
more
constrainespopupateachscale-upstep
eg
.
mass
transfer
,
heattransferconstraints
selection
ofparameters/crucial
us
auxillary

weakly
dependent
Strongly
dependentparamete
equipmentde
aparameters
or
streams
are
the
ones
associatedwith
equipmentdesignwhose
performancecanbe
assumed
,
or
approximatedw/oentroducing
ugnificant
error
in
theflow
sheet
Geg
.
assumingdensityfor
dilutea
solutionsto
beclose
to
thatofwater
:
assumptions
inP
of
liquidthat'sunchanging
won'tbe
problematic

Calendaryear
us
ProductionYear
I
calendaryear
-
dauntime
operationaldays
,
operationalhours
Capacity
per
hourI
alculatedfromhere
/flow
rates
etc)
some
unplannedshutdownsmaybe
accountedforin
a
contigencymargin
C
(emergency/contingencyfactor

CapitalDepreciation
Payingyour
Expenditure
inInvestmentemployees
evenCapital
on
unproducturedays
:.
Bare
minimumdowntime
,
only
what
isrequiredfor
maintenance
.
yield
or
molt
per eg
overall
50%
yield
&paper
molRawmaterial
=>
forevery1kgpot
,
2kg
raw
materialneeded
alsocalledscale-upfactor?
scalingfactor

scalingfactor
canbe
usedto
estimate
raw
materialrequirementfor
scale-up
or
scale-down
Eachscaleneedstobe
optimisedseparately
El
a
realisticvalueforyieldiscalculated
say,
atlabscale toget
10
,
000kg
antibiotic?
20
,
000kgraw
material
zkg
raw
materi
aa
->

,
10
,
000ng
antibiotic
0
.
5 kg/kg
yeld
say
now
,
0
.
4
ge
optimise

usuallyyield
goesdownasme
scale
up
BUT
largerscalesystems
can
becontrolled
betterwithcontrolsystems
C5)
y
thepot
is
favored
ina
controlledsituationthat
canbebetteroptimised
at
a
larger
scalethenthat
might
givehigheryield
egproductionof
ETOHby
a
microderophile
easier
in
largerscalewhere
low
DO
can
bebetter
controlledrelate
toshaes
a
Softwares
:
ASDEgoodformakingflow
sheets
Chemdraw,

P&IDiagram
:
Piping&InstrumentationDiagram
criteriaforselectingpiping
material(costlyinvestment
·
mechanicalstrength
·
chemicalproperties(shouldbe
inert
Wi
easy
maintenance
·
typical
case
of
flowlines
so
sedimentation
,
scaleformation
,
frictionallossshould
beminimumtoreducepumpingcasts
pumps
,
values
,
otheraccessoriestocontrolflow
:
instrumentation

a
P
&IDiagramshouldhave
:
all
process
equipmentidentifiedby
an
equipmentnumber
,
and
equipment
drawnmustbe
roughlyin
proper
locationof
nozzles
,
values
,
pumps
shouldbeshown
000allpipesshouldbe
identifiedby
a
specificlinenumber
O
-
o
Repesize
,
materialofconstructionEl
diff.accessoriesofpipes
shouldbe
oO
undicated
(union
,
elbow
,
T/Yjoints
,
sockets
T
Jointhassuddendirectionchange
(909
-
max
pressuredrop
-
chancesofprecipitationofhighwsoety
leg
=>
chancesofclogging
..
Yfountpreferred
over
T

accessoriesofpiping
:
socket
me
en
a
-
um
union
preferred
if
it
needs
tobeopenedfrequently

--
>

itispreferrednottoposition
a
valuehere
butcreationofbypass
line
can
bedonetocreatebetter
control
on
thedeliverylinewo
excess
pressure
on
thepump

delivery
line
>
XD
->
bypass
line
failureofpower
willleadtovaluesto
not
workelectricvalues
depending
on
theneed
d
~
failto
openvalues
solenoidvalues
use
->
fail
toclose electromagnets

#allvalues
with
an
identification
number
,
type
type
can
beshowedwith
a
symbol
orbe
includedin
thecodeusedfor
identification
ancillaryfittingslikesideglasses
(watch
glass
,
strainertofeltersolidmaterials
fromthefeed
,
moisturetrap
,
steamtrap)
"
,,,,1 can
be
numbered
I
describedbelow
/ANA
,
ANZ...
#Pumpsshouldbeidentified
,
w
their
respective
symbol/codenumber.
AllcontrolloopsEltheirinstrumentsIf
dealing
in
simple
processes
,
keep
utility
Elservice
lines
in
thePnI
drag.
for
complex
processes
,
service dutilitylines
can
have
aseparatedragbuttheir

connectionsmustbeshown
on
theequipmentwithnumbers.
Samenumbering
conventions
must
beused
across
difflevelsofcomplexdrags
1
.
c
.
same
numbering
scheme
forblock
-
functionalsoperational
-
Pn7drag.
N FailsOpen
-
Power
Failure-
Value ~ FailsShut

-
=
MaintainPosition
LocallyMountedPanelMounted
/InstrumentationControlUnit
I
when
asp
.
levelofvalueneedsto ControlUnit
mounted
remain
open
allthe
time
,
solenoid
mounted
locally)
somewhere
valuescan'tbeused
or
needpowerbackup)
on
thesystemelse
itself

MechanicalparameterstoconsiderforPipingDesign
:

BBL732
ASSIGNMENT
AMBIKABATRA
2021BB10329

Set
BBLT32ProblemstoPractice
AmbikaBatra
2021BB10329
@
Gasleaving
a
fermenterat
...
1atm
25
°
C
comportion
:
18
.
2%
Na &
19
.
2%Oz
mole
%
2
.
6%CO2

fromIdeal
GasLaw
,
PV
=
nRT
P
=
1atth
&van
R
=
0
.
0821LatmK
"mel'
T
=
298K
considering1m3ofoff-gas
:vol
%
will
beproportionalto
mole
.
in1ms
off-gas, andin
100molesofgas
:
0
.
782
m3
:
Na 78
.
2moles
:
N2
0
.
192m3
:
Oz 19
.
2moles
:
02
0
.
026m3
:
Coa 2
.
6
moles
:
CO2

a)
MassComposition
:
calculating
mass
ofcomponents
: mass
N2
:10
.
2x
98
=
2189o
2189
.
6*100
=
75
.
0%
2918
.
4
02
:
19
.
2X329
mee =
GlUUg
X100
=
2%
CO2
:
2
.
6X44glmal
=
114
.
4g
Y
Y
X100
=
3

b)
mass
of
CO2
in
each
[m
ofoffgas
CO2
:
Vol
xno
of
molesof
gas
(PV
=
nRT)
In1m3of
gas
,
volofCO2
=
0
.
026
m
·:
PV
=
nRT
wecan
calc
.
I
(no
ofmolesofCO2
in
thisvolume
1
atmx
0
.
026
X1031
=
n
10
.
0821
(am)
28
n
=
2
=
1
.
06males
0
.
0821X298
Xyng/mel
=
4675g
CO2

#
2
CoHi20
+
NH3+
1
.
502
->
CgHaNOu
+
CO2
+
3H28
Glucose L-Glutamicacid

160
+9+14+
64)glma
=
147
glma
massof02requiredtoproduce1479Glutanueand
=
1
.
5X32g
:"
"
159
Glutamicand-18
XI5
147
=
4
.
89g02

Ans3
CoHizO6
->
2CHzOH
+
2002
Glucose EtOH
log/L 3
.
29/L

1gt
Bases
:
11
Ima
Glu-
>
2 malEtOH(theoretically
alractional
conversion
X
we'llfirst
calculatehowmuchglucese
was
directedtowards
ECOHbiosynthesis

massofGlurequiredfor
3
.
2gofETOH
2
3)2gEtOM
=
0
.
878molEWH
46glma
from
Stachometry
,
0
.
078malETHrequires
00
=
0
.
033mal l
=
0
.
035X180glad
=
6
.
39Glu
1theoretically
butexperimentally
,
logGlu
was
presentperIL

6.3gglu
was
usedforZWH
SynthesisEl10gwas
available
:
X
=39
=
0
.
63
109(available)
But99
ofGlu
was
consumedfromthesalh
:
X
=
639
=
0
.
78
aglactuallyconsumed

b)YETOH/
Gle
99Glu-
>
3
.
29EOH
per
:
Yuld
=
32g
GO
=
0
.
33g
o
And
30
%water
-225%ETOH
15%MeOH byweight
12%
Glyaro
10%acetic
acid
8
%
benzaldehyde

In1009
solk
,
30g
water
=
30
=
1
.
67mal logActuaced
=
10
=
0
.
17mal
CH3COON
Go
239EtOH
=
2
=
0
.
34modto 8gbenzaldehyde
=
8
=
0
.
073mol
GH60
106
159CHzOH
=
E3
=
0
.
47mal
32
12gGlyceral=
=
0
.
13mal
C3H803 a2
total
moles
=
3
.
055males

Molefraction
:
water
:
0
.
55 glyceral
:
0
.
042
ETOH
:
0
.
18 ACH
:
0
.
056
MeOH
:
0
.
15 Benzaldehyde
:
0
.
024
stachiometry
foraverallsynthes
:
167CH1286
+
2NH3
+0
.
502
+
HaSOU
+
CHgOa
Glucose
->
GoMsOuNaS
+
2CO2
+
9H20
Penicillin

a)Maxtheoreticalyieldfrom
glucose
=
smal
Penicilling
glmal
-
1
.
67malGlu
=
0
.
6mol/mal
=
111
gig
b)from
the
1
.
67
molgluavailable
,
only
6
%
(0
.
06X1
.
67)
of
it
was
usedfor
0
0
Penicillin
=
0
.
1
malglu
=
189Glu-
> 1
.
11X18
1
.
67
mol
-
=
19
.
989
Penicillinfrom
300
.
69Glu

=
1998
g
a
=
0
.
066
glg/actualyield-
3
.
591
m
50g/LGlu
Yg/LPAA

i)Limiting
Reagent
1
.
67melGlu-1mo Penicillin
1malPAA- 1malPenicillin
Yeeldcale
·
un
(b)
=
0
.
066
glgPenicilm/Glu
perlitre
:066
g
Penicillin
X44
.
59Glu(consumed)
g
Gl
per L
=
937 g
Penicillinproduced
=
0
.
009mol
Peneluo

perL
:9
PAApresent
=
0
.
02
ma
perL
:
6%
ofGlaavailableforPersullenprod.
=
6
%
of=o
gimal
=
0
.
0167male
every
mal
ofPenicillinrequires
(molofPAA
1
.
67molofGlu

&(basis
:
amtofglucoseconsumedforpenicillinproduction
=
6
%
of
49
.
5
=
2
.
679
=
1
.
48X10-2
moles
amtofPAA
availableforpemallinprod
=
4g
=
49
132g/mal
=
2
.
qu
X102
moles
-
[X1
.
67
:
4
.
91X10-2 mol
>amtof
gluavailable
4
.
91X10-2
molesGlurequiredfor
Glucoseis
theLimitingReagent itscomplete
conversion

]
11basis
50g
-
3
.
59/left)
Glu Glu
un
100L
Glucommmed
=
44
.
59-
>
4450gGlucoseconsumed

24
%ofthisusedforgrowth
=
1068gAutal
Glucoseusedfor
growth

Actual
ofPenicillin(b)
=
0
.
066
glg
=
0
.
066X
44
.
5X100L
↓Total
Glu
consumed
=
296g
is)final
come.
Of
PAA
.per
L0
.
009molesofDemallin
were
produced
=>
"I
"PAA
were
consumed
=
0
.
009X132g
=
1
.
188g/L
PAAconsumed
=>
1911-1
.
188glL
=
2
.
812
gllleft

Ans
MFfor
cells
:
Cy
.
th
.
301
.
2
No
.
so
cubstrate
:
C6HzU
CoHzn
+16
.
2802
+
1
.
42NH3
->
1
.
65
Cynth
.
301
.
2
No
.
so
+8
.
74CO2
+
13
.
11
H20
a)checkingofbalancedof
IHS
=
RHS
16
=
7
.
26+
8
.
74-
yes
,
balanced3
3
+4
.
26
=
12
.
045
+26
.
22v
32
.
36
=
1
.
98
+
8
.
74X2
+13
.
11-
N142
=
1
.
65x8
.
86
-

b)
mal
Citzu-1
.
65moles
Cynth
.
301
.
2
No
.
so
(12x16
+
34)g
-> 1
.
65(12X4
.
4+7
.
3+
16x1
.
2+14x0
.
86)
226g
-
=
150
.
7g
130
.
79
cells
226ghexadecane
=
0
.
67gig
C)

.
T
galls
=
0
.
29
glg
16
.
28X32g0a

d)finally
:
2
.
5kgofalls
=
2500gcells
=
2009
=
274mala
i)
mun
amtofLenadecane
=
1
X
molesofcellsneeded
(for
100%Conv
.
)
1
.
65
=
16
.
6moleshexadecane
=
16
.
6X
2269
=
3751
.
6g
=
3
.
75kg

i
min
come.=
6g
=
125
ii)
air
at
20
,
1atm
27
.
4molesofcells
require
28X274moles
of
=
270
.
35moles02
PV
=
nRT

assuming
a
is
21%O2
=>
total
molesofairrequired
=
n
=
2035
X10
=
1287
.
36moles
air2xn
=
270
.
35
PV
=
nRT
latmxV
=
1287
.
36X0
.
0821Latm
X29317
-
Kmol
V
=
30
,
9671
=
30
.
9m3

An
Corn
steep
liquor
Beetmolasses
2.5%invertsugars 50
%sucrose
50
%
water
1
%
invertsugars
18%
water
by
Joe
e
#Okg
+x
->
2%
W/Winvertsugars
2.5
%
of125+11.of45
=
2%of1170
+
x)
3.373
=
0
.
02
/170
+
x)
=0
.
024
=
3
.
575
-
3
.
4=n
=
0

sucrose
50
%ofU5kg
=
5%
of(170
+
8
.
75)
22
.5
=
2x178
.
73
100
=>
S
=
12
.
6%
AM8EIOH-AcH

->
LughAch
CHOH
->
CHaCOOH
+
02
+
H20
cone
ofAct
Air-
=
12%
200mal/h

per
hourbasis
:
a)
20009Act
produced
=
glmal=
33
.
33
moles/h
Ima
ETOH->
ImalAct/under
100%
conversion)
..min
.
33
.
33moles
ECOH
required
=
1533
.
33g
ELOH
b)
20009AcHmustbeat12%come.
inside
reactorxu
=
Gu
=
200
=
1667kg
of so
=67kgwataIG
-
2kgACH

c)Comportionoffermenteroff gas
33
.
33molesAcHrequire33
.
33moles02perhi
input
rate
=
200ma/kAir
assuming21%O2
79
%
Na
=>
Input
:
42moles02
,
158molesNa
consumed
:
33
.
33moles
Output(Offgas)
:
(42-33
.
33molsO2
,
158molesN2)
Offgas
=
5
.
2%
02
,
94
.
8%
Na

AmaXanthur
gum
Experimentally
,
Yoz/e
=
-
0
.
23
glg YH20/m
=
0
.
13glg
YNH3/Gl
=
-
0
.
01g/g
ugum/Glu
=
0
.
75glg
Yals/Gm
=
0
.
09glg
YCO2/Ge
=
0
.
27 glg

T
Guen
gumque
=
0
.
75 g1g
20
,
000L =>0
.
75
=
700-
130kgoffers
X
cut
in
20
,
000Lwater x
=
10X
final
gum
conc
.
=
3
.
5
% 3
(20
,
000
kg)
=
933
.
33g
35x20
,
000
=
700kggum
finally
produced
3
X
(20
,
000+
x)
=
x
700
+
0
.
035x
=
x
-
700
=
0
.
965nTh
=

a)amtofGlu&NH3
required?
amtofGluconsumedtoreachthefinal
come
ofgum
=
933
.
33g
amtofNHsconsumed/gofGluConsumed
=
0
-
01glg
=>
totalNH3consumed
=
9
.
33 g
-
b)whatpercentageexcess
airis
provided?
genen
Y0z/Gm
=
-
0
.
23919
=
0
.
23glgX
933
.
33g
=
214
.
7g
02consumed
Ycoz/glu
=
0
.
27 g/g
=
amtofCO2
=
0
.
27g/gX
933
.
339
Glu
=
252
q
CO2formed

200rymair-
ProductDig
3.5%
Xanthangum
=
0
.
035Pkg
20
,
000L
M0
.
767AlgN2-
-
> 30kgoffgas

>Air
final
gum
conc
.
=
3
.
3
%
wit
Akg
moles
[L23
t

PreliminaryCalculations
:
Airis
21
%
O2
79
%
Na
In1moleair
0
.
21mole02
=
21x32glmo
=
6
.
72g
0
.
79moleN2
=
0
.
79X28
glma=212g
228
.
849
ut%:02
=
62X100
=
23
.
3%
N2
=
x100
=
76
.
7

SinceNaremainsunreacted,
76
.
7%
ofAkg
remains
unchanged
=
0
.
767Akg
in
offgas
.
MassBalanceTable
:
(kg)
In
StreamGluO2N2CO2 Gum
CellsNH3H2O
Total
Feed ?000 00?
20
,
000
F
Air
00
.
233A0
.
767A
O A
Pot
-
---880
O
offgas
-
-
-
- - -
g
Total F
+
A

OUT
StreamGluO2N2CO2 Gum
CellsNH3H2O Total
Feed
-
-Air
i
-
Pot P
offgasO
?
0
.
737A?
O00 O 1258
Total
0
.
737A 0
.
0359 1250
+
Pkg

Yoz/ge
=
-0
.
23
g/g
YNH3/Gl
=
-
0
.
01g/g
final
gum
conc.
in
Pot
=
3
.
5%
=
0
.
035Pkg
ugum/Glu
=
0
.
75glg
:
0
.
35ggum
is
produced
per
1g
Gluconsumed,
Yals/Gm
=
0
.
09glg
YCO2/Ge
=
0
.
27 glg
YH20/glu
=
0
.
13glg
=>5
g
Glucomumed
=
0
.
0467P
hgGluIn
OverallMB
:
F
+
A
=
P+
Affgas-Q
NH3consumed
=
-0
.
01gigX0
.
0467PRgGlu
=
0
.
000467PkgNH3
F
=
20
,
000kgwater
+
0
.
0467PGlu
+0
.
000467PNH3

①becomes
20000+0
.
04674
+
0
.
0004674
+
A
=
p+1258
18730
+
A
=
0
.
953P
-

O2comumed
=
0
.
2391gX0
.
0467Pkg
=
0
.
01074P
CO2produced
=
0
.
27glgX0
.
0467P
=
0
.
0126
P
=>Offgas
:
1230kg
=
(0
.
233A-0
.
01074p)
+
10
·
767A)
+
10
.
016p)-
Oleft
N2
same CO2produced

:
1250
=
A
-
0
.
010744
+0
.
0126P
1250
=
A
+0
.
00190
-
&'
/
18750
=
-
A
+
0
.
9534
-
2
Adding
1
+
20000
=
0
.
9549P
=>
p
=
20
,
944
.
6hg
..
O2consumed
=
0
.
01074 p
leg Gluconsumed
=
224
.
94
=
0
.
0467P
hg
=
978
.
11
kg
NH3consumed
=
0
.
000467
x
20
,
941
.
6
=
9
.
78
lg

b)What
encers
airis
provided?
02provided
=
0
.
233A
=
281
.
98
O2required
=
0
.
01074P
=
2249Ukg
from②
1250
=
A+0
.
0019
9
1250
-
0
.
0019/20
,
944
.
6)
=
A
A
=
1210
.
205leg
%excess
provided
=
281
.
98
-
224
.
94X100
224
.
94
=
25
.
35
%

#10Cozy
+
a02
+
bNHz - CH16600
.
27
No
.
2+
dCO2
+
et2O
genRQ
=
0
.
43
=
d
=
0
.
43
Individual
elementbalances
:
a
=
d/0
.
43
CBal
:
16
=
c+
d
-

c
=
16
-
d
-?
HBal
:
34+
36
=
1
.
66c
+
2
-

O
Bal
:
2a
=
0
.
27c
+
2d
+e
- ③
becomes
:
NBal
:
b
=
0
.
2c
-

34+
3/0
.
2c)
=
1
.
66c
+
2e
3410
.
6116
-
d)
=
1
.
66(16
-
a)
+
2e
-


becomes
:Ed
=
027(16-d)
+
ad
+
e-x

34+0
.
6/16
-
d)
=
1
.
66(16
-
d)
+
2e
-
⑤d
=
0
.
27(16-d)
+
ad
+
e-x
-
9
.
3d
=
-
0
.
54(16-d)
-
1d-2e
- "
3+9
.
6
-
0
.
6d
=
26
.
36
-
1
.
66d
+
e
-
'
43
.
6
-
9
.
9%
=
26
.
56
-
8
.
96
+
0
.
54d
-
4d
-
1
.
66d
43
.
6
-
9
.
99
=
17
.
6
-
5
.
12d
26
=
9
.
9d
-
5
.
12d
26
=
4
.
78d
d
=
5
.
44
,
a
=
=
126
,
c
=
16-5UU
,
b
=
02XO
=
10
.
56
=
2
.
11

from

43
.
6
-
26
.
56+
(
.
66
-
0
.
6)d
=
2e
e
=
11
.
40
cells
ANDCoHi2O6
+
602
-
GCO2
+
6128(duringgrowth)
allcomposition
:
CH1
.
84 00
.
53
No
.
2
+5%ash
MWx
=
12
+
1
.
84
+0
.
55(16)
+0
.
2/14)
=
26
.
78glmoh
0
.
95
YXs
=
0
.
5g1g
-
0
.
59
X
=
3
.
36
gmo
I MolarYuld
-
26
.
789/mol
-
19/1809/molGlu

TheoreticalOuygenDemand
a
=
wVs-cVB-fjUp
of
NH3istheN-source U
MolaryeldofBM
is
thestouch-coefffor
BMofstorch
-
Coeff
ofsubstrate
=
1
VBforCH1
.
800
.
53
No
=
u
+
184
-
2(0
.
53)
-
310
.
2)
=
4
.
14
2
a
=
G(u)
-
3
.
36(4
.
14)
=
2
.
52
Y
..Ofdemandwithgrowth
=
2
.
52gmal02/gmd
Glu

Inthe
absenceof
growth
,
no
Glu
is
consumedforBNsynthesisItallofitis
oxdisedto
CO2
+
H20
aspertheresperation
eqh
:.
O2demandW/Ogrowth
=
GymolO2/gma
Glu
b)
EtOH
as
substrate
fractionalallocationoffrom
subs
to
subs
TBM
subs
to
of a=
WVs
MaxpombleBM
yieldis
whenallesgofromsubs
2
BM
1
.
e
.
In
absenceof02
=>1
=
C
&wopatformation
WVs

CaM30H
:.
Smax
=
=
=
6
forEtOH
,
Vs
=
6 forGlu
,
Vs
=
&
UB
=
4
.
14
VB
=
U
.
14
W
=
2 w
=
6
Cmax
=
u
Cmax
=x
u
=
5
.
80grnd/gmd
=
2
.
9gmd/gmd=
26
.
78g
=
1
.
69g
o
=
32678
=
0
.
80g

onmass
base
.
YSH
*
2) YXsal)
And
CH3COOM
+
NH3
-> Bromass
+ T
H20
+
CH
ICH
1.
400
.
u
No
.
2)
Y
CO2/s
=
0
.
67kg/kg
=
0
.
67gly
=
167g
=
0
.
911small goal
ugimal
Togimal

CH3COOH
+
bNHz
->
cCHinOo
.
uNo
.
2
+
dCO2
+
eHzO
+
fCHu

0
.
914
performingelementalbalances
:
c
=
2
=
c+0
.
914
+
f
-
0
-
f
=
1
.
086
-
C
i
Hi n+3b
=
1
.
4c
+2e
+
If
-

u
+0
.
6c
=
14c
+
2e
+
4(1
.
086
-
c)
0
:
2
=
0
.
4c
+
2(0
.
9(4)
+e
-
-
2
-
1.828
=
0
-
4c
+e
-
N
:
b
=
0
.
2
-
&:
0
.
6c-1
.
4c
-
2e
+
yc
=
4
.
344
-
48
:
04c
+e
=
0
.
172
3.20
-
2e
=
0
.
344
-
②"
I=
0
-
172

f
=
0
.
91 =>
YCHy/X
=
0
.
914qmal/goal
b
=
0
.
0344
e
=
0
.
1032
MaxPossibleYeldofMethane
is
whenallfromsubs
-
pot
orn
=
fi
j
=
1
CHU
Up
=
4+4
=
S
Tfmax
=
CH3COOH
Us
=
8
+
4
-
4
==
gmo/gid
=
..91
.
4%of
max
yield.
=
4

Ans13
:
all
Crubs-
>
BM

0-96-6 012
.
76
CH2OG
+
bNHz
-,
Chis6005yNo16
+
d
+
eH2O
VB
=
y
+
1
.
56+0
.
54(2)
+0
.
161
-
3)
=
4
MWofcells
=
12
+
1
.
36+0
.
54(16)
+0
.
16
/14)
=
25
.
73
glad
0
.
95
Performingelemental
balances
:
Actual
YXs
=
G gmal/gmal
6
=
C
I
=
0
.
86
g19
b
=
0
.
16c
=
0
.
16x6
=
0
.
96
6
=
0
.
54(6)
+e
=
e
=
2
.
76 (max
=
w
=
=
Ggmalgn
a
&

:
actualyeld
ofBM
=
Maxpossible
yield
i)
AnotherSystem
:
CHzOH
+
aO2
+
bNH3
->
cCH16800
.
36
No
.
22+
dCO2
+
eH2O
MWofBiomass
=
12+
1
.
68
+0
.
36(16)
+
0
.
22(14)
=
23
.
96
glmal
0
.
94
VB
=
U+
1
.
68
-
210
.
36)
-
310
.
22)
I
Us
=
Y
=
4
2
=
6
=
14.3

ElementalBalances
:
1
=
c+
d
->
d
=
1
-
C
4
+
3b
=
1
.
68c+2
-
4
+0
.
66c
=
1
.
68c
+2
1+
2a
=
0
.
36c
+
2d
+e
=
1
+2a
=
0
.
36c
+
2
-
2
+
e
b
=
0
.
22c
Cmax
in
the
case
=w
=
means
1
.
03g
C-malyieldfrom
glucess
isIgmal/gmo
Reasonforincreasedyield
:
highVsforMethandthan
Glucose.

i)
quen
,
actualyield(c
=
0
.
42X
1
.
40
gma/gmal)
=
0
.
59gena/gmot
for
no
potformation
,
O2demand
a
=
1/wVs-
CVB)
=
1x6
-
0
.
59X4
.
30
=
0
.
87gma/gmot
Y
=
87g/gMWforbath
same

A
->Of
gas
(47LO2
,
I5LCO2
u
10
day
14239
3%
Glu
1
.
75
%NH3
->
Draineda
9
5
.
25%
H20
M
1110
g
0
.
063%
Glu
latene
,
25
°C 1
.
7%NH3
22c/minfor
10
days
CH1206
+
aO2
+
bNHz-cCHaOpNg
+
dCO2
+
eH2O

Total
are
spargedintoreactor
in
10days
=
22cm3
X
10&X24h
X
60 mu
Tur
V
=
3
.
17x105am3
:
PV
=
nRT
n
=
PV
RT
=
latix3
.
17X10L
=
12
.
95gmd
0
.
0821X298K
Au
:
21
%
O2
,
79%
N2
=>molesof02
un
=
0
.
21X
12
.
95
=
2
.
72gud
=
87
.
04g
=>
" "N2und
out
=
10
.
23mel
=
286
.
49

Total
mase
of
our
in
=
A
=
373
.
449
offgas
:
UTLO2
,
15LCO2S -
n
=
PV
=
0
.
613gmal
-
n
=
PV
=
1
.
92qual RT
=
26
.
979
RT
=
Glung
=>
man
of02consumed
=
25
.
60g
&Total
massofoffgas(G)
=
374
.
81g(02
+CO2+
N2)

Total
man
balance
:
1798
.
44gtotal
mas
in
=
(1110
+G
+
B)
out
=>B
=
313
.
639
a)
:
thedry
biomassproduced
=
1X313
.
63g
=
20
.
92g
IU
El
mass
of
water
in
biomass
=
(4X313
.
639
=
292
.
T1g
1+14
Glubalance
:
42
.
79
in
=
0
.
699gout
+consumed
Gluconsumed
=
12
.
05g
NH3balance
:
24
.
94g
=
18
.
87g
+
consumed
NH3cons
.
=
G
.
07g

b)Reactants Pats
go
=
=
On a
Hoo
=
2583
=
1
.
433good
UN
=
G07
=
0
.
357
and
NBM
=
20
.
92
MWB
these
are
storhometriccoefficients

0
.
233
(6H1206
+
0
.
802
+0
.
357
NH3-2092CHROBNs
+O
.
GB
O
+1
.
435H28
=
0
.
233
(for
per
quo
glu
(M1206
+3
.
4302
+
1
.
53NH3
-T9
CHOpNs
+2
.
63C02
+
61
ElementalBalances
:
C
:
6
=
0979
+
23
H
:
12
+
3 (1
·
53)
=
3
.
37a
+
2(66)
=x
=
1
.
27

0
:
6
+
2(3
.
43)
=
3
.
37B
+
2(2
.
63)
+6
.
16
=
7
B
=
0
.
43
N
: 1
.
53
=
3
.
378
=
8
=
0
.
45
:
CHaOpNs
:
CH
,
2700
.
43
No
.
13
c)
MalesofGluIn
=
0
.
24gial
7
02In
=
2
.
72
gid
"
NH3In
=
1
.
47gial
O
,
E,
1
:
bySC)

smallestGlu
iszinting
.

d)YX/s
=
2929
BM
=
0
.
5g/g(dryweight)
42
.
059Glu
Aus15GlycerolC3HsOMW
=
92g/mal
C3H8O
+
a02
+
bNH3
->
c CHaOpNs
+
dCO2
+
eH2O
from
PaulineDoranTable1
.
3
,
wecan
taketheorganum'sMolecularFormula
as
CH1
.
7300
.
43
No
.
22
VB
=
4+
1
.
75
-
2(0
.
43)
-
310
.
22)
=
4
.
23
MWBiomass
=
12+
1
.
75
+0
.
43(16)
+0
.
22
(14)
=
25
.
8
glma
0
.
92

YX1squen
=
0
.
4g/g
Glyc
O2requirement
a
=
1WVs-cUB)
=
(3x4
.
67-1
.
93X423)
=
1
9gl a
gund
=
11x3
An16
anerobegrowthElpatformation
=
0
.
69glg
CoHi206
+
bNH3
-
>
CHi800
.
3
No
2
+
dCO2
+
eH2O
+
fCcHsO

YXs
=
0
.
11g1gforyeast
,
0
.
05g1gforbacteria
for
yeast
,
c=
MWs=g
X180
=
0
.
81
gmol
na
for
bacteria
c
=
5 X88
=
0
.
37geollgno
a
ElementalBalances
(Yeast]
C
:
6
=
c+
d+
2f
=
0
.
81
+
d
+
2f
=d
=
5
.
18
-
2f
H
:
12+3 b
=
1
.
8c
+
2e
+
6f
->
10.54
+
3b
=
2e
+
6f
0
:
6
=
0
.
3c
+
2d
+
e+
f
->
5
.
595
=
2a
+e+
f
N
:
b
=
0
.
2c
=
0
.
16

Bacteria
:
10
.
54
+
310
.
16)
=
2e
+
6f
C
:6
=
c+
d
+
2
e
=
5
.
51
-
35 Hi1810
.
37)
+2e+
6f
-
11
.
33
+
3b
=
2e
+
67
68
=
10
.
2939
0
:
0
.
310
.
37)
+
[d
+e+
f
->
5
.
815
=
2d
+e+
f
Ni0
.
210
.
37)
=
0
.
074
f
=
here
e
=
5
.
78-3f
:
Yps
=
1
.
72gind/smal6f
=
11
.
225
f(pat)
=
1
.
87
YPIs
=
1
.
87
gmol/gmot

b)fruax
=
s=
=
2amoloma
·
yeart:86
ofthereticala
is
An
assuming
no
pots
:
CH1206
+
a02
+
bNH3
->
c CH1
.
1900
.
36
No
17
+
dCO2
+
eHcO
c
=
Y
MWsubs
=
2
.
65gmalan
a Y
XIS
=
0
.
37glg
MWcells
=
25
.
16glia

..
2
.
65gmdcells/gmal
Gluconsumed
O2demand
:
0
.
88g1g
=
0
.
69
gmal/gmal
butobserved Odemand
=
qu
(26gma l=
VB
=
(xh
+
1
.
79X
1
-0
.
56(2)
-
0
.
17(3)
=
4
.
16
TheoreticalO2demand
:
a
=
1wVs-cUB)
=
3
.
24
Cegnificantlyhigher
thanobservedformation
ofotherpotsacting
as
-acceptors
likely

Ansi8MW(NHula
Son
=
132glial
MWBM
=
26
.
16
glial
14
Bases
:
Prodof25galls
->
23
=
0
.
956
gendllo
1gendcells
-
8
.
25
gidN
0
.
956""
-0
.
239gidN(from
N
source
Nsource
(1gmal)
-
2 N
:
@
andN
sourcereq
.
=
O
.
12X132glma
=
g
to
:.nun
conc
=
15
.
9
glL

Ans19Guun
,
Proteinpat
:
CH1
.
33 00
.
31
No
.
2
E
.
coll(frombook)
:
CH1
.
7700
.
ya
No
.
zu
CGH206
+
a02
+bNHz
->
c
Ch
1.
7700
.
na
No.
zu+
dCO2
+
eH28
+
f
CH1
.
3500
.
31
No
.
25
MWBM
=
25
glma
MWpdt
=
22
.
83gima
YPIs
=
0
.
2X0
.
48
=
0
.
096g1g
given
YMS
=
0
.
48glg
f
=
YXMWs
=
Ozagnd
c
=
08
x180
=
3
.
46
gmd/gmo smal

a)
NBalance
:
b
=
0
.
24c
+
0
.
25f
=>b
=
0
.
24(3
.
46)
+
0
.
25/0
.
79)
b
= 1
.
03
NH3rea
=
1
.
03
gmd/giol
Glu
b)Up
=
U+
1
.
55
-
0
.
31(2)
-
0
.
23(3)
=
1
.
18
Ozdemand
a
=
WVs-cVB-fiVp
=
24
-
3
.
46(4
.
07)
-
0
.
79(4
.
18)
& &
= 1
.
63qmo/gma
Glu

c)
If
f
=
0
but
c
=
3
.
46
NBalance
:
b
=
0
.
24c
=
0
.
83
:.me
cutE
.
coleNH3requirementdecreasesfrom
1
.
83to0
.
83
gia/gmd
Orrequirement
:
a
=
wV-cUB
=
24
-
3
.
46(4
.
07)
=
2
Y
O2
demandAses
in
cutE
.
cole
from
1
.
65to2
.
48gmol/gmol

Ans
20
CH60
+
a02
+
bN13
->
c CH1800
.
3
No
.
2+
dCO2
+
eH2O
+
fCaHyOa
MWBm
=
24
.
63
glad
YXIs
=
0
.
149
=
MX46
=
0
.
26
gmol/gat
i
YP/S
=
0
.
92glg
=
2 x 46
=
0
.
11gmd/gd
a
Us
=
6
,
Up
=
4
,
Ve
=
4
+
1
.
8
-
0
.
5(2)
-
0
.
2(3)
=
4
.
2

O2demand
:
a
=
wVs
-
cUB-fjUp
=
12-0
.
26(4
.
2)-0
.
71x2XY
& H
=
1
.
31gmol/gmol
WithGrowth
:1
.
31gmalO2viaper
gmaGlu
WithoutGrowth
:
Igna
O2
reapergiatEl
=>39
%increaseun
02
demand
.

AugustMaterialsofConstruction
forProcess
Equipment

loss
of
material
dueto
erosion
productioncost
1
.EffectofStress
2.
Erosion
3.
High
TempOxidation Operatingtemp
Clowalloysteelshowhightempoudation
rapidly
->
<500
°
whereas
Crcontainingalloys
can
withstandhighertemp
>500%
chromealloys

4.HydrogenEmbrittlement
-lossofdubblyof
a
material
caused
by
absorption
Hydrogenassistedembrittlement
majorissueswithmetalhealth.
SelectionofMaterialforCorrosionResistance
:
factors
:
1)Temp 5.Oxidation/Reduction
2)
Pressure
S
.
Slurry/PureLiquid
,
3)pH 7.Mixingof
liquid
ina
reactor
4)Purityofalloy
,
impurities
present8
.
Contaminationligorousmixing
O
willcreate
abberations
on
wall)

MaterialofConstruction
:
1)
Tron
2)Steel
->
difftypesbased
on
compositionI
c content
i)LowCarbonSteel
(MildSteel/MS)
easy
transformationwelding
,
bending
strength
,
ductility
,
workability
.
g
notresistanttocorrosion
can
beused
inindustrialenvironmentswithlesscorrosivematerials
/solvents
eg.organsolvents
ii)
StainlessStul(SS)
mostcommonly
used
inindustry
.
Crcontent12%
resistscorrosion
inadd"tobeingstrong
,
Ihaving
good
workability
,
ductility
it
is
alsoresistantto
corrosion
.
YangCr
%Usesresistanceto
corrosionbutshouldn'tbeTsedbeyond
20%
otherwisemechanicalproperties
are
compromisedIstrength
,
duckling

Add"ofNi-
>
Resistancetocorrosioninreducingenvironment
Add"ofCr
>
"
""Oxdiing"
MengC%
.
beyond
a
point
-
buttleness
C%maintained
<1%
confers
strength
Cry"
>12
%*
20%
Nix
.
"
<10
%
Crackpropagation
in
brittlematerials

Ferritic
->
13-20%
Cr No
Nickel
10
·
1
%C
RestFe
Austentic
->
18-20
%
Cr
NoCarbon
mostcommonlyused >7%
Ne used
inmildCorrosue
env.
Mortensitic12-10?%Op
esNi
22
%
No
Type
sav
also1818steelSS
0
.
2-0
.
4%C
SS301
or
18/8SS

Type
316Steel
:
Molybdenumadded
eg.dilute
SS316
(Mo) higheramtofCI
more
resistancetoreducing
corrosiveenr
CorrosionResistanceofSS
SSTypes
:
306 304L 321 316 316L318
Ranking
& 1
.
D 1
.
1 1
.
25 1
.
3 1
.
6
(CorrosionResistance
Scale)
selectappropriatetype
ofSSbased
on
corrosion
resistance
needs

Deignstress
shouldnotexceed
Mechanical
stress
StrengthofSS
(N/mm)
Temp
is
a
crucialfactorin
strength
Temp
(oc)
300 400 500 600
MS 77
6
e
-SS304
or
18/8108 62(
prometoThermalstress/

Monalmetal?
Ni-CuAlloywithN2
:
Cu
=
2
:
1
:
significantimprovement
in
corrosionresistance
food
industrystillwes
e
containers
alloyreatoras
->
C
gettleachedintofood&YesNututionalvalue?
->
Antibacterialproperties
Cu-Su
:
Bronze
Scannotdeal
w
ammoniacalenvironment
Su-In
:
BrassdelH2SOuproblematic
can
handlealkalineconditions

Allining/based
alloys
are
highlycorrosionresistantbutlowtensilestrength
Al
basedalloys
can
beusedin
:
TextileIndustries
I
strengthnotvumpbutanti-corrosion
Food
StorageofReactureMaterials
Duralumin
:
improvedtensilestrengthE
also
corrosion
resistant

Lead(Pb)
strongresistantto?
Titanium
goodresistancetoredying
enr
but
experie
lunert)
biocompatiblematerials(prosthetics
HeatExchangers
(cyclicthermal
stresstolerated
Plasticsplasticlivingforante-corrosion
wheremuchmechanicalstrengthnotrequired

1)
ThermoplasticPVC
,
etcPTFE(Teflon)
,
Polyethylene
softerdueto↑se
in
tamp
2)Thermosetting
regedmaterials
,
crosslinked
Polyester
,
epoxy
resins
pipes
,
living
ofvessels
Composite
materials
ofpolymersfellers
&
plastasescan
semech.properties
can
havemechanicalstrength
,
good
corrosionresistanceetc
00
-
pump
impellers
,
pipe
fillings
,
values

FRP
:
FiberReinforcedPlastics
Tease
or
Cfiber
Ases
mechanicalstrengthofThermosettingplastics
(asmuch
as
MS
advantage
:
cheap
.
piping
,
flow
ofadnesseliquid
,
high
pressureliquid
Disadvantages Advantages
->
plasticsare
flammable
I
-
GoodResistancetocorrosion
->
interact
withorganic
solvents
socan'tbeused
-
Mech
.
Strength
can
beusedby
O
withthem
(
can
dissolve
in
someorganic
reinforang
with
fibers
solvents)
Is
easilyhandledilmineral
acide,alkalis

EpoxyResins(expensive)but
goodresistancetoAlkalis
->
strength
~
MS
~
muchhigher
corrosion
resistance.
Gaskets
Rubber
,
metal
,
asbestes
softmaterialthatshowsgoodstretchability
Naturalrubber
canalsobeusedforpiping
->
and
,
alkalitolerated
->
but
notresistantto
cone
HNO3
or
organeacids

CeramicsElGlass
:
Brittle
but
vv
resistant
corrosion

Borosilicate
glassvV
commonlyusedun chemical&Brochemicalindustries
(Glasslined
SSwesels)
resistantto
:
and
,
alkale
,
salts
,
oxidying
,
reducingem
,
organeacids

PackingMaterials
->
enert
->
light
->
provdeSA(forbroflm
form")
->
durable/mech.strength)
stonewareused
intrickling
felters
,
packedbeds
Asbestesusedforliving
Einsulation
3utilitylines
Glasswool
Refractorymaterialswhendealingwith
v
hightemp

heatresistantbricks(refractorymateriallined)
es
Pyrolysesreactor800-900
SS/MS/Titanium
vesselwith
inner
wallmadeofandresitantbrucks
or
-externally
asbestos(refractorymaterial)
providesMech
.
Strength
Coating
:
barrier
biwthe
materialI
outside
en
When
we
requireprotectionfromand
,
heat
,
light
,
ete

Microwave
over
cavityisprotectedwith
a
ceramicpaint?
thermalpaint
provides
thermalstability
stableat
1100
%
C
PowdercoatedMStoprotectMSfromCorrosion
Spraypainting
g
Hughtempspraypainting decreasescrack
Metalexposedtohightempthenspray
painted propagation

intermediate
compounds
(Primers)firstpainted
(Binder
1-
kindbendtopaint
tometal
Thus
iseadhesion
of
thepainttothe
metal
.


ItAugust
MechanicalDesignof
ProcessEquipment
StaticLoad
W
W
STRESS
W
&

f
=
wA

near
stre a
at area

W
↑ ↓
+
s
=
W
A
W ofchange
in
dimension
occurs
CompressionTension
duetofs
,
thenextentof
deformation
is
measuredbystrain

STRAIN
=
*
dimension
dimension
THERMALSTRESS
-1-E
E
metal
rodfixedin
placebut
temp
dimensioncan'tchangebut
stress
buildingup.

Temp=coffof
linear
panin
a f
=
ExXt

f
=
Thermal
Stress
Modulusofelasticity

if
freerod
:
ItwillfreelyexpandXL
4)
=
LXOt
stram
=
=
XXt
E
=
stre tram
ot
+
E
=
-f
=
Edit
beam
------
neutral
axes
umaginaryplanewheretensile
&
compr
.
stress
is
zero
neutralplane

Stress
causedbybendingEn---o
M
=
M
=
f
=
f
M
=
Bendingmoment
=
Momentofresistanceatthecross-sectionbeingconsidered
I
=
Momentof
inertia/second
momentof
area
of
cross-sectionabout
the
neutralaxis
f
=
Tensile/Compressure
bendingstressat
a
distance'Y'from
the
neutralaxis
z
=
Z
=
Modulusofsection

STRUTS? failuredueto

h
compres
a
Crippling
or
Buckling
longitudinal
compressionmay
cause
Structe
5
CripplingLoad
or
BucklingLoad
Short
struts
-
failureofthe
material
duetodirectload
p
=
fo
A


->
A
=
xnal
area
Itoload
LoadCompressive
stress-
mod
ofelasticity
P
=
a
<El-Mol
Fuler'sformula

lengthof
body/Light
ofchamber

LongStruts

↓d
C= Sufferingrunge
preventbuckling
-
-
-
our
ultunate
objective
is
tocale-Thicknessof
materialbytakingcumulative
stressexperiencedby
a
body
(I
can
withtand
it
+
IPYincperyearcorrosion
value
Isafety
factor

E
-applied
torque
=
Torsional
stress
I
=
"¥G
L
Ip
E
T =
appliedtorque
Tp
=
polarsecondmoment
,
of
area
fs
=
shearstressatradius
i
G
=
modulusof
rigidity
T
=
-I
O
=
angleof
twist
overthe
length's'
=
fsZp Ip
=
Ep
=
polarmomentofsection
M

P R
Todd
17
z
T
+H
...
--H2
fz=Spy<R(3m
+
)
- (m]
fu
=
3by((3m+
(R]

fz
and
fo
are
maximum
when
yismaximum
El
n
is
min
.
fz
=
fu
=3
33MR R
the
=
poisson'sratio
Crateofthestrainin
transversedirtothatof
longitudinaldirection

Uniformlyloaded
and
filled
at
theedges
:
stressatthecentre
oftheplate
:
fu
=
fz
=
M=
=
parson'srai
a
stressatthearcumference
:
fr
=(fr=

Perforated
plate
Maxi
stress
in
perforatedplate
g
Sp(pitch)
feax
=
max"
stress
insolid
00
ligament
effeciency
-
Rectangularplate
unformlyloaded
,
supported
atthe
perimeter.
-max
=
]
+
a

Generalequforthicknessofflatplate
t
=
CDP/fmax
Y
thickness
C
=
constant
;depends
on
edgesupport
(when
M
=
0.3typicallyfor
steel
of
eagesare
completely
rigid
c
=
0
.
43
ofedgesarefreetorotate
-
c
=
0
.
56
D
=
Effectureplatediameter
f
=
Maxmallowable
stress
(designstress)
1
.
e
-
calcCumulativestressX
safetyfactor

andSeptember
,
2024
1)CrumferentialStress/Hoop
Stress
2)RadialStress
3)
AvalStress/Longitudinal
stress
Thumbrule
:
Ratio
ofthicknesstointernal
diameter
is
less
thanI
,
then
it
may
be

assumedthatthehoop
stressandlongitudinal
stressareconstoverthe
thicknessofthe
cylender
theRadial
stress
issmallI
can
beneglected.
ThinCylinder
:
1)HoopStress
-internal
pressure
HoopStress
Ap
=
Pe
internal
diameterIt
thicknessof
cylinder
2)
Aval
stress
fa
=
P=
f

for
a
thin
sphericalShell
:
fp
=
fa
=
b
thin
sphericalshellunder
internal
pressure.
for
a
thick
cylinderunder
internal
pressure
innerouterdiasRadialstrus
fr
=
A-BR2
A
,
Bcounts
00g
Ovarysignificantly R
:
anyradues
Hoopstress
fp
=
A
+
BR
Axial
stress
fa
=
p
Ri
:
internaldia
R2-R&
Re
:
externaldia

A
=
PiRR-boR2
IR2
-
RY)
Po
B
=
/Po
-
pi)RiR
E
Pir
(R?-Ri)
thehighest
strees
Obtained
is
consideredthedaughstress

For
THICK)
spherical
shell
e
as
ind
once
internal
pressure
RadialStree
Fr
=
A
isfixed
.
A&B
will
beconstants
for
a
system
fp
=
A
+3
90'bend
in
pipe
:
suddenchange
in
flowdirleadstomuchhigher
amt
ofstresscome.
-

Frregularityin
stress
distribution
duetoabrupt
changesofformiscalled
stress
concentration
Themax
valueofstressatsuchpaintisgiven
by
a
stressconcentrationfactork.
K
=
ratio
of2difffactors
=
highestvalueofthestressat
a
specific
point
nominal
stressgivenby
elementary
ea
forminimal
crossection
eg
=
outputport
g
-riveted
plate
for
watchglass

-thermal
stress
absent
----
UPV
Unfired
PressureVesselFPV
FiredPressureVesselb
agnificantthermal
stress
superheatedsteam/electricalcoil
/
heated
diquid
abruptchange
indir
creates
high
strust one~
domeshaped watertanks
CS
flammable
gases
feel
tanksfor
domeshaped
closerslowerstress
come.

->> transient
,
conditions
startup/
maintenance
/
shutdownperiods
:
normalconditions
uss
temp
,
pressure
operatingconditions
-
environmental
conditions
extremeconditions(tornadoes
,
earthquakes
,
floods
Environmentalinfluences
are
alsopartofoperatingconditions
eg
.
brittleness
,
corrosioninduced
by
flow
etc
#ExternalLoading
(deadweightofaccessories
Ripingsystems
,
pumps
,
values
,
baffles
,
stirrers
attachedtothevessel
theyalsocreatestress
,
bothinnormalI
operatingcond

StandardsforReigningPressureVessels
:
standard
Standard
code
forUPVisIS2823andspecificationforformedendandtanks
UnfredPressureVessel
andnormalpressureVessel
,
standardcode
is[S4049
SpecificationforFlangeforvesselandequipmentis254869and154870
StandardforManholeandInspectionOpeningDesignforChemicalEquipment
:
2S3133
CodeofPracticeforDeign
,
FabricationElErectionofVerticalMilestellCylindrical
Welded
Ou
StorageTank
:
75803

SpecificationsofShell&TubeTypeHeatExchanger[S4503
Theexerciseofdesigningstandards
istohour
a
failsafe
reference
DesignCriteriadepend
on
ElasticAnalys
assumptions
:
materialissotropic
homogeneous
workingcond"
are
withinthe
clastic
range(extendingbeyondto
plasticlimitcreatesfadure
valueoftheloadforwhichmaterial
goes
totheplasticregion(beyond
clastic
lunt)
=
collapseload
or
bursting
pressure

of
a
materialis
under
certaincyclicloading
,
we
needto
ensurewe
don't
go
beyondclasticbut
.
Cyclicloadingshould
betested
in
such
a
waytomakesure
elasticlimit
Corrosionallowance
:
extrathicknessaddedto
counter
corrosion
forC-steel&CastFrom
:
1
.
5
mm
extreme
cases
ofdealingwithsupercorrosue
:
2X1
.
5
=
3
mmuquid
forhighalloysteel&non-ferrousmaterial
:
nocorrosion
allowancerea.

of
thickness
30mmthenalsocorrosionallowanceis
necessary.
5
componentsofvesseldesign
Shell
&
Head/Cover
Vessel
-
>
Nozzle
Daugh
Tat
short
->

mostcommon
in
vessels
Rivetedjoints
,
flangejoints
,
weldingjoints
00000
0

Radiography
EfficiencyofJoints
is
heckedbyX-RayforWeldedJointsElof
nogape
/
cracks
are
foundthroughoutthe
vessels
thenjointefficiencyconsidered
100
%
of
checked
ona
fewspots
by
Radiography
:
n
=
85%
1
11
by
nakedeye
:
50-85
%
Inoradiography)
forRivetedJoint
:n
=
70
-
85%
u
=
50-70%
=
IIIIII
ButtJoint LapJoint

5thSeptember
,
2024
.
Rivetedjoint
lesseff
.
thanwelded
joint
?
rivets
E
y
=
75
-
80% n
=
50 - 70%
ButtJaunt LapJoint
-
-
(lessefficient
,
-
-
there
can
be
00sheet
slipping
E

Howisjoint
efficiencycalculated?
O
based
on
stressbearingcapacity
JointEfficiency
X-RayInspection
can
monitorminute
cracks
··
certifies
100%
efficiency
whenthere's
no
crackfound.X-Raymontoring
tosubstantiate
the
claimof
100
%
y
,
X-Raycheckingneedstobe
done.
J
:
Jointefficiency(1
ofX-Rayconfirms100%,ofninualinspection
based
efficiency
is
considered
,
we
can'tstandardise
it
Ihastoconsidered
1.
Weldedjoints
>
RivetedJoints

sometimesthe
,
some
materialsnot
suitableforweldingImayneedtosufficewith
Riveting
.
Cylindricalallsubjectedtointernal
pressure
stresses
:
fp
=
H fa
=
PD(t)
4t
Hoop) (Axal)
Common
convention
:
tensile
stress(+
)
O
compressur
(-)
Ap
=
2fa
:Apishigher
,
then
it'll
be
considered
as
the
max
possible
stressusedtocalculate
thickness.

fp
=
f
r
design
stress
(maxstress
CYLINDER
Jointyt=p
=
p
Di
+
t
=
Do
f
=
y
=
P
=
Pi
=
pDo SPHERICALSHELL
4f]4f]-p
-
ness
considerable

Letofcontent
,
any
externalload
,
piping
I
deadut
.
bending
dueto
wind
Additional
factors(
1)InternalPr
2)Witofcontents
,
externalload
3)Piping
4)Wind
Stressesbecome
:
->
only
dueto
internalpressure
as
before
?
fp
=
p(Di
+
t)(t) fa
,=
p
(t)
dusto
internal
pressure
2t
fac
=
W
(t)
whycompressive?
7)
t(Di
+
t)
on
cylinderwalls
,
not
base
plate
witofcontent
,
vessel

->
bendingmoment
.
loadI
axs
ofvessel
fas
=
it onesectionexperiences
O
tencile
,
othercompressive
Total
fa
=
faitfaz
+
fas
to
ethis
mind
>
tensile
-scomp
particularlyformind
:
tooffectthewindstress
weneedto
createcertainatof
torque
.ts
=
1
torque
TItDi/Ditt)
stressthat
will
offsetstressdueto
wind
Isis
effective/netstress
in
bothradual
&analdirn
.
instead
,
fasonlyaxial


f+
&
fp
aresame
ShearStrain
EnergyTheory:
BrownelledYoung
Failure
of
thespecimensubjected
to
any
,
combinationofloadwhenthe
max
O
shearing
stressat
anypointreachesthe
failurepointequaltothatdeveloped
O
atyieldingin
an
axial
,
tensile
orcompressuretestofthe
same
material
Cateriaforthistheory
Fr
calculation
fre
=
Ifp-Epfa
+
fa
+
3fs)
Isheaustra
Energy
They
is
fr(Tensile)
Apit(permissible)

fa(Tensile)
Sp
,
/Permissible
fa/compressive)
<
fc
(permissible)
tfo(permissible)
=
-
-M2)
(Dolt)
forAlloySteel
E
:
Elasticity
U
:
passon'sratio

SS316
t
-t
-
·
Forrosion
allowance

to
-> 10
↓next
higheravailable
thickness
ofto
comes
outtobeour
degn
thickness
thatsatufes
stress
requirement
C
and
us
<30mm
(then
corrosionallowanceadded
ofdealingwith
corrosuemat
.
->vacuum
NEGATIVEPRESSUREinthevessel/orexternal
pressure
can
createdeformationofthebody
->
eitherMethicknessfurther
or
->
·
-
rigsatweakpoints
(calledstiffeningrings)
I
use
=
to
avoidlobeformation
(buckling/crippling)
material
lesscost
lobeformation
canoccur
by
excessivestress

-
-
critical
pressure
forbuckling/lobeformation
L
V
Pc
=
+((m
=1)
+
emM
n
=
no
·
oflokes

it
0
.
1
I 18
L/D
forPNID
:
eachstudent
will
have
a
uniqueprodcapacity
for
entereprod.processof
yeart/select
one
outofthe3
yearts)definedprod"capacity
Stateassumptions

&Septem
2024
POIDs
ITableto
explainindividualequipment
names
1Tabletoexplain
mass
&energy
input
,
outputs
symbolstorememberfromPerry'sHandbook
:
Utility
Line
Reactor
eg
.37
%
C
run
temp
,
but
felter
,
centrifuge ambienttemp28%,calc.energy
distillationcol
,
mixingtank requirements(
+
energyloss
O
heat
enchanger
,dryer,chilles assumptions
or
state
if
neglected
centry
,
reciprocatingpump
Boiler
,
diff.values
,
nomenclatureofdiffcontrollers

stirring
energy
requirementsfor
deffreactorvolumes
1fonne/day
capacity(YeastBiomass)
->
Reactorcapacitychosensay
:
10
,
0001
lookupfromtheatternetthe
kindof
energy
requirementsof
stirrerfor10kLreactor saccordingly
scale
upor
down
in
exam
I
stateassumption
-
similarly
,
pressuredroprequiredto
filter
a
5%-10%BMSlurry.
Energy
Requirementsforspecificunits
you'reexpectedtoknowballparksofenergyreg
.
fordiffunitsforreference
values
2)thenscaleup
I
downin
exam
[internet
sources]

1000Lreactor
usuallyrequires1Hpmotor

10
,
000Lreactormayrequire7-20HP
motor
/reasonable)
but
100HP(unreasonable)
so
ofyoudon'tknowclosetoaccuratevaluesfor
some
reference
,
youwantbeabletoscaleup/down
with
any
accuracy
.
you
could
assumeeffeciency
ofallequipmentstobe
88%
oranme
it
accessory
-
cue
DONOT
givevariablesto
giveidea
aboutpump
capacity

Pumpsonlyneededonce
(to
rasse
feedtofeedtank)
entire
process
flowafterreactor
can
bemanaged
bygravity
OnechartforNomenclature OneChartfor
equipment
specifications
PRFeedPump PR10HP
P2AndAlkaliPump
,
etc
P21HP
,
etc
· :

SetPoint
Valuesnot
requiredfor
controllers
butsp
.
symbolsshould
Stirrer
controller Jbutcontrolloopsshouldbecloud&equipment
pHcontrollermustbeconnectedtorespectivecontrols
ElectricHeatingCoils
easer
for
energybalances
(higher
energy
efficiencybut
some
usHeatExchangers safety&cleaning
concerns

localisedhotspotsmaygive
lower
energyeff-but
safer problems
w
nutrientmedia
qual
&heats
more
evenly scale
form"
oncalls
hard
to
clan
.
~
someunitsmayrequireheat
,
somemayneed needsproperearthing.
heat
extraction
:
heat
recoveryunitpossible
i
heretenchangersbutnotwithheatingcals
(so,
,
processeconomymisebetter

BrowniePointsforestimatingheatrequirements
usingHeatExchanger
.
Rational
guess
regardingaeration
rea
eg10
,
000Lreador
->
calclea
vol
(working)
say
,
9800L
&
rum
->
soyou
knowvolof
air
neededtobepumped

Energyveeq
forblower
to
supply&X9800L
Typically
,
ofratio
=
1forCSTRtypereactor
20
%emptyhead
spaceextra
for
acroble
vxns

sayworkingrol
=
10
,
000L
20%
head
=>
reactorvol
=
10
,
0001
+2000L
I
12
,
000L
-
=
1
calculatelength
-
>
then
use
itforovercominghydrostate
head
&
cale
.Blowercapacity
YeastPrep
:
Inoculumtransferrequired
atmultipleplaces
howdoyou
decidewhichpup
us
used?
->
10-200Xmore
expensive
CentrugalPump
cheaper
.ButDiaphragmPump
or
PeristalticPumpgoodforsterity
(BasseReg.

Staterationale
,
justificationforequipmentselection
Dewaivingmostlydonebyfelt/centrifugforBM
(yeasts
dryer
atmax
10-50
%
c
:
Pandrying
byevaporation
or
ethyleneoxidegas/SO2to
kill
bacteria
,
I
contamination.
the
amtofethyleneoxide
we'reusing
toI
shelf
life
ofspies
-
manycountries
banningIndian
spires
.ElEthylene
oudeis
a
known
carcinogen.

notrationalto
connder80-85
%
yforfiltration/separationunits
.
Consider
closeto95-96
%.
Scrapingsolidcatewentrecove100%
BM
.
Multistage
filtrationmayachieve
-
100%
If
felter
care
is
highly
compressible(eg
.
biomass)
Pressuredropdyffrom
uncompressible
cake
.
felteraidunparts
some
uncompressibilitytocompr
.
Materials(hard
mat.
as
felterand
If
we
addbetsofgrains(eg
.
tiles
,
diatomaceous
earth
,
glassbeads
,
smallparticles
that
createchannelsthat
and
filtration
.
O
You
can
improve
filtrationeasilyusingfilteraidif
youpotofinterest
is
feltrate
I
enterested
in
BM
:
felterand
(heavierswillneedtobeseparated
density
diff
-
settles?
I
separatesout
.

#
choosingequipment-wiseefficiency
:
BROWNIEPoints
The
more
detailIthoughtyouputintoyourP&ID
,
thebetter
.
Minor
20POID
(5
Func
,
5OperationalDiag
,
10P&
I
30marks
-
10marks
O
->
1 Ques
from
PuressMass&EnergyBalances
(likeassignment
~
High
Pressure
VesselDesign
eachsymbol
wdneedsnomenclature
typeofvalueusedneeds
tobementioned
.
Pipediameters
can
beomitted.
Iflowcontrolvalues
or
ON/OFFvalues

consideroverallboxesformultiunit
operations
(in
M&EBalances
(
startMEBcalc.onlyafter
drawing
blockdiagrams(don't
jumpinto
cales,
mastere-balances
,
stoichiometry
,
degreeofreductions
calc
.
consider
what
can
beconsidered
overall
insteadofcomponent
balances)

POST-MINORS

Wednesday
,
23thSept

Thursday
,
26thSept.

&
Design
a
shell/vessel)
andheadplate
.InternalDiaofshell
=
1200mm11
.
2 m)
G
&Material
ofConstructions
&
%Cr
18%
Ni
Permissible
stressof
thismaterial130 N/mm2
If
InternalPrusure
=
0
.
3
N/mm
?
Jountn
=
85
%
notofvessel
=
3200kg
torque Calculatethickness
I
due
tooffect
,
piping
,
mind
=
900Nm

HeadFlange
ExternalDra
=
1200mm
GrownRadius
=
1200mm
&verzea
a
KnuckleRadius
=
72mm
MOC
=
SS10
.
5
%Cr
.
18
%
Ni)
Jointy
=
100%
(Welding;thoroughlyinspectedbyRadiography
Bare
minimum
safetyfactor
=
10%
O..
ofvessel
internal
pressure
=
0
.
3N/mm
:
internal
designpreseurs
=
P
+0
-
IP
=
0
.
33
N/mm

Thicknessofshellcalculation
-
internaldesignpressurst
=
pi
internaldia
2f]-p
Jointy
design
or
permissible
stress
un
gett
=
0
.
33
N/mm2X1200
mm
2X130N/mm2X0
.
85
-
0
.
33N/mm2
t
=
X100
mm
=
1797
mm
/but
not
a
standards
a

vessel
dia(m)
MinimumVesselThicknessRecommendation(mm)
A


1
-
2
->
curt
=
1
.
8mm
<
7mm
ours
2
-
2
.
5
1
~but
minimumrequired
is
2
.
5
-
3 forhigh
pressurevessel
1200mm3-3
.
5 12 design
80
1
.
2
m
soour
+
=
7mm
-If
we'reusing
this
vesseljust
inch
peryear
?forstorage&no
p:requirement
from
datasheetyoucouldcheckIPV
?
then
we
couldsafelydoublethe
yearlycorrosion calculated&
use
It
=
Imm
CorrosionAllowance
-
30%
so
t
=
+0
.
3t
=
7mm
+G
.
Imm
=
9
.
Imm
->
liberty
tochoose
amm
:
alreadysafety

-had
it
been
9
.
5mm
go
for10mm
for
SS
,
nocorrosion
allowancerequired
so
Imm
straightawayisshellThickness
Usingthist
,
cheek
if
allconditions
are
satisfied
I fr
criteriasatisfied
ofnot
-go
fornextthickness(9mm)I
checkagain
.

3rdOctober
,
2024
metrictonne
=
1000 kg
USton
=
907kg
(ContinuedSolution
forprevproblem)
ft
=
p(Di
+
+)
2t
fe=
Difai
+
t)
+
3
=
0
(extpr)
designpressure

fs
=
pt
:)Di
+
t)
fa
=
fi
+
fz
+
+3
fr
=
[fR-ftfa
+
fa
+
3fs2]'2
ofquestionmentionsSSMoC
-
nocorrosion
allowance
rea
7 1
"some
otherMoC
-
corrosionallowanceforthatmaterial
""does
NOT
mentionMoC-state
assumptionsabout
yourMOCthen
consider
its
CA

first
calc.fr
and
fo
thencompare
,
ofbelowacceptablestressthen
elsego
for
next
higherthickness.
shellthickness
comes
outtobe9mm?
G
Head">=shellthickness
HeadThicknesscalc
:
(Ans-14
.
37
mm-
then
chooseclosestnext
levelfromstandard
table)
th
=
pu
w=
1/3+
Refe
numrasead
#Safety
factorfor
thehead
is
the
same
(10
%
)
:
same
designpressure
is
used
=
0
.
33N/mm2
x
(1200mm)
x
1
.
771 ↓
13
+d
2X
130
N/mm2
X1
=
2
.
697
mm
↑(3
+
10)
=
1
.
7706

#
if
mentionedthevessel/headisexperiencing
entpressurebutnotmentioned
Nowmuch
,
thenusuallyconsidered
1
.
6-1
.
7times
the
internal
pressure
#y
mentionedthoroughly
checked
byradiography
,
then=I
11
checkedat
some
places thenJ
=
85%
11
l
"by
nakedeyethen-50-85
%
-Sir's
Solution
pipe
jointsea
undersse
->
but
pressurecanmake
these
slip

for
pressures
upto20kg/cm2
Fe
tocounteract
interprese
either
riveting
Beyondthis
,
or
welding
Standardsfor
piping
joints
[S6392-64??
1S4864-4869(Standardsforflanges)

Flat
RingGasket
.
0
.
5 mm-3mm
eg
in
blenders
,
miners
,
grinders thickness
lunhioningtoprevent
abrasion)
Below120°
>
Rubber
,
Paper
upto350
-
Asbestos
About
350
-
Metals(soft)
Temp
,
settingstress
are
factorsto
choosegasket
material

ServatedGasket
M
- ↑serrationto
maintain
roughness
-
-
Sufficientlockingto
notgetleakage
- ·"smoothnessis
good
,
but
roughnessisbetter"
-
Zia(2024)
LaminatedGasket
sandwichedmaterials
duetochange
inelastic
properties
in
thegasket
-
metal
tolerant
tovariablepressures
/highlow
-
>
asbestos(diffelasticity)
O
-
met
al
more
flexible

Corrugated
GasketConetypeofselfsealinggasketwhich
can
work
in
highertemp
a
flexible
pressure
Eltemperatureranges(both
corrugated
&serrated
Self
-sealing
ket

IUthOct
,
2024
FLANGEDeign
-
Design
Steps
1)Selectionofgasket
2)Flangefaung
3)Betting
4)HubProperties
3)
Flange
with
a
eness
Maindesignconsiderations
are
O
1)
to
improvethecontactpressureatthegasket-flangeinterfall
under
all
serviceconditions
&topreventleakage

2)to
create
lightly
enforced
wooverstressingthebalt
3)to
ensure
structuralintegrity
oftheflangeIminimise
deflectionofflanges
1)elasticReaction
:
withinelasticlimits
gasket
onlythegaret
surface
willtry
to
fill
theurregularitiesoftheflangefaces
2)
PlasticReaction
gasket
is
overstrued
I
itsmassbecomesplastic

3)SpringyReaction
GasketiscompletelyenclosedwithintheflangeIbehaves
like
confinedfluid
for
estimating
sezingofgaskets&determiningthe
no
E
diaofbatts
1)
AtmosphericPressure
2)
Operating
Pressure
1)
Underatmosphericconditions
gasketreaction
Wa
=
Ag
-
sealing
stress
(seatingstuss)

Wp
=
AgYp
+
Anp
We
use
Hooke'sLawtogive
us
relationshipsblumaterial
properties
Xy
=
Ya
-
Yp
XT
=
T

-
Ya-Yp
->
modulus
UT
=
0L
+
2Δf ofelasticity

>
changein ofgasketY
change
change
in
in
deflection
weam
forclasue
or
gasketbalt
offlange springy
rxn
(d
not
plastic
Micknesslength rxn)
I
dueto
lightening)


lengthofbalt

change
inboltload
,
varieswith
pressure
0
=
1W
T
modulusofelasticity
ofbelt
XArea
ofcrossectofbolt
&W
=
Wp-Wa
change
W
Y
under
un
baltunder
atmpressure
loadoperating
=LAW
pressure
&W
=
Wp-Wa
Of
=
c&W
=
AgYp
+
Anp-AgYa

=
Ag(Yp-Ya)
+
Anpconst
(deflectionfactoroffraa
OW
=
Anp-OYAg

-
relatedtogasket
nowwe
haveDW
ito
DY
wecan
replaceIW
in
expressions
its #
wecan
geteverything
expressed
its
Y
.
Yaisalways
greaterthan
Yp
.is
significantforrubber(
:Egsmall)aT
u
large
formetallicgaskets,
I
can
be
neglected
(i
Eg
vhighformetals
aturns
is
small

G
small
~
significant
formetals
forrubber

Ch11Perry'sHandbook
Tags