Bivariate

devenvaija09 3,872 views 24 slides Nov 14, 2011
Slide 1
Slide 1 of 24
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24

About This Presentation

No description available for this slideshow.


Slide Content

Bivariateanalysis
Mxclass 2004

UnivariateACE model
T
2
AEAC
a ac e
T
1
1 111
E
e
1
C
c
1
1 or .5
1

Expected Covariance Matrices
a
2
+c
2
+e
2
.5a
2
+c
2
.5a
2
+c
2
a
2
+c
2
+e
2
E DZ =
a
2
+c
2
+e
2
a
2
+c
2
a
2
+c
2
a
2
+c
2
+e
2
E MZ = 2 x 2
2 x 2

BivariateQuestions I
nUnivariateAnalysis: What are the contributions
of additive genetic, dominance/shared
environmental and unique environmental factors
to the variance?
nBivariateAnalysis: What are the contributions of
genetic and environmental factors to the
covariance between two traits?

Two Traits
E
Y
E
X
X Y
A
X
A
Y
A
C
E
C

BivariateQuestions II
nTwo or more traits can be correlated because
they share common genes or common
environmental influences
¨e.g. Are the same genetic/environmental factors
influencing the traits?
nWith twin data on multiple traits it is possible to
partition the covariationinto its genetic and
environmental components
nGoal: to understand what factors make sets of
variables correlate or co-vary

BivariateTwin Data
between
withintrait
betweenwithin
individual twin
variance twin covariance
trait covariancecross-trait
twin covariance

BivariateTwin Covariance Matrix
Y
2
X
2
Y
1
X
1
Y
2
X
2
Y
1
X
1
V
X1
C
X1X2
C
X2X1
V
X2
V
Y1
C
Y1Y2
C
Y2Y1
V
Y2
C
X1Y1
C
X2Y2
C
Y1X1
C
Y2X2
C
X1Y2
C
X2Y1
C
Y1X2
C
Y2X1

Genetic Correlation
Y
2
A
Y
A
X
A
Y
a
x
a
y
a
y
X
1
1 11
A
X
a
x
1
1 or .51 or .5
X
2
Y
1
r
g
r
g

Alternative Representations
A
X
A
Y
a
x
a
y
X
1
1 1
Y
1
r
g
A
SX A
SY
a
sx
a
sy
X
1
1 1
Y
1
A
C
1
a
c
a
c
A
1
A
2
a
11
a
22
X
1
1 1
Y
1
a
21

CholeskyDecomposition
A
1
A
2
a
11
a
22
X
1
1 1
Y
1
a
21
A
1
A
2
a
11
a
22
X
2
1 1
Y
2
a
21
1 or .51 or .5

More Variables
A
1
A
2
a
11
a
22
X
1
1 1
X
2
a
21
A
3
a
33
1
X
3
A
4
a
44
1
X
4
a
32
a
43
a
31
a
42
A
5
1
X
5

BivariateAE Model
A
1
A
2
a
11
a
22
X
1
1 1
Y
1
a
21
A
1
A
2
a
11
a
22
X
2
1 1
Y
2
a
21
1 or .51 or .5
E
1
E
2
e
11
e
22
1 1
e
21
E
1
E
2
e
11
e
22
1 1
e
21

MZ Twin Covariance Matrix
Y
2
X
2
Y
1
X
1
Y
2
X
2
Y
1
X
1
a
11
2
+
e
11
2
a
22
2
+a
21
2
+
e
22
2
+e
21
2
a
21
*a
11
+
e
21
*e
11
a
22
2
+a
21
2
a
11
2
a
21
*a
11

DZ Twin Covariance Matrix
Y
2
X
2
Y
1
X
1
Y
2
X
2
Y
1
X
1
a
11
2
+
e
11
2
a
22
2
+a
21
2
+
e
22
2
+e
21
2
a
21
*a
11
+
e
21
*e
11
.5a
22
2
+
.5a
21
2
.5a
11
2
.5a
21
*a
11

Within-Twin Covariances[Mx]
A
1
A
2
a
11
a
22
X
1
1 1
Y
1
a
21
a
11
a
22
0
a
21
A
1
A
2
X
1
Y
1
X Lower 2 2
a
11
2
a
22
2
+a
21
2
a
21
*a
11
a
11
*a
21
=
A=X*X'
a
11
a
22
0
a
21
a
11
a
22
0
a
21
*
EA=

Within-Twin Covariances
a
11
2
a
22
2
+a
21
2
a
21
*a
11
a
11
*a
21
EA=
e
11
2
e
22
2
+e
21
2
e
21
*e
11
e
11
*e
21
EE=
a
11
2
+ e
11
2
a
22
2
+a
21
2
+e
22
2
+e
21
2
a
11
*a
21
+ e
11
*e
21EP= EA+EE =
a
21
*a
11
+ e
21
*e
11

Cross-Twin Covariances
a
11
2
a
22
2
+a
21
2
a
21
*a
11
a
11
*a
21
EA=MZ
.5a
11
2
.5a
22
2
+.5a
21
2
.5a
21
*a
11
.5a
11
*a
21
.5@EA=DZ

Cross-Trait Covariances
nWithin-twin cross-trait covariancesimply
common etiological influences
nCross-twin cross-trait covariancesimply
familial common etiological influences
nMZ/DZ ratio of cross-twin cross-trait
covariancesreflects whether common
etiological influences are genetic or
environmental

UnivariateExpected Covariances
a
2
+c
2
+e
2
.5a
2
+c
2
.5a
2
+c
2
a
2
+c
2
+e
2
E DZ =
a
2
+c
2
+e
2
a
2
+c
2
a
2
+c
2
a
2
+c
2
+e
2
E MZ = 2 x 2
2 x 2

UnivariateExpected CovariancesII
E DZ =
EA+EC+EC .5@EA+EC
.5@EA+EC EA+EC+EC
EA+EC+EC EA+EC
EA+EC EA+EC+EC
E MZ = 2 x 2
2 x 2

BivariateExpected Covariances
E DZ =
EA+EC+EC .5@EA+EC
.5@EA+EC EA+EC+EC
EA+EC+EC EA+EC
EA+EC EA+EC+EC
E MZ = 4 x 4
4 x 4

Practical Example I
nDataset: MCV-CVT Study
n1983-1993
nBMI, skinfolds(bic,tri,calf,sil,ssc)
nLongitudinal: 11 years
nN MZFY: 107, DZF: 60

Practical Example II
nDataset: NL MRI Study
n1990’s
nWorking Memory, Gray & White Matter
nN MZFY: 68, DZF: 21
Tags