Chapter 3 15
10.3 (a) Label the vectorsA,B,C,D. Then cos(A,B) =
1
√
15
,
cos(A,C) =
√
2
3
, cos(A,D) =
3
√
23
, cos(B,C) =
2
3
√
15
,
cos(B,D) =
q
17
690
, cos(C,D) =
√
21
6
√
23
.
(b) (1,0,0,5,0,1) and (0,0,1,0,−3,0)
10.4 (a)e1= (0,1,0,0),e2= (1,0,0,0),e3= (0,0,3,4)/5
(b)e1= (0,0,0,1),e2= (1,0,0,0),e3= (0,1,1,0)/
√
2
(c)e1= (1,0,0,0),e2= (0,0,1,0),e3= (0,1,0,2)/
√
5
10.5 (a)kAk=
√
43,kBk=
√
41,|Inner product ofAandB|=
√
74
(b)kAk= 7,kBk=
√
60,|Inner product ofAandB|=
√
5
11.5θ= 1.1 = 63.4
◦
11.11
θ
x
y
=
1
5
θ
1 3
−1 2
x
0
y
0
, not orthogonal
In the following answers, for each eigenvalue, the components of a
corresponding eigenvector are listed in parentheses.
11.12 4 (1,1)
−1 (3,−2)
11.13 3 (2,1)
−2 (−1,2)
11.14 4 (2,−1)
−1 (1,2)
11.15 1 (0,0,1)
−1 (1,−1,0)
5 (1,1,0)
11.16 2 (0,1,0)
3 (2,0,1)
−2 (1,0,−2)
11.17 7 (1,0,1)
3 (1,0,−1)
3 (0,1,0)
11.18 4 (2,1,3)
2 (0,−3,1)
−3 (5,−1,−3)
11.19 3 (0,1,−1)
5 (1,1,1)
−1 (2,−1,−1)
11.20 3 (0,−1,2)
4 (1,2,1)
−2 (−5,2,1)
11.21−1 (−1,1,1)
2 (2,1,1)
−2 (0,−1,1)
11.22−4 (−4,1,1)
5 (1,2,2)
−2 (0,−1,1)
11.23 18 (2,2,-1)
9
9
(
Any two vectors orthogonal to (2,2,-1) and to each
other, for example : (1,-1,0) and (1,1,4)
11.24 8 (2,1,2)
−1
−1
(
Any two vectors orthogonal to (2,1,2) and to each
other, for example : (1,0,-1) and (1,-4,1)
11.25 1 (−1,1,1)
2 (1,1,0)
−2 (1,−1,2)
11.26 4 (1,1,1)
1
1
(
Any two vectors orthogonal to (1,1,1) and to each
other, for example : (1,-1,0) and (1,1,-2)
11.27 D =
θ
3 0
0 1
, C =
1
√
2
θ
1 1
−1 1
11.28 D =
θ
1 0
0 6
, C =
1
√
5
θ
1 2
−2 1