chap19 Simple Harmonic MoNNNNtion1-1.ppt

g85037973 0 views 24 slides Aug 27, 2025
Slide 1
Slide 1 of 24
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24

About This Presentation

GGGGGG


Slide Content

a  – x
a = – 
2
x
Negative sign:
Direction of a
is opposite to x
O-x
o
x
o
a a

200
grams
Vibrating
Tuning fork
A weight on
a spring
A boy on
a swing

F  – x
F = – kx

O-x
o
x
o
Point of equilibrium:
a = 0
F = 0
a
x
Measured from the
point of equilibrium
Amplitude :
= x
o
=Maximum
distance

F = - kx
ma = - kx
a =
k
m
- x a = - 
2
xcompare

2
=
k
m
 = angular frequency
= 2f= 2
T

F
x
0 x
o-x
o
a
x
0 x
o-x
o

2
x
o
-
2
x
o
F = -kx a = - 
2
x

a = - 
2
x
d
2
x
dt
2
= - 
2
x
x = x
o
sin (t + )General solution
dx
dt
= x
o
cos (t + )v =
d
2
x
dt
2
= -
2
x
o
sin (t + )a =
= - 
2
x
x = x
o
sin (t + )
phase

Phase constant

x = x
o
sin (t + )
 depends on the
initial condition
when t = 0
O-x
o
x
o
At t = 0, x = 0
0 = x
o sin ((0) + )
sin (0 + ) = 0
sin  = 0
 = 0
Therefore :
x = x
o
sin t
v = x
o
cos t
a = - 
2
x
o
sin t
= - 
2
x

x
t
0
x = x
o
sin tx
o
-x
o
T 2T
v
T
0
-x
o
x
o
v = x
o
cos t
t
2T
a
t
0
a = -
2
x
o
sin t

2
x
o
-
2
x
o
T 2T
t=0,
v=x
o
t=0,
a=0

phase
= t + /2
phase = t
x
t
0
x
o
-x
o
T 2T
v
T
0
-x
o
x
o
t
2T
a
t
0

2
x
o
-
2
x
o
T 2T
x = x
o
sin t
v = x
o
cos t
To compare the phase :
They must all
be expressed
as same function
(either as sine
or cosine function)
Phase difference :
=(t+ ) - t

2
=

2
rad
= x
o
sin (t + /2)
v leading x

phase
= t + 
x
t
0
x
o
-x
o
T 2T
v
T
0
-x
o
x
o
t
2T
a
t
0

2
x
o
-
2
x
o
T 2T
x = x
o
sin t
phase = t
v = x
o
cos t
phase
= t + /2
a = -
2
x
o sin t= 
2
x
o
sin (t + )
Phase difference :
=(t+) - t = rad
a leading x
a and x are
antiphase

x
t
0
x
o
-x
o
T 2T
v
T
0
-x
o
x
o
t
2T
a
t
0

2
x
o
-
2
x
o
T 2T

x = x
o
sin (t + )
 depends on the
initial condition
when t = 0
Example 2 :
t=0 , x = x
o
:- find 
-x
o x
o0
t=0
x
t

-x
o
x
o
0
t=0
x
x = x
o
sin (t + )General solution
Substitute :
t=0 , x = x
o
to find 
x
o = x
o sin ((0) + )
sin  = 1
 =

2
Therefore ,
equation of x is:
x = x
o sin (t + /2)
t
= x
o
cos t

x = x
o
sin (t + )General solution
x = x
o
sin t
t=0 , x = x
o
x = x
o
sin (t + /2)
= x
o
cos t

The motion of a body in simple harmonic
motion is described by the equation :
x = 4.0 cos ( 2t + )

3
Where x is in metres, t is in seconds and
(2t + ) is in radians.

3
a)What is
i) the displacement
ii) the velocity
iii) the acceleration and
iv) the phase
When t = 2.0 s ?
b) Find
i) the frequency
ii) the period
of the motion.

x = 4.0 cos ( 2t + )

3
a) i)
Displacement = ?
t = 2.0 s ;x = 4.0 cos ( 2(2) + )

3
= 2.0 m
ii) velocity = ?
v =
dx
dt
=-2(4.0) sin ( 2t + )

3
v = -8.0 sin (4 + )t = 2.0 s ;

3
= -21.8 ms
-1

iii)acceleration = ?
a =
dv
dt
=-16.0
2
cos ( 2t + )

3
t = 2.0 s ;a =-16.0
2
cos ( 2(2) + )

3
= -79.0 ms
-2
iv) Phase = ?
x = 4.0 cos ( 2t + )

3
Phase = 2t +

3
t = 2.0 s ;Phase = 2(2) +

3
= 13.6 rad

The motion of a body in simple harmonic
motion is described by the equation :
x = 4.0 cos ( 2t + )

3
Where x is in metres, t is in seconds and
(2t + ) is in radians.

3
a)What is
i) the displacement
ii) the velocity
iii) the acceleration and
iv) the phase
When t = 2.0 s ?
b) Find
i) the frequency
ii) the period
of the motion.

x = 4.0 cos ( 2t + )

3
b) i) frequency = ?
x = x
o cos (t + )
General solution :
 = 2
2f = 2
f = 1.0 Hz
ii) Period = ?
T = 1
f
= 1.0 s

Figures (1) and (2) are the displacement-time
graph and acceleration-time graph respectively
of a body in simple harmonic motion.
x,m
3
-3
t,sT0
(1) a,ms
-2
12
-12
t,sT0
(2)
What is the frequency of the motion? Write an
expression to represent the variation of
displacement x with time t.

x,m
3
-3
t,sT0
(1) a,ms
-2
12
-12
t,sT0
(2)
frequency = ?
x
o
= 3 
2
x
o = 12

2
(3) = 12
substitute
 = 2 rad s
-1
2f = 2
f = 0.318 Hz

expression = ?
x = x
o
sin (t + )General solution
x
o
= 3 ,  = 2 ; x = 3 sin (2t + )
At t = 0, x = 3 3 = 3 sin (2(0) + )
sin  = 1
 = 
2
rad
Therefore, the
expression is
x = 3 sin (2t + )

2
x = 3 cos 2t
Tags