Chapter 1_Atomic Structure_PDF_GENERAL CHEMISTRY

MinhQuan85 37 views 57 slides Jul 22, 2024
Slide 1
Slide 1 of 57
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57

About This Presentation

Atomic Structure for Chemistry General


Slide Content

PhD. ĐặngVănHân
Office: 112B2 or 804H3 Building
Email: [email protected]
Chapter 1
Atomic Structure
Faculty of Chemical Engineering
Department of Inorganic Technology
General Chemistry

2
Outline
2. Schrodinger wave equation
3. Quantum numbers for electron states in atoms
4. Atomic orbitals & shapes
5. Electron state in multi-electron atoms:
5.1. Shielding and Penetration effect
5.2. Electron distribution law
5.3. Electron configuration
1. Theory of atomic structure:
1.1. Classic
1.2. Bohr’s model
1.3. Quantum mechanical model

3
John Dalton:
In1803,Daltonproposedtheatomictheorybasedontwolaws
ofconservationofmassandconstantcompositionasfollows:
1.Allelementsarecomposedoftinyindivisibleparticlescalledatoms.
Theycannotbecreatedordestroyedduringchemicalreactions.
2.Inchemicalreactions,atomsarecombined,separated,orrearranged
–butneverchangedintoatomsofanotherelement.
3.Compoundsareformedwhendifferentatomscombineindefinite
proportions;Ex:H
2O
Dalton
1983
Thompson
1904
Rutherford
1911
Bohr
1913
Schrodinger
1926
Dalton’s Atomic Theory

4
Discovery of Electron
J.J, Thompson’s Exp.
Experiments:Whenthepowersupplyconnects2
electrodesinthevacuumtube:
1.Thecathoderayflowsfromthecathodetothe
anodeandhitsthefluorescentscreeninastraight
line.
2.Thecathoderayswillbedeflectedinthesame
directionasnegativelychargedparticlesinan
electricormagneticfield.
Dalton
1983
Thompson
1904
Rutherford
1911
Bohr
1913
Schrodinger
1926
The oil drop apparatus
Mass of the
electron is
9.11 x 10
-28
g
R. Millikan’s Exp.

5
Thompson’s Atomic Theory
“Plum pudding” model:
1.Allatomsareelectricallyneutral.Totalpositive
charge(+)=Totalnegativecharge(-).
2.Thecharge(+)isevenlydistributedthroughout
thevolumeoftheatom,andelectronsmove
aroundthose(+)charges.
Dalton
1983
Thompson
1904
Rutherford
1911
Bohr
1913
Schrodinger
1926
Thompson’s Atomic Theory
Thomsonbelievedthattheelectronswerelike
plumsembeddedinapositivelycharged“pudding,”

6
Alpha (α), beta (β) Particles, and gamma (??????)ray
-Alpha(α)Particle:twopositive
chargedelectronswiththesamemass
andenergyastheHenucleus.
-Beta(β)Particle:negativecharges
whichissimilartoanelectron.
-Gamma(γ)Ray:NOTaffectedby
electromagneticfield.It’sforminhigh
energyradiation.
Whenradiationinteractswithanelectrical
ormagneticfield,threetypesare
identified:
Rutherford and VilardExp.:

7
Discovery of Proton & Neutron
Basedontheirepx.,E.GoldsteinandE.
Rutherfordclaimedthatthenucleushasasmall
volume,withpositivelychargedparticlescalled
“protons”locatedatthecenteroftheatom.Its
massis1.67x10
-24
g(relativemass=1)
1932–J.Chadwickconfirmedthe
existenceofthe“neutron”–aparticle
withnocharge,butamassnearly
equaltoaproton.

8
Subatomic Particles
ParticlesCharge Mass (g) Location
Electron
(e
-
)
-1
(-1.6 x 10
-19
C)
9.11 x 10
-28
~5.5e-4 amu
Electron
cloud
Proton
(p
+
)
+1
(-1.6 x 10
-19
C)
1.67 x 10
-24
~1amu
Nucleus
Neutron
(n
o
)
0
1.67 x 10
-24
~1amu
Nucleus
Instead of grams, the unit we use is the Atomic Mass Unit(amu),
1 amu =
1
12
M
Carbon=1.67 ×10
-24
grams.

9
Rutherford’s Atomic Model
Dalton
1803
Thompson
1904
Rutherford
1911
Bohr
1913
Schrodinger
1926
Based on his experimental evidence ⇢Atomic model:
Theatomismostlyemptyspace.
Allthepositivecharges,andalmostallthemassis
concentratedinasmallareainthecenter.Hecalledthisa
“nuclear”.
Thenucleusiscomposedofprotonsandneutronsbound
togetherbynuclearforces.
Theelectronsdistributedaroundthenucleus,andoccupy
mostofthevolume.
Theatomiselectricallyneutral.
Rutherford:

1
0
Atomic Number
??????
??????
??????
X: element
Atomic number (Z)= n
e= n
p
Mass number (A) = Z + N
Pleaserememberthatspecific
atomsarecomposedofidentical:
PROTONS
NEUTRONS
ELECTRONS
The“atomicnumber(Z)”ofanelementisthenumberofprotonsinthenucleus
#protons=#electrons
Thesymboloftheelement:
Mass
number
Atomic
number

11
Atomic Number
Example:
17
35
Cl
Z=n
e=n
p=17
A=35⇢n
n=35-17=18
Celllocationinperiodictable:17
Element:Chlorine
M
Cl= 35 amu

12
Isotopes
Isotopesareatomsofthesameelementhavingdifferentmasses,
duetovaryingnumbersofneutrons.(differentneutronnumbers)
Frederick Soddy(1877-1956) proposed the idea of isotopes in 1912.
Naming Isotopes: Element-Mass number
Stable
Isotopes
Radioisotope
Cacbon-12Cacbon-13Cacbon-14
6
12
?????? 6
13
??????
6
14
??????
Stable
Isotopes
Radioisotope

13
The Electromagnetic Wave (EW)
EWistheoscillationsoftheelectricandmagneticfieldsare
perpendiculartoeachotherandpropagateinavacuumwiththe
velocity=speedoflight(c~3x10
8
m.s
-1
)
Natural light has
electromagnetic wave
Specifications:
Wavelength (λ): distance between two adjacent peaks;
Frequency (ν): period of oscillation per unit of time:
ν = c/λ; (1 s
-1
= 1 Hz);
Energy (E): E = hν = hc/λ
Where: his Planck’s constant (6.626 10
-34
J.s)
and 1 eV = 1.6 x 10
-19
J

14
The Electromagnetic Wave (EW)
A continuous spectrum of all wavelengths
Note that wavelength increases as frequency decreases

15
The Electromagnetic Spectrum
Continuous Spectrum
Continuousspectrumistherainbowofcolors,containingallwavelengthsof
light,nodarkspotsinspectrum

16
The Electromagnetic Spectrum
Line Spectrum
Linespectraisaphenomenonwhichoccurs
whenexcitedatomsemitlightofcertain
wavelengthswhichcorrespondtodifferentcolors.

17
Line Spectrum
Atomic emission: an emission spectrum, is a line spectrum.
This technique is applied to qualify chemical elements

18
Bohr’s Model
Bohr’s Model
In1913,Bohrproposedanewatomictheorybasedonthemerger
ofRutherford'satomicmodelandPlanck'squantitytheoryoflight,
whichincludedthreemaintopics:
1.Electronsrevolvearoundthenucleuswithcertain
concentricorbitsarecalledstationaryorbits;
2. When rotating in orbits, electronsare quantified and do
not emit electricity;
3. Energyis absorbed and emitted only when the electron
movesfrom one stationary orbit to another orbit.
E = ??????
�−??????
�=ℎ??????
Dalton
1803
Thompson
1904
Rutherford
1911
Bohr
1913
Schrodinger
1926

19
Limitations of Bohr’s Model
1.Cannotexplainwhyelectronscanonlylocatepositionswhenmovingin
orbits
2.Canonlyexplainthelinespectrumofhydrogenorone-electronions
(He
+
,Li
2+
)adequately.
4.It’snotsuitabletocalculateelectronenergyformulti-electronatoms.
3.Cannotdetermineclearlytheline-spectrumintensityofspecific
elements.

SModern Atomic Theory
Based on Quantum
Mechanics
1.Themovementofmicroscopicparticle:
Wave-particledualityproperties;
Theuncertaintyprinciple;
Schrodingerwaveequation.
4. Electron State in Multi-electron Atoms
3. Electron State in Single-electron Atoms
2. Four quantum numbers

21
Wave-Particle Duality Properties
Louis de Broglie
(1892 –1987)
Example:
-Electron has m
e= 9.1 x 10
-28
g, v ~6 x 10
5
m/s → λ~100 nm → Wave properties
-A ball has m = 200 g, v = 30 m/s → λ≪(~10
-39
nm) → No wave properties.
UsingEinstein’sandPlanck’sequations,deBroglieshowedthatall
mattershavingmass(m),velocity(v)willpropagatewithwavelength
(λ)bytheformula:

m
h

Particle Property
Wave Property
Microscopic objects such as electronsexhibit simultaneously
wave and particle properties.

22
The Uncertainty Principle
Werner Heisenberg
(1901 –1976)
Δ??????.Δ??????�
??????≥

4??????
Example: Electron has m
e= 9.1 x 10
-28
g, Δx ~10
-10
m→ Δv
x~6.6 x 10
6
m/s
Conclusion:Cannotdeterminetheexactpositionofanelectron,only
knowtheprobabilityofitspresenceatagivenpointinspace
Itisimpossibletodetermineaccuratelyboththemomentumand
thepositionofanelectron(oranyotherverysmallparticle)
simultaneously.
Where: x is the uncertain position and mv
xis the uncertainty in momentum

23
Quantum Mechanics
Electronsinatomarecloudssurroundingtheirnucleusandhas
wave-particleproperties.
So,whycanweuseSchrodingerEquationtodescribeatomic
structure?
1.SchrödingerEq.containsbothwaveandparticleterms.
2.Solvinghisequationleadstowavefunctions:
Thewavefunctiongivestheshapeoftheelectronicorbital.
Thesquareofthewavefunction(
2
)givestheprobabilityoffindingthe
electron.Thatis,givestheelectrondensityfortheatom.

24
The Schrodinger Wave Equation 0
8
2
2
2
2
2
2
2
2











VE
h
m
zyx
Where:
:wavefunctioncorresponding
to3-dimensionalwaveamplitude.
V:potentialenergyofparticle.
x,y,z:coordinatesofparticle.
Describe the motion of microparticlesin a stationary state0
8
2
2
2
2
2
2
2
2
2




















r
e
E
h
m
zyx
ForHydrowithV=-e
2
/r,then:

2
:alwayspositivetoshowtheprobabilitypresenceofe.

2
unit:probabilitydensityofeinavolumeunitdV.

25
The Schrodinger Wave Equation),().(),,(
,,,,


 mnmn
YrRr 
Solve thisEq. for Hydrogen
AO ShapesAO Size
ThemotionofelectroninspaceoftheHydrogenatom
determined3quantumnumbers:
n = 1, 2, ...;
ℓ = 0,1,..(n-1);
m
ℓ= -ℓ,…,0,.,+ ℓ

26
The Atomic Orbital (AO)
1.Electron State:
Electronscanbepresentinanywherewithvaryingprobabilityforminga
regionofspacesurroundingthenucleusknownasanelectroncloud.
Probability of finding an
electron in a hydrogen atom
in its ground state
2. Atomic Orbital (AO):
Theregionofspacearoundthenucleusinwhichthe
probabilityofanelectron’spresenceislager90%,
characterizedby3quantumnumbers:n,l,m
l
AOdescribessize,shapeandorientationinspace
throughthreequantumnumbers(n,l,m
s).

27
The Atomic Orbital (AO)
Choosethecorrectstatement(s).Anatomicorbital(AO)is:
1)Theregioninwhichthereismaximumprobability(>90%)offindinganelectron.
2)Thesurfacewithequalelectrondensitycloud.
3)Theorbitalmotionofelectronsinanatom.
4)Theenergystateofanelectroninanatom.
5)AnAOisawavefunctionthatdescribesthestateofanelectroninanatomdefinedby4
quantumnumbers:n,ℓ,m
ℓ,m
s.
A.1and5 B.only1 C.1,2and3 D.1,2,3,4and5.
Review:

28
Three Quantum Numbers
1.Principal Quantum Number,n
(lượngtửchính)
2. Azimuthal (Angular) Quantum Number,l
(lượngtửphụ)
3. Magnetic Quantum Number,m
l
(lượngtửtừ)
Schrödinger’sequationrequires3quantumnumbers:

29
1. Principal Quantum Number, n
ThesameasBohr’sn.
n,describesthemainenergylevel,orshell,electronoccupies.
Asnbecomeslarger,theatom&energybecomeslarger
nispositiveinteger=1,2,3…
n 1 2 3 4 5 6 7
Electron
Shell
K L M N O P Q

30
2. Azimuthal Quantum Number, l
n 1 2 3 4 5 6
l 0 1 2 3 4 5
Subshells p d f g h
Note: Electronswith the same n and l values ​​will form a quantum subshell
Ex: 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f, ….
Maximum number of electrons in subshell = 2(2l+1)
Dependsonthevalueofn(l<nandl=0,1,2,…,n-1)
l,describesthename&shapeoftheorbitals.
Weusuallygivealetternotationtoeachvalueofl:

31
3. Magnetic Quantum Number, m
l
Dependsonthevalueofl
Hasintegralvaluesfrom–lto+l(l=-l…0…+l)
m
l,describesthe3Dorientationofeachorbitalinspace.
Example:
ℓ = 0 m
l = 0 1s-orbital
ℓ = 1 m
l= -1,0,+1 3 p orbital
ℓ = 2 m
l= -2, -1, 0, +1, +25orbital d
-10+1
-2-10+1+2

3. Magnetic Quantum Number, m
l
In the n
th
shell
Number of AO = n
2 Max e
-
number = 2n
2
In the l
th
subshell
Number of AO = (2l+1) Max e
-
number = 2(2l+1)
Example.Determinethemaximumnumberofelectronsandtheprincipalquantum
numbernofLandN-shells:
a)L-shell:18e,n=3;N-shell:32e,n=4b)L-shell:8e,n=2;N-shell:32e,n=4
c)L-shell:8e,n=2;N-shell:18e,n=3.d)L-shell:18e,n=3;N-shell:32e,n=5

33
4. Spin Quantum Number, m
s
Apartfrom3quantumnumbers(n,l,m
s),Usingm
stodescribetherotation
aroundelectronaxisbyitself.
Convention:
m
s= +1/2: Clockwise rotation; m
s= -1/2: Counter clockwise rotation of electron
↑ ↓
Referstothespinofanelectronandtheorientation
ofthemagneticfieldproducedbythisspin.
NotaffecttheAOmotion;
Foreverysetofn,landm
lvalues,m
s=+½or-½.

34
Short Summary
The4quantumnumbers(n,l,m
landm
s)completelydeterminethestateofan
electroninanatomincludingsize,energy,shapeandmotion.
3p
6
e
-
no. in this
orbital
SubshellShell
Convention:
Note:
n = positive integer 1, 2, 3, …
l < n and l = 0, 1, 2, …, n-1
m
l< n and m
l= -l….0….+l
m
s= +1/2 or -1/2
Number of Orbitals
In Shell = n
2
2n
2
In Subshell = 2l+1 2(2l+1)
Max. Electrons

35
Some Examples
Ex.1:Whichsetsofthethreequantumnumbersareacceptable?
1)n=4,ℓ=3,m
ℓ=-3 2)n=4,ℓ=2,m
ℓ=+3
3)n=4,ℓ=1,m
ℓ=0 4)n=4,ℓ=0,m
ℓ=0
a)1,3,4 b)1,4 c)2,3,4 d)3,4
Ex.2:Namesoftheorbitalscorrespondton=5,ℓ=2;n=4,ℓ=3;n=3,ℓ=0:
a)5d,4f,3s b)5p,4d,3s c)5s,4d,3p d)5d,4p,3s
Ex. 3: Orbital 3p
xis defined by the following quantum numbers:
a) only n, ℓ, and m
ℓ b) only nand m

c) only ℓand m
ℓ d) n, ℓ, m
ℓ, m
s

36
Atomic Orbital Shapes
ℓ = 0 s-orbital: sphere
ℓ = 3 f-orbital: complex
s: sharp
p: principal
d: diffuse
f:fundamental
ℓ = 1 p-orbital: dumbbell
ℓ = 2 d-orbital: clover

37
The s-Orbitals
Alls-orbitalsarespherical.
Asnincreases,thes-orbitalsgetlarger.
Asnincreases,thenumberofnodesincrease.
Anodeisaregioninspacewherethe
probabilityoffindinganelectroniszero.
Atanode,
2
=0
l = 0 → m
l= 0 → No. AO = (2l+1) = 1

38
The d-Orbitals
l = 1 → m
l= 0, ±1; → No. AO = (2l+1) = 3
There are three p-orbitals p
x, p
y,and p
z.
The orbitals are dumbbell shaped.
The three p-orbitals lie along the x-, y-and z-axes of a Cartesian system.
As nincreases, the p-orbitals get larger.
All p-orbitals have a node at the nucleus.
Electron
distribution of a
2p orbital.

39
The d-Orbitals
There are five d-orbitals.
l = 2 → m
l= 0, ±1; ±2 → No. AO = (2l+1) = 5

40
The d-Orbitals
Two of the d-orbitalslie in a plane aligned along the x-, y-and z-axes.
Three of the d-orbitalslie in a plane bisecting the x-, y-and z-axes.

The f-Orbitals
41
l = 3 → m
l= 0, ±1; ±2; ±3 → No. AO = (2l+1) = 7

42
Electron State in Multi-electron Atoms
For Multi-electron Atoms:
Appeartheattraction&repulsionbetween
electronsandnucleus.
→Formationofshieldingandpenetration
effectsintheatom;
→Theenergystateofelectronsdependson
bothquantumnumbern&l.
SimilarwithH,thee
-
stateisalsodefinedby4quantumnumber:n,l,m
l,m
s.
AOshapesaresimilarwiththatofHydrogen

43
Shielding (S) and Penetration (P) Effect
Theshieldingeffect(S)describesthe
repulsiveinteractionofthee
-
layerscreatesa
shieldingscreen→thedecreaseinattraction
betweenanelectronandthenucleus.
Z
Thepenetrationeffect(P):Incontrastto(S)-thepenetrationability
ofelectronfromtheouterlayertothenucleus.
As(n+l)↑,theshieldingeffect↑andpenetrationeffect↓Note:
Electron-nuclearattraction↓ E
n,l↑ AufbauPrincipleE
n,l~(n+ℓ)

44
Aufbau Diagram
Orbitals and Their Energies
1. The largest energy gap is between
the 1s and 2s orbital
2. The gap between np and (n+1)s is
fairly large.
3. The gap between (n-1)d and ns is
quite small.
4. The gap between (n-2)f and ns is
even smaller.

45
Electron Distribution Law
Threerules:
Aufbauprinciple(Germanaufbauen,"tobuildup")
Pauli’sExclusionsPrinciple
Hund’srule.
Electronconfigurationstellsusinwhichorbitalstheelectrons
foranelementarelocated.
4 quantum number: n, l, m
l, m
s
Electron
Arrangement

46
Aufbau Principle
StabilizationPrinciple:themoststablestateofelectronsinan
atomhasthelowestenergy.
Electronsfillorbitalsstartingwithlowestnandmovingupwards
Electronsareassignedtoorbitalsinorderofincreasingvalueof(n+l).
Twogeneralruleshelpustopredictelectronconfigurations:
Forsubshellswiththesamevalueof(n+l),electronsareassigned
firsttothesubshellwithlowern.

47
Aufbau Principle (KleshkovskiPrinciple)
Subshell:1s2s2p3s3p4s3d4p5s4d5p6s4f5d6p7s5f6d
(n+ℓ) 12 3 4 5 6 7 8
E
Example:
Oxygen(O)hasZ=8
⇢1s
2
2s
2
2p
4
Titanium(Ti)hasZ=22
⇢1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
2

48
Pauli Exclusion Principle
Pauli’sExclusionsPrinciple:notwoelectronscanhavethesame
setof4quantumnumbers.
Paired Electron Un-paired Electron

Therefore,twoelectronsinthesameorbitalmusthaveoppositespins
3s
2

Example: n = 3
ℓ = 0
m
ℓ= 0
m
s= +1/2
n = 3
ℓ = 0
m
ℓ= 0
m
s= -1/2

49
Hund’s Rule
Hund’sRule:electronsinthesamesubshellmustbe
distributedsothattheabsolutevalueofthetotalspinorunpair
electronsismaximized
Electronsfilleachorbitalsinglybeforeanyorbitalgetsasecondelectron
6
12
C
→ Z = 6 → 1s
2
2s
2
2p
2
→↑↓
1s
2
↑↓
2s
2
↑↓
2p
2
↑↑
-10+1
-10+1
Example:
[Trong phân lớp, điền spin dương (↑) đủ các obitals sau đó điền spin âm (↓)]
Nitrogen(N)hasZ=7➡
1s2s2p

50
Hund’s Rule
Example: The Orbital diagram for the ground state of the Oxygen
atom (Z=8 )

51
Determination of Electron Configuration
Step 1: Write Electron Distribution based on Energy (Aufbau Principle);
Step 2: ⇢Write Electron Configuration with ascending n↑;
Step 3: Fill electrons in AOs based on the rules of electron arrangement
→ Z = 7 → E
n: 1s
2
2s
2
2p
3

7
14
??????1. ↑↓
1s
2
↑↓
2s
2
↑↑↑
-10+1
2p
3
Example:
→ Z = 22 → E
n: 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
2
22
48
????????????2.
↑↓
4s
2
↑ ↑
3d
2
⇢E
-
: 1s
2
2s
2
2p
6
3s
2
3p
6
3d
2
4s
2

52
Unstable-Electron Configuration
Semi-saturated Configuration: ns
2
(n-1)d
4
→ ns
1
(n-1)d
5
Full-saturated Configuration:ns
2
(n-1)d
9
→ ns
1
(n-1)d
10
24
52
????????????1. → Z = 24 → E
n: 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
4
(unstable)
→ E
n: 1s
2
2s
2
2p
6
3s
2
3p
6
4s
1
3d
5
(stable)
E
-
: 1s
2
2s
2
2p
6
3s
2
3p
6
3d
5
4s
1
29
64
??????&#3627408482;2. → Z = 29 → E
n: 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
9
(unstable)
→ E
n: 1s
2
2s
2
2p
6
3s
2
3p
6
4s
1
3d
10
(stable)
E
-
: 1s
2
2s
2
2p
6
3s
2
3p
6
3d
10
4s
1

53
Electron Configuration of Ions
Outermost shell: shell with maximum n
(lớpngoàicùng)
3d
2
4s
2
Outermost
shell: 4s
Last shell: 3d
Final shell: shell with the highest energy
(lớpcuốicùng)
CationM
n+
:M
lose&#3627408475;(e−)
M
n+
AnionX
m-
:X
add&#3627408474;(e−)
X
m-
1.Fe (Z = 26) → E
n: 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
6
Fe
2+
(24) → E
n: 1s
2
2s
2
2p
6
3s
2
3p
6
3d
6
Example:
Fe
3+
(23) → E
n: 1s
2
2s
2
2p
6
3s
2
3p
6
3d
5
2.
Cl
1-
(18)→ E
n: 1s
2
2s
2
2p
6
3s
2
3p
6
Cl (Z = 17) → E
n: 1s
2
2s
2
2p
6
3s
2
3p
5

54
Valence Electron (VE)
Definition: are electrons in the outer shell associated with an atom
In Group A (ns
a
np
b
): VE = ∑e
-
in n
maxshell = a + b
Example:
15P: 1s
2
2s
2
2p
6
3s
2
3p
3
→ 5 VEs (3s
2
3p
3
)
In transition metals ns
e
(n-1)d
f
:
VE = ∑e
-
in (ns) subshell+ ∑e
-
in (n-1)d subshell =e+f
Example:
25Mn: 1s
2
2s
2
2p
6
3s
2
3p
6
4s
2
3d
5
→ 7 VEs (4s
2
3d
5
)

55
Practices
Problem1:Whichofthefollowingatomoriondoestheoutermost
electronconfiguration3s
2
3p
6
represent:
a) X (Z = 17) b) X (Z = 19)c) X
-
(Z = 17)d) X
+
(Z = 20)
Problem 2: The electron configuration of Cu
2+
ion (Z = 29) in the ground
state is:
a) 1s
2
2s
2
2p
6
3s
2
3p
6
3d
9
4s
0
b) 1s
2
2s
2
2p
6
3s
2
3p
6
3d
7
4s
2
c) 1s
2
2
s2
2p
6
3s
2
3p
6
3d
8
4s
1
d) 1s
2
2s
2
2p
6
3s
2
3p
6
3d
10
4s
0

56
Practices
Problem 3: The valence electron configuration of Fe
3+
ion (Z= 26) in
the ground state is:
a) 3d
4
4s
1
b) 3d
3
4s
2
c) 3d
6
d) 3d
5
Problem4:ThevalenceelectronconfigurationofCo
3+
ion(Z=27)in
thegroundstateis:
a)3d
6
(nosingleelectrons)b)3d
4
4s
2
(existsingleelectrons)
c)3d
6
(existsingleelectrons)d)3d
4
4s
2
(nosingleelectron)

57
Practices
Problem5:Determine4quantumnumberfromelectron
configurationofatomsandions:
1. 2p
5
Shell (n)Orbital (l)
electrons
↑↓↑↓↑
-10+1
2p
5
Last
electron
m
l= 0
m
s= -1/2
(n,l,m
l,m
s) = (2,1,0,-1/2)
2. 3d
4

↑↑↑
-2-10
3d
4

+1+2
↑↓↑↓↑
-2-10
3d
7
↑↑
+1+2
(n,l,m
l,m
s) = (3,2,-1,-1/2)
(n,l,m
l,m
s) = (3,2,+1,+1/2)
3. 3d
7

L=2
OB=2l+1=5
Tags