Chlorination ppt.pdf chlorine function in disinfection

PremMishra51 10 views 36 slides Sep 16, 2025
Slide 1
Slide 1 of 36
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36

About This Presentation

Chlorination


Slide Content

Chlorination
WAT-E2120 Physical and Chemical Treatment of Water and Waste
Pirjo Rantanen Lic. Tech.
Aalto University

Pre-readingassignment
•AWWA Staff, 2006. WaterChlorination/ChloraminationPracticesand
Principles. AWWA ManualSeriesM20. American WaterWorks Assoc.
2
nd
ed. eBookISBN 9781613000267
•Pages19-29

Contents
•Mechanismsof chlorination
•Disinfectionkinetics
•Chemistryof chlorine
www.livescience.com

Usesof chlorination
•Disinfectionof drinkingwaterat treatmentplants(primary
disinfection)
•Secondarydisinfectionin distributionnetworks
•Treatedwastewaterchlorination
•Shockchlorinationof contaminated:
•Distributionnetworks
•Storage tanks
•Private wells...
•Swimmingpools
•Domesticcleaning
www.livescience.com

Chlorinationchemicals
•Chlorinegas
•Chlorinedioxide
•Hypochlorites
•Sodium hypochlorite (NaOCl)
•Calciumhypochlorite (Ca(OCl)
2
•Chloramine
•Hypochlorite + ammonium = NH
2Cl (monochloramine)

Chlorinereactionsin water
Chlorinegashydrolyzationreactionresultsas hypochlorousacid:
Hypochlorousaciddissociatesto hypochlorite ionaccordingto pH:
Bothhypochlorousacidand hypochlorite areregardedas freechlorine, thoughhypochlorousacidis moreeffective
disinfectant. In fact, it is themosteffectivechlorineform.
pKa= 7,6, 20 ° C
MeansthatbelowthispH hypochlorousacidis thepredominantform.

pH and hypochlorate /hypochloricacidratio
Calculatedsimilarlyas theexamplewith
NH
3/NH
4
+on thesecondlecture
Chlorinationis mosteffectivein pH 5.5-
7.5

Hypochloritechlorinationpractices
•Liquid solution
•Typicalconcentration10 or15% as Cl
2
•Storage timein a cooledtankshouldnot
exceed3-5 months
•Typicalfeed0.5 –1.0 g/m
3
•Addeddoseof solution0.5 –1 l/100 m
3
•If needed, thesolutionis dilutedfor
dosing
•Chemicaltanksneedsafetybasins

Hypochlorite
solutiondecay
Hypochlorite solutiondecayreactions
Decayis modeledwithsecondorderkinetics
•Half-life of hypochlorite solutionin storagedependson
temperature
•Hasto betakeninto accountin designingstoragetanks
and dosing.

Chlorinecontactchambers
•It’simportantthetthewholevolumeof waterin contactedwiththedisinfectant
•Pipeloopcontactor
•Plug flowreactor
Colorado.gov
Colorado.gov

Baffledcontactchambers
Properlyplacedbafflesin thechloriencontactchamberspreventshortcircuitsand deadspaces
Bafflesarewallswithopenings
Poorbaffling Averagebaffling Goodbaffling

CFD modelingof
baffledbasins
Modelingof flowconditions, contacttime
profilesand concentrationprofilesof
disinfectant, disinfectionby-products, and
survivingpathogensin differenttypesof
baffledcontactchambers
https://
www.researchgate.net/publication/262386893

Controlling
chlorine
feed

Disinfection
mechanisms
•Disruptingcellpermeabilityleadto cell
death
•Leakageof proteins, RNA, DNA
•Decreasein potassiumuptakeand in protein
and DNA synthesis
•Damageto nucleicacidsand enzymes
•Repression of genetranscription
•E.g. in staphylococcusaureushypochlorous
acidrepressedgenescontrollingcellwall
synthesis, proteinsynthesis, membrane
transport and primarymetabolism
•Othermechanisms

Biofilmgrowthwithchlorineand without
•A biofilm protects the bacteria against
chlorine.
•Notice the extra-cellular polymeric
substance (EPS) in pictures c and d.
Apparently bacteria have grown more
EPS with chlorine.
© 2013 Nature Education Reproduced from Wang
et al.2012 with permission from Elsevier.
No chlorine, 37 d No chlorine, 70 d
Withchlorine, 37 d Withchlorine, 70 d
Scanning electron microscopy (SEM) micrographs of the biofilm formed on cast iron coupons

Bacteriacanstayviableafterchlorination
•Effectsof chlorinedisinfectionon theviabilityof drinking
watermultispeciesbiofilmsand theirabilityto recoverafter
treatment
•Theepifluorescencephotomicrographsshow thebiofilms
(a) beforetreatmentwith10 mg l
−1
sodium hypochlorite; (b)
immediatelyafterand (c) 24 h later
•Magnification, ×400; bar= 50 μm
•Viablecellsaregreenand non-viablecellsarered
•Thedrinkingwaterbiofilmwascomposedof A.
calcoaceticus, B. cepacia, Methylobacteriumspp., M.
mucogenicum, S. capsulataand Staphylococcusspp.
a
b
c

Logremoval
99 % removal
in filtration
90 %
Inactivationin
chlorination
•Log-reductionscanbesummed
withsequencingprocessunits
•Example:
•2-log removalof pathogensin
filtrationAND
•1-log inactivationof pathogensin
chlorination
•Resultsas 3-log totalreduction
(99.9 %)Roughly: ”Numberof
ninesin thereduction
percentage”

Ct
•Ct= chlorineconcentrationas mg/l multiplied byinactivationtimeas
minutes
•2-log removalefficiency
•Sometimesexpressedwithoutunits(=> extracarefulnessneeded!)
•ThehigherCtthemoreresistantmicro-organism
•Resistanceto disinfectionincreasesin thefollowingorder:
•Non-sporeformingbacteria< entericviruses< spore-formingbacteria< protozoan
cysts
•E.g. in pH 6 withhypochlorousacid:
•E. coli, Ct= 0.04
•Poliovirus type1, Ct= 1.05
•Giardia lambliacysts, Ct= 80

Ct,
cont’d
•Ctvaluesof selected
pathogens
•E.g. C. Parvumrequireshigh
chlorineconcentrations
and/orlong HRT

Effectivenessof differentchlorineproducts
•Hypochlorousacidis the
mosteffective
•Chlorinedioxideis next
effective
•Afterthatcomes
hypochlorite ion
•Noticethedifferenceof
hypochlorousacidand
hypochlorite ion. Theyare
presentin thesamesolution
dependingon pH
•Monochloramine is the
weakestdisinfectantof all
theshown(leastreactive)

Chlorinedioxide
•Becomingmorepopularbecause
•ClO
2produceslessTHMsand HAAsthanfreechlorine
•Doesnotreactwithammoniato formchloramines
•ClO
2mustbegeneratedat thesite:
•ClO
2is effectiveagainstbacterialand viralpathogensand protozoan
parasites

Chloraminechlorination
Chloramineformationreactionswithammoniaand
hypochlorite:
•Monochloramine is thedesiredproduct
•Usedespeciallyfor secondarydisinfectionin
distributionnetworks
•Lessreactivethanchlorine=> disinfectionfor
longerHRTsin thenetwork
•Cl
2:NH
4
+-N massratio(maximum) 4.5 -5 to reducethe
amountof freeammonia
•Monochloramine formationdependson pH
•OptimumpH is 8.3
•WithpH below7.5 and Cl
2:NH
4
+-N massratioabove5
•Dichloramineand trichloramineformation
increases
•Bothhavestrongchlorinoustaste
NH
2Cl
NCl
3
NHCl
2

Breakpointchlorination
•If watercontainsammonia, it has to beremoved
beforechlorination(otherwiseit’schloramination)
•In breakpointchlorinationchlorineis addedto
removefirstammonia
•Thebreakpointoccursat moleratioCl
2:NH
3= 1.5
•Abovethemoleratioammonium is oxidizedinto
nitrogengasornitrateionand freechlorine
concentrationincreasesInfobox

Modelingbacteriainactivation:
Chick’slaw(1908)
HarrietteChick
6.1.1875 –9.7.1977
WellcomeImages •Firstorderkineticsof themicro-organismconcentration
•Temperaturedependenceof reactionratecoefficient(k) is
calculatedwithArrheniusequation(2
nd
lecture)
•Chlorinecontactchambervolumeis calculatedsimilarlyas
dimensioninga reactor(2
nd
lecture)
•Rateequation
•Requiredremoval
•Reactortype
=> Hydraulicretentiontime

Modelingbacteriainactivation:
Chick-Watson’slaw
Watson’slaw(1908)
(Incl. disinfectantconcentration)
Chick-Watson model(Haas& Karra, 1984)
(bothdisinfectantand pathogenconcentrations)
Integratedform:

Modelingbacteriainactivation:
Exampleof Rennecker-Mariñaskinetics
C t log(N/N
0
)
mg/l min data
0,96 0 -0,21
0,96 15,5-0,25
0,96 30,8-0,38
0,96 46,1-0,55
0,96 61,2-1,04
0,96 76,2-1,66
0,96 91,1-2,03
0,48 0 -0,17
0,48 32 -0,12
0,48 61,6-0,31
0,48 92 -0,6
0,48 122 -1,08
0,48 152 -1,68
4,64 0 -0,15
4,64 2,1 0,02
4,64 4,2-0,11
4,64 6,2-0,19
4,64 8,2-0,29
4,64 10 -0,56
4,64 12 -0,79
4,64 13,9-1,19
4,64 15,8-1,47
Task:ApplytheRennecker-Mariñasmodelevaluatetheinactivationof C.
parvumbychlorinedioxide. AssumethatN
0wasunderestimated(ln(N/N
0)=
log(S
0) < 0). UseExcel spreadsheetand Solverfunctionto determinethemodel
parameters.Rennecker-Mariñasmodel:
N = Concentration of microbes at time t
N
0= Concentration of microbes at time 0
b = Lag coefficient (mg*min/l)
Λ
CW= Chick-Watson coefficient of specific lethality (l/mg*min)
C = Disinfectantconcentration(mg/l)
t= Time (min)
R-M modelis usedwhenthereis lag in theeffectof thedisinfectantto the
specificorganism. Withoutlag R-M modelreducesto Chick-Watson model.
Data:

Solution
C t Ct log(N/N
0
)log(N/N
0
)(Data-Model)^2(Data-avg(Data))^2
mg/l min mg*min/ldata Model
0,96 0 0 -0,21-0,19 0,00 0,21
0,96 15,514,88-0,25-0,19 0,00 0,18
0,96 30,829,568-0,38-0,19 0,04 0,09
0,96 46,144,256-0,55-0,52 0,00 0,02
0,96 61,258,752-1,04-1,04 0,00 0,13
0,96 76,273,152-1,66-1,56 0,01 0,97
0,96 91,187,456-2,03-2,07 0,00 1,84
0,48 0 0 -0,17-0,19 0,00 0,25
0,48 3215,36-0,12-0,19 0,00 0,31
Excel table
avg(Data) -0,67
sum(Data-model)^2 0,184
sum(Data-avg(Data))^2 7,70
b 35
Λ
CW
0,036
log(S
0
) -0,19
Λ
CW
(basee) 0,083
r
2
0,98
... 22 rowsof data ...
Themodelfunction: =IF(Ct>b;
log(S
0);log(S
0)+Λ
CW*(b-Ct))
The sum of squares of errors is
minimized with Solver
Thesearechangedin Solver
Constraintin Solver: log(S
0)< 0

Data and modeledvalues
-2,5
-2
-1,5
-1
-0,5
0
0,5
0 20 40 60 80 100
log(S) =ln(N/N
0
)
Ct (mg*min/l)
data
model
ln(N/N
0
)= -0,19WhenCt<35
-0,083*(Ct-35) whenCt>=35
Note: Exercise

Disinfectionby-products
•Formedin chlorinationwithorganiccompounds
•Trihalomethanes(THMs)
•Carcinogenicin animaltests
•Possiblereproductiveand developmentaltoxicityin animaltests
•Haloaceticacids(HAAs)
•Carcinogenicin animaltests
•Neurotoxinin higherdosesin animaltests

DBPs, cont’d
DBPsformedwithchlorine
DBPsformedwithchlorinedioxide
DBPsformedwithchloramine
More DBPsformedwithchlorine

Approachesfor reducingand controllingDBPs
in drinkingwater
•Removalof DBP precursors(NOM, extra-cellularproducts of micro-organims)
beforedisinfection
•Removalmethods: enhancedcoagulation, granularactivatedcarbon(GAC), membrane
filtration
•SomeDBPscanberemovedwithbiodegradationin GAC orsandfilters
•Preozonationreducesformationof THMs, HAAsand totalorganichalogens(TOX)
•If THMsareformed, theycanberemovedwithpost-aerationafterdrinkingwater
treatment.
•Using alternativedisinfectants: E.g. ChloramineusereducesTHMs.
•Riskfor otherDBPs

Chlorineresidualmodeling
•Thiswastopiccoveredin thecourseWAT-E2110 -Design and
Management of Water and Wastewater Networks
•If you did not go to that course, the slides are included as material on
the current course

Shockchlorination
•Shockchlorinationis neededin contaminationcases
•Pathogenscanbeprotectedbybiofilms
•Highchlorineconcentrationsand long HRT
•Example:
•10 mg/l Cl
2
•180-240 min
•=> InactivatedYersiniapseudotuberculosisfrombiofilm( Räsänen et al. 2013)
•Flushingaftershcokchlorinationto getridof thechlorineand
possibleDBPs

Mostrecenttopicsin chlorinationresearch
1.DBPs
2.Chlorine-resistantpathogens

Digestiontask
•Recognizethedisinfectionunitsof Vanhakaupunki WTP
•Whyarethetreatmentunitsin thisorder?
•How is the formationof DBPstakeninto account?
•Whyis coagulation-flocculationin thebeginningof theprocesstrain?
•Whyis chlorineaddedafterGAC filtration?
•Whyis chloramineusedfor secondarydisinfection?
•Whyis thepH of distributedwaterratherhigh(8.6)?
Digest withyourfavouritemethod(discussion, self-talking, walking,
drinkingcoffeeetc.)

Literature
•Availableat EbookCentral:
•AWWA Staff, 2006. WaterChlorination/ ChloraminationPracticesand Principles.
AWWA ManualSeriesM20. American Water Works Assoc. 2
nd
ed. eBookISBN
9781613000267
•LeChevallier, MW, Au, KK, 2004. Watertreatmentand pathogencontrol. WHO, IWA
Publishing. 116 p. ISBN 92 4 1562255 2
•Bitton, G, 2014. Microbiologyof DrinkingWaterProductionand Distribution. Wiley.
316 p. eBook ISBN 9781118744017 (Chapter3, Chlorination, p. 65)
•Others:
•Shockchlorinationof privatewells
http://www.water-research.net/index.php/shock-
well-disinfection
•Inactivationof bacteriaat epa.gov:
https://www.epa.gov/sites/production/files/documents/giardiaandvirusCTcalculatio
n.pdf