Generating Sets for the Recursively Enumerable Turing Degrees 15
σ4(X
i
∗
,Y
i
∗
,Λ
i
∗
a,x
,Λ
i
∗
a,y
,Λ
i
∗
xy,a
,Θ
i
∗
,j
∗
a
),
σ
5(X
i
∗
,Y
i
∗
,Λ
i
∗
a,x
,Λ
i
∗
a,y
,Λ
i
∗
xy,a
,Θ
i
∗
,j
∗
a
),
orσ
6(X
i
∗
,Y
i
∗
,Λ
i
∗
a,x,Λ
i
∗
a,y,Λ
i
∗
xy,a,Θ
i
∗
,j
∗
by
) does not appear in (the first
coordinate of an element of)η,
then let (i, j) be the least such (i
∗
,j
∗
). We determine the immediate suc-
cessor ofηinTby the first of the following conditions which applies.
1. Ifσ
2(X
i
,Y
i
,Λ
i
a,x
,Λ
i
a,y
,Λ
i
xy,a
) does not appear inηthen
η
Θ
(σ2(X
i
,Y
i
,Λ
i
a,x
,Λ
i
a,y
,Λ
i
xy,a
),Π1)∈T.
2. Ifσ
3(X
i
,Y
i
,Λ
i
a,x
,Λ
i
a,y
,Λ
i
xy,a
,Ψ
i,j
) does not appear inηthen
η
Θ
(σ3(X
i
,Y
i
,Λ
i
a,x
,Λ
i
a,y
,Λ
i
xy,a
,Ψ
i,j
),Σ2)∈T,
η
Θ
(σ3(X
i
,Y
i
,Λ
i
a,x
,Λ
i
a,y
,Λ
i
xy,a
,Ψ
i,j
),Π2)∈T,
and the Σ
2-extension ofηis to the right of the Π 2-extension.
3. Ifσ
4(X
i
,Y
i
,Λ
i
a,x
,Λ
i
a,y
,Λ
i
xy,a
,Θ
i,j
a
) does not appear inηthen
η
Θ
(σ4(X
i
,Y
i
,Λ
i
a,x
,Λ
i
a,y
,Λ
i
xy,a
,Θ
i,j
a
),Σ1)∈T,
η
Θ
(σ4(X
i
,Y
i
,Λ
i
a,x
,Λ
i
a,y
,Λ
i
xy,a
,Θ
i,j
a
),Π1)∈T,
and the Π
1-extension ofηis to the right of the Σ 1-extension.
4. Ifσ
5(X
i
,Y
i
,Λ
i
a,x
,Λ
i
a,y
,Λ
i
xy,a
,Θ
i,j
a
) does not appear inηthen
η
Θ
(σ5(X
i
,Y
i
,Λ
i
a,x
,Λ
i
a,y
,Λ
i
xy,a
,Θ
i,j
a
),Σ1)∈T,
η
Θ
(σ5(X
i
,Y
i
,Λ
i
a,x
,Λ
i
a,y
,Λ
i
xy,a
,Θ
i,j
a
),Π1)∈T,
and the Π
1-extension ofηis to the right of the Σ 1-extension.
5. Ifσ
6(X
i
,Y
i
,Λ
i
a,x
,Λ
i
a,y
,Λ
i
xy,a
,Θ
i,j
by
) does not appear inηthen
η
Θ
(σ6(X
i
,Y
i
,Λ
i
a,x
,Λ
i
a,y
,Λ
i
xy,a
,Θ
i,j
by
),Σ2)∈T,
η
Θ
(σ6(X
i
,Y
i
,Λ
i
a,x
,Λ
i
a,y
,Λ
i
xy,a
,Θ
i,j
by
),Π2)∈T,
and the Σ
2-extension ofηis to the right of the Π 2-extension.