Pakhomov, S., McInnes, B., Adam, T., Liu, Y., Pedersen, T., Melton, G.B., 2010. Semantic simi-
larity and relatedness between clinical terms: an experimental study. In: AMIA Annual
Symposium Proceedings, vol. 2010. American Medical Informatics Association, p. 572.
Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettlemoyer, L., 2018.
Deep contextualized word representations. arXiv preprint:1802.05365.
Pyysalo, S., Ginter, F., Moen, H., Salakoski, T., Ananiadou, S., 2013. Distributional semantics
resources for biomedical text processing. In: Proceedings of LBM 2013, pp. 39–44.
Reif, E., Yuan, A., Wattenberg, M., Viegas, F.B., Coenen, A., Pearce, A., Kim, B., 2019. Visua-
lizing and measuring the geometry of BERT. In: Wallach, H., Larochelle, H.,
Beygelzimer, A., d’Alche-Buc, F., Fox, E., Garnett, R. (Eds.), Advances in Neural Informa-
tion Processing Systems 32. Curran Associates, Inc, pp. 8594– 8603.
Sang, S., Yang, Z., Wang, L., Liu, X., Lin, H., Wang, J., 2018. SemaTyP: a knowledge graph
based literature mining method for drug discovery. BMC Bioinform. 19 (1), 1–11.
Segura-Bedmar, I., Martı´nez, P., Herrero-Zazo, M., 2014. Lessons learnt from the ddiextraction-
2013 shared task. J. Biomed. Inform. 51, 152–164.
Shaik, A., Jin, W., 2019. Biomedical semantic embeddings:uusing hybrid sentences to construct
biomedical word embeddings and its applications. In: 2019 IEEE International Conference
on Healthcare Informatics (ICHI), pp. 1–9.
Sogancıo glu, G.,€Ozt€urk, H.,€Ozg€ ur, A., 2017. Biosses: a semantic sentence similarity estimation
system for the biomedical domain. Bioinformatics 33 (14), i49–i58.
Su, C., Tong, J., Zhu, Y., Cui, P., Wang, F., 2020. Network embedding in biomedical data science.
Brief. Bioinform. 21 (1), 182–197.
Swanson, D.R., 1986. Fish oil, Raynaud’s syndrome, and undiscovered public knowledge. Per-
spect. Biol. Med. 30 (1), 7–18.
Wang, Y., Afzal, N., Liu, S., Rastegar-Mojarad, M., Wang, L., Shen, F., Fu, S., Liu, H., 2018a.
Overview of the biocreative/ohnlp challenge 2018 task 2: clinical semantic textual similarity.
In: Proceedings of the BioCreative/OHNLP Challenge, vol. 2018.
Wang, Y., Liu, S., Afzal, N., Rastegar-Mojarad, M., Wang, L., Shen, F., Kingsbury, P., Liu, H.,
2018b. A comparison of word embeddings for the biomedical natural language processing.
J. Biomed. Inform. 87, 12–20.
Contributors, Wikipedia, 2020. Spearman’s rank correlation coefficient– Wikipedia, the free
Encyclopedia.
Xun, G., Jha, K., Gopalakrishnan, V., Li, Y., Zhang, A., 2017. Generating medical hypotheses
based on evolutionary medical concepts. In: 2017 IEEE International Conference on Data
Mining (ICDM), IEEE, pp. 535–544.
Zeng, X., Tu, X., Liu, Y., Fu, X., Su, Y., 2022. Toward better drug discovery with knowledge
graph. Curr. Opin. Struct. Biol. 72, 114–126.
Zhang, Y., Hildebrand, A.S., Vogel, S., 2006. Distributed language modeling for n-best list
re-ranking-best list re-ranking. In: Proceedings of the 2006 Conference on Empirical Methods
in Natural Language Processing, pp. 216–223.
Zhang, Y., Chen, Q., Yang, Z., Lin, H., Lu, Z., 2019. BioWordVec, improving biomedical word
embeddings with subword information and MeSH. Sci. Data 6 (1), 1–9.
Multiscale representation learning for biomedical analysisChapter
227