Digital Electronics . .

syazhinian 73 views 106 slides Jul 05, 2024
Slide 1
Slide 1 of 106
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106

About This Presentation

Digital ElectronicsDigital ElectronicsDigital ElectronicsDigital ElectronicsDigital ElectronicsDigital ElectronicsDigital ElectronicsDigital ElectronicsDigital ElectronicsDigital ElectronicsDigital ElectronicsDigital ElectronicsDigital ElectronicsDigital ElectronicsDigital ElectronicsDigital Electro...


Slide Content

10211CS201-DIGITAL ELECTRONICS Slot : S3/S1 Category : Program Core UNIT-I School of Computing Department of Computer Science & Engineering Course Handling Faculty : Dr. S. Yazhinian Associate Professor

Program Core 2 Preamble The primary aim of this course is to understand the fundamentals behind the digital logic design. From that students can gain the experience, to design any digital circuits and systems. The course includes fundamentals of Boolean algebra, combinational, sequential circuits and applications of digital electronics. Students can learn the basic programming concepts to implement digital circuits using hardware description language.

CO Nos. Course Outcomes Knowledge Level (Based on revised Bloom’s taxonomy) CO1 Apply the simplification of Boolean expressions using K – Map method and designing Combinational circuits. K3 7/4/2024 Dr. S. Yazhinian, AP/ CSE Digital Electronics Program Core 3

Correlation of COs with POs 7/4/2024 Dr. S. Yazhinian, AP/ CSE Digital Electronics Program Core 4 COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO 2 PSO 3 CO1 H M     M         L     H   L CO2 M M     M         L     L     CO3 H     M H     L           M   CO4 M M                     M     CO5 M M     M     L       L     L

Course Outcome – NBA-EAC-CAC 7/4/2024 Dr. S. Yazhinian, AP/ CSE Digital Electronics Program Core 5 Course Outcomes Correlates to Program Outcomes: NBA Correlates to Student Outcomes: EAC Correlates to Student Outcomes: CAC CO1: Apply the simplification of Boolean expressions using K – Map method and designing Combinational circuits. a, b, c, d, g, j 1,2,3,4,5,6 1,2,6 CO2: Outline the combinational building blocks & memory elements. a, b, d, j   1,2,3,6 1,2,6 CO3: Design the combinational and sequential circuits using hardware description language. a, b, c, d, g 1,2,3,4,5,6 1,2,6 CO4: Solve the asynchronous sequential circuits for given applications a, b, g   1,2,6,7 1,2,6 CO5: Explain the applications of digital electronics a, b, g, j 1,2,4,5,6,7   1,2,6

Syllabus 7/4/2024 Dr. S. Yazhinian, AP/ CSE Digital Electronics Program Core 6 UNIT–I: DIGITAL FUNDAMENTALS AND COMBINATIONAL CIRCUITS 10 Introduction to Boolean algebra and Switching Functions; Boolean Minimization using K Map and Tabulation method; combinational circuits: Design procedure – Half adder – Full Adder – Half subtractor – Full subtractor – Parallel binary adder, parallel binary Subtractor – Fast Adder - Carry Look Ahead adder – Serial Adder/Subtractor - BCD adder – Binary Multiplier – Binary Divider - Multiplexer/ Demultiplexer – decoder - encoder – parity checker – parity generators – code converters - Magnitude Comparator. UNIT -II: SEQUENTIAL CIRCUITS 10  Flip Flops and Memory devices: RAM – Static and Dynamic, ROM, PROM, EPROM, EEPROM; Counters and Shift registers: Binary, BCD and programmable modulo counters, Shift register counters; Sequential circuit design: using Mealy and Moore model.  UNIT III: INTRODUCTION TO HARDWARE DESCRIPTION LANGUAGE 10 Introduction to Verilog / VHDL- Structural, Dataflow and Behavioral modeling. Structural, Dataflow and Behavioral modeling of combinational logic circuits (Multiplexer, Demultiplexer, decoder and encoder). Structural, Dataflow and Behavioral modeling of sequential logic circuits (counters and shift registers).  UNIT IV: ASYNCHRONOUS SEQUENTIAL CIRCUITS 10 Analysis Procedure, Circuits with latches; Design Procedure, Reduction of state and flow table; Race free state assignment; Hazards; ASM chart; Design examples. UNIT V: APPLICATIONS OF DIGITAL ELECTRONICS 5 Multiplexing displays - Frequency counters - Time measurements - using the ADC0804 - Slope alone operation, span adjust, zero shift, testing - microprocessor compatible A/D converters. 

7/4/2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics Recommended Textbooks 7 T1. M. Morris Mano, Digital Design, 3rd Edition, Prentice Hall of India Pvt. Ltd., Pearson Education (Singapore) Pvt. Ltd., New Delhi, 2003. T2. Donald . P.Leach , Digital principles and applications, 7th Edition, McGraw-Hill, 2012. Recommended References R1. John F.Wakerly , Digital Design, Fourth Edition, Pearson/PHI, 2006. R2. Thomas L. Floyd, Digital Fundamentals, 8th Edition, Pearson Education Inc , New Delhi, 2003 Donald D.Givone , Digital Principles and Design, TMH. R3. William H. Gothmann , Digital Electronics, 2nd Edition, PHI, 1982.

7/4/2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics ONLINE RESOURCES 8 http://www.wiley.com/legacy/wileychi/mblin/supp/student/LN08CombinationalLogicModules.pdf http://www.learnabout-electronics.org www.nptel.com/digitalelectronics/iitkanpur/ www.mooc.org

Applications of Digital Electronics 7/4/2024 Dr. S. Yazhinian, AP/ CSE Digital Electronics Program Core 9 Digital circuits are a part of all the important electronic devices. It can be used for designing the display of watch or a countdown timer. We use digital circuits in complex processes like Rocket Science and Quantum Computing. Digital circuits are also used in traffic lights and automatic glass doors in offices and restaurants.

Opportunities 7/4/2024 Dr. S. Yazhinian, AP/ CSE Digital Electronics Program Core 10 Electronics Hardware Engineer Hardware Circuit Design Engineer

7/4/2024 Unit I - Syllabus 11 UNIT–I: DIGITAL FUNDAMENTALS AND COMBINATIONAL CIRCUITS 10 Introduction to Boolean algebra and Switching Functions; Boolean Minimization using K Map and Tabulation method; combinational circuits: Design procedure – Half adder – Full Adder – Half subtractor – Full subtractor – Parallel binary adder, parallel binary Subtractor – Fast Adder - Carry Look Ahead adder – Serial Adder/ Subtractor - BCD adder – Binary Multiplier – Binary Divider - Multiplexer/ Demultiplexer – decoder - encoder – parity checker – parity generators – code converters - Magnitude Comparator. Dr. S. Yazhinian, AP/ CSE Digital Electronics

7/4/2024 Recommended Textbooks 12 T1. M. Morris Mano, Digital Design, 3rd Edition, Prentice Hall of India Pvt. Ltd., Pearson Education (Singapore) Pvt. Ltd., New Delhi, 2003. T2. Donald . P.Leach , Digital principles and applications, 7th Edition, McGraw-Hill, 2012. Recommended References R1. John F.Wakerly , Digital Design, Fourth Edition, Pearson/PHI, 2006. R2. Thomas L. Floyd, Digital Fundamentals, 8th Edition, Pearson Education Inc , New Delhi, 2003 Donald D.Givone , Digital Principles and Design, TMH. R3. William H. Gothmann , Digital Electronics, 2nd Edition, PHI, 1982. Dr. S. Yazhinian, AP/ CSE Digital Electronics

7/4/2024 Unit 1 - Syllabus 13 UNIT I - The Wireless Channel 9 Introduction to Boolean algebra and Switching Functions Boolean Minimization using K Map and Tabulation method Combinational circuits: Half adder and Full Adder Half subtractor and Full subtractor Parallel binary Adder, Subtractor Fast Adder - Carry Look Ahead adder Serial Adder/ Subtractor BCD adder Dr. S. Yazhinian, AP/ CSE Digital Electronics

7/4/2024 Unit 1 - Syllabus 14 Binary Multiplier and Divider Multiplexer and Demultiplexer Decoder and Encoder Parity checker and Parity generators Code converters Magnitude Comparator. Dr. S. Yazhinian, AP/ CSE Digital Electronics

7/4/2024 Unit 1 15 Introduction to Boolean Algebra Introduction to Boolean algebra and Switching Functions Dr. S. Yazhinian, AP/ CSE Digital Electronics

7/4/2024 Introduction to Boolean algebra and Switching Functions 16 Introduction to Boolean Algebra As well as the logic symbols “0” and “1” being used to represent a digital input or output, we can also use them as constants for a permanently “Open” or “Closed” circuit or contact respectively. A set of rules or Laws of Boolean Algebra expressions have been invented to help reduce the number of logic gates needed to perform a particular logic operation resulting in a list of functions or theorems known commonly as the  Laws of Boolean Algebra . Dr. S. Yazhinian, AP/ CSE Digital Electronics

7/4/2024 Introduction to Boolean algebra and Switching Functions 17 Introduction to Boolean Algebra Boolean Algebra is the mathematics we use to analyse digital gates and circuits. We can use these “Laws of Boolean” to both reduce and simplify a complex Boolean expression in an attempt to reduce the number of logic gates required. The variables used in Boolean Algebra only have one of two possible values, a logic “0” and a logic “1” but an expression can have an infinite number of variables all labelled individually to represent inputs to the expression, For example, variables A, B, C etc , giving us a logical expression of A + B = C, but each variable can ONLY be a 0 or a 1. Dr. S. Yazhinian, AP/ CSE Digital Electronics

7/4/2024 Introduction to Boolean algebra and Switching Functions 18 Introduction to Boolean Algebra Examples of these individual laws of Boolean, rules and theorems for Boolean Algebra are given in the following table. Dr. S. Yazhinian, AP/ CSE Digital Electronics

7/4/2024 Introduction to Boolean algebra and Switching Functions 19 Introduction to Boolean Algebra Truth Tables for the Laws of Boolean Dr. S. Yazhinian, AP/ CSE-Digital Electronics

7/4/2024 Introduction to Boolean algebra and Switching Functions 20 Introduction to Boolean Algebra Truth Tables for the Laws of Boolean Dr. S. Yazhinian, AP/ CSE Digital Electronics

Logic Gates Logic gates are abstractions of electronic circuit components that operate on one or more input signals to produce an output signal. 2- Input AND 2- Input OR NOT (Inverter) A A A B B F G H F = A • B G = A+ B H = A’ 04-07-2024 21 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Boolean Algebra Properties Let X : boolean variable, 0,1 : constants X + 0 = X -- Zero Axiom X • 1 = X -- Unit Axiom X + 1 = 1 -- Unit Property X • 0 = 0 -- Zero Property X + X = X -- Idepotence X • X = X -- Idepotence X + X’ = 1 -- Complement X • X’ = 0 -- Complement (X’)’ = X -- Involution 04-07-2024 22 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Duality With respect to duality , Identities 1 – 8 have the following relationship : 1. X + 0 = X 2. X • 1 = X (dual of 1 ) 3. X + 1 = 1 4. X • 0 = 0 (dual of 3 ) 5. X + X = X 6. X • X = X (dual of 5 ) 7. X + X’ = 1 8. X • X’ = 0 (dual of 8 ) 04-07-2024 23 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Basic Properties (Laws ) Commutative Law X + Y = Y + X X · Y = Y · X Associative Law X+(Y+Z)=(X+Y)+Z X(YZ) = (XY)Z Distributive Law X(Y+Z) =XY+XZ X+YZ=(X+Y)(X+Z) DeMorgan’s Theorem (X + Y)’ = X’ · Y’ (XY)’ = X’ + Y’ 04-07-2024 24 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Minterm 04-07-2024 25 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Maxterm 04-07-2024 26 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Truth Table notation for Minterms and Maxterms x 4 y 2 z 1 Minterm Maxterm x’y’z ’ = m x+y+z = M 1 x’y’z = m 1 x+y+z’ = M 1 1 x’yz ’ = m 2 x+y ’+z = M 2 1 1 x’yz = m 3 x+y ’+z’= M 3 1 xy’z ’ = m 4 x’+ y+z = M 4 1 1 xy’z = m 5 x’+ y+z ’ = M 5 1 1 xyz’ = m 6 x’+y’+z = M 6 1 1 1 xyz = m 7 x’+y’+z ’ = M 7 04-07-2024 27 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Canonical Forms Any Boolean function F( ) can be expressed as a unique sum of min terms and a unique product of max terms (under a fixed variable ordering). In other words, every function F() has two canonical forms: Canonical Sum-Of-Products (sum of minterms )- ∑ Eg : F( a,b,c ) = ∑ m (1,2,4,6) Canonical Product-Of-Sums (product of maxterms)- ∏ Eg : f 1 ( a,b,c ) = ∏ M(0,3,5,7) 04-07-2024 28 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Conversion Between Canonical Forms Replace ∑ with ∏ (or vice versa ) and replace those j’ s that appeared in the original form with those that do not. Example : f 1 (a, b,c ) = a’b’c + a’bc ’ + ab’c ’ + abc ’ = m 1 + m 2 + m 4 + m 6 = ∑ ( 1,2,4,6 ) = ∏ ( 0,3,5,7 ) = (a+ b+ c )•(a+ b ’+ c’)•(a’+ b+ c ’)•(a’+ b’+c ’) 04-07-2024 29 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Conversion of SOP from standard to canonical form Expand non-canonical terms by inserting equivalent of 1 in each missing variable x: (x + x’) = 1 Remove duplicate minterms f 1 ( a,b,c ) = a’b’c + bc ’ + ac’ = a’b’c + ( a+a ’) bc ’ + a ( b+b ’) c’ = a’b’c + abc ’ + a’bc ’ + abc ’ + ab’c ’ = a’b’c + abc ’ + a’bc ’ + ab’c ’ = m1,m6,m2,m4 f1( a,b,c )= ∑ (1,2,4,6) 04-07-2024 30 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Conversion of POS from standard to canonical form Expand noncanonical terms by adding 0 in terms of missing variables ( e.g. , xx’ = 0) and using the distributive law Remove duplicate maxterms f 1 ( a,b,c ) = ( a+b+c )•( b’+c ’)•( a’+c ’) = ( a+b+c )•( aa’ +b’+c ’)•( a’+ bb’ +c ’) = ( a+b+c )•( a+b ’+c’)• ( a’+b’+c ’) • (a’+ b+c ’)• ( a’+b’+c ’) = ( a+b+c )•( a+b ’+c’)•( a’+b’+c ’)•(a’+ b+c ’) = M0,M3,M7,M5 F1( a,b,c )= ∏(0,3,5,7) 04-07-2024 31 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Boolean Minimization using K Map and Tabulation method 04-07-2024 32 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Karnaugh Maps ( K Map ) Karnaugh maps (K-maps) are graphical representations of boolean functions. One map cell corresponds to a row in the truth table. Also, one map cell corresponds to a minterm or a maxterm in the boolean expression 04-07-2024 33 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

K Map Types 04-07-2024 34 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

m 3 m 2 1 m 1 m 1 x y 1 2 3 NOTE: ordering of variables is IMPORTANT for f( x,y ), x is the row, y is the column. Cell represents x’y ’; Cell 1 represents x’y ; etc. If a minterm is present in the function, then a 1 is placed in the corresponding cell. Cell = 2 n ,where n is a number of variables 04-07-2024 35 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

For the case of 2 variables, we form a map consisting of 2 2 =4 cells as shown in Figure Y X 1 1 Y X 1 1 Y X 1 1 Maxterm Minterm 1 2 3 00 01 10 11 04-07-2024 36 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

2-variable Karnaugh maps are trivial but can be used to introduce the methods you need to learn . Simplify the following Boolean function F( x,y )=∑(1,2,3) y x 1 1 1 1 1 x y F( x,y )= x+y 1 2 3 04-07-2024 37 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Simplify the following Boolean function F( x,y )=∑(0,1) y x 1 1 1 1 1 2 3 04-07-2024 38 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Simplify the following Boolean function F( x,y )=∑(1,2) y x 1 1 1 1 1 2 3 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 39

Simplify the following Boolean function F( x,y )=∑(0,3) y x 1 1 1 1 1 2 3 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 40

10 1 11 1 x yz NOTE: ordering of variables is IMPORTANT for f( x,y,z ), x is the row, y&z is the column. Cell represents x’y’z ’; Cell 1 represents x’y’z ; etc. If a minterm is present in the function, then a 1 is placed in the corresponding cell. Cell = 2 n ,where n is a number of variables 4 5 6 7 m m 1 m 3 m 2 m 4 m 5 m 7 m 6 2 3 1 Three-Variable K Map 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 41

10 1 11 1 A BC 4 5 6 7 1 1 1 1 2 3 1 Example 1 on Three-Variable K Map Simplify the following Boolean function F(A,B,C)=∑(2,3,4,5) 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 42

10 1 11 1 A BC 4 5 6 7 1 1 1 1 2 3 1 Example 2 on Three-Variable K Map Simplify the following Boolean function F(A,B,C)=∑(3,4,6,7) 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 43

10 1 11 1 A BC 4 5 6 7 1 1 1 1 1 2 3 1 Example 3 on Three-Variable K Map Simplify the following Boolean function F(A,B,C)=∑(0,2,4,5,6) 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 44

10 1 11 1 A BC 4 5 6 7 1 1 1 1 1 2 3 1 Example 4 on Three-Variable K Map Simplify the following Boolean function F(A,B,C)=∑(0,2,3,4,6) 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 45

10 1 11 1 A BC 4 5 6 7 1 1 1 1 2 3 1 Example 5 on Three-Variable K Map Simplify the following Boolean function F(A,B,C)=∑(0,1,5,7) 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 46

10 1 11 1 A BC 4 5 6 7 1 1 1 1 1 2 3 1 Example 6 on Three-Variable K Map Simplify the following Boolean function F(A,B,C)=∑(1,2,3,6,7) 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 47

10 1 11 1 A BC 4 5 6 7 1 1 1 1 2 3 1 Example 7 on Three-Variable K Map Simplify the following Boolean function F(A,B,C)=∑(3,5,6,7) 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 48

10 1 11 1 A BC 4 5 6 7 1 1 1 1 1 2 3 1 Example 8 on Three-Variable K Map Simplify the following Boolean function F(A,B,C)=∑(1,2,3,5,7) 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 49

10 1 11 1 A BC 4 5 6 7 1 1 1 1 1 1 2 3 1 Example 9 on Three-Variable K Map Simplify the following Boolean function F(A,B,C)=∑(0,2,4,5,6,7) 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 50

10 1 11 1 wx yz Cell = 2 n ,where n is a number of variables 4 5 6 7 m m 1 m 3 m 2 m 4 m 5 m 7 m 6 2 3 1 Four -Variable K Map 8 9 10 11 m 12 m 13 m 15 m 14 m 8 m 9 m 11 m 10 14 15 13 12 1 1 1 Top cells are adjacent to bottom cells. Left-edge cells are adjacent to right-edge cells. Note variable ordering ( wxyz ) or (ABCD) or (PQRS). 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 51

10 1 11 1 AB CD 4 5 6 7 Example 1 on Four -Variable K Map 8 9 10 11 1 1 1 1 1 14 15 13 12 1 1 1 Simplify the following Boolean function F(A,B,C,D)=∑(0,1,2,4,5,7,8,9,10,12,13) 1 1 1 1 1 1 2 3 1 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 52

10 1 11 1 AB CD 4 5 6 7 Example 2 on Four -Variable K Map 8 9 10 11 1 14 15 13 12 1 1 1 Simplify the following Boolean function F(A,B,C,D)=∑(4,6,7,15) 1 1 1 2 3 1 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 53

10 1 11 1 AB CD 4 5 6 7 Example 3 on Four -Variable K Map 8 9 10 11 1 1 1 1 14 15 13 12 1 1 1 Simplify the following Boolean function F(A,B,C,D)=∑2,3,12,13,14,15) 1 1 2 3 1 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 54

10 1 11 1 AB CD 4 5 6 7 Example 4 on Four -Variable K Map 8 9 10 11 1 1 1 1 1 14 15 13 12 1 1 1 Simplify the following Boolean function F(A,B,C,D)=∑(0,1,2,4,5,6,8,9,12,13,14) 1 1 1 1 1 1 2 3 1 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 55

10 1 11 1 AB CD 4 5 6 7 Example 5 on Four -Variable K Map 8 9 10 11 1 1 1 1 14 15 13 12 1 1 1 Simplify the following Boolean function F(A,B,C,D)=∑(0,2,4,5,6,7,8,10,13,15) 1 1 1 1 1 1 2 3 1 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 56

10 1 11 1 AB CD 4 5 6 7 Example 6 on Four -Variable K Map 8 9 10 11 1 1 1 1 14 15 13 12 1 1 1 Simplify the following Boolean function F(A,B,C,D)=∑(1,2,5,6,9,10,13,14) 1 1 1 1 2 3 1 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 57

Example 6 on Four -Variable K Map Simplify the following Boolean function F=A’B’C’+B’CD’+A’BCD’+AB’C’ 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 58

Simplify the following Boolean function F( x,y )=∏ (0,3) y x 1 1 1 1 1 2 3 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 59

10 1 11 1 A B+C 4 5 6 7 1 1 1 1 1 2 3 1 Example 10 on Three-Variable K Map Simplify the following Boolean function F(A,B,C)= ∏(1,3,5,6,7) 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 60

10 1 11 1 A+B C+D 4 5 6 7 Example 8 on Four -Variable K Map 8 9 10 11 1 1 1 1 14 15 13 12 1 1 1 Simplify the following Boolean function F(A,B,C,D)= ∏(0,1,4,5,10,11,14,15) 1 1 1 1 2 3 1 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 61

10 1 11 1 A BC 4 5 6 7 1 1 1 X X 2 3 1 Example 11 on Three-Variable K Map Simplify the following Boolean function F(A,B,C)=∑ m (0,2,4)+ ∑ d (5,6) 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 62

10 1 11 1 A BC 4 5 6 7 1 1 X 1 1 1 X X 2 3 1 Example 12 on Three-Variable K Map Simplify the following Boolean function F(A,B,C)=∑ m (0,1,2,4,5)+ ∑ d (3,6,7) 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 63

10 1 11 1 AB CD 4 5 6 7 Example 9 on Four -Variable K Map 8 9 10 11 1 1 1 X 14 15 13 12 1 1 1 Simplify the following Boolean function F(A,B,C,D)= ∑ m (0,6,8,13,14)+ ∑ d (2,4,10) 1 X X 1 2 3 1 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 64

10 1 11 1 AB CD 4 5 6 7 Example 10 on Four -Variable K Map 8 9 10 11 X X 1 1 14 15 13 12 1 1 1 Simplify the following Boolean function F(A,B,C,D)= ∑ m (1,3,5,7,9,15)+ ∑ d (4,6,12,13) 1 1 X 1 1 X 2 3 1 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 65

10 1 11 1 WX YZ 4 5 6 7 Example 11 on Four -Variable K Map 8 9 10 11 X 1 X 1 14 15 13 12 1 1 1 Simplify the following Boolean function F(W,X,Y,Z)= ∑ m (0,1,2,3,7,8,10)+ ∑ d (5,6,11,15) 1 1 1 1 X 1 X 2 3 1 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 66

Quine-McCluskey Method Write minterms using binary values. Group minterms by the number of 1’s Apply adjacency ( a b´ + a b = a ) to each pair of terms, forming a second list. Check those terms in the first list that are covered by the new terms. Note that only terms in adjacent groups (that differ by one 1) need be paired. Repeat process with second list (and again if multiple terms are formed on a third list). 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 67

Simplify the following Boolean function F(A,B,C,D)=∑(0,1,2,8,10,11,14,15) using Tabulation Method Group 1 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 68 8421 0000 1 2 8 10 11 14 15 0001 0010 1000 1010 1011 1110 1111 Group 2 Group 3 Group 4 Group 5 Group 1 ABCD 000_ (0,1) (0,2) (0,8) (2,10) (8,10) (10,11) (10,14) (11,15) 00_0 _000 _010 10_0 101_ 1_10 1_11 Group 2 Group 3 Group 4 (14,15) 111_ Group 1 ABCD _0_0 (0,2,8,10) (0,8,2,10) (10,11,14,15) (10,14,11,15) _0_0 1_1_ 1_1_ Group 2 Prime Implicants 000_ (0,1) _0_0 (0,2,8,10) (10,11,14,15) 1_1_ ABCD Term A’B’C’ B’D’ AC

04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 69 PRIME IMPLICANT NUMERIC 1 2 8 10 11 14 15 A’B’C’ B’D’ AC 000_ _0_0 1_1_ (0,1) (0,2,8,10) (10,11,14,15) X X X X X X X X X X

Simplify the following Boolean function F(A,B,C,D)=∑(0,1,2,5,6,7,8,9,10,14) using Tabulation Method Group 1 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 70 8421 0000 1 2 8 5 6 9 7 0001 0010 1000 0101 0110 1001 0111 Group 2 Group 3 Group 4 Group 1 ABCD 000_ (0,1) (0,2) (0,8) (1,5) (1,9) (5,7) (6,7) (6,14) 00_0 _000 0_01 _001 01_1 011_ _110 Group 2 Group 3 (10,14) 1_10 Group 1 ABCD _00_ (0,1,8,9) (0,8,2,10) (2,6,10,14) (2,10,6,14) _0_0 _ _10 _ _10 Group 2 8421 0000 1 2 5 6 7 9 10 0001 0010 0101 0110 0111 1001 1010 14 8 1000 1110 10 1010 14 1110 (2,6) (8,9) 0_10 100_ (2,10) (8,10) _010 10_0 _0_0 (0,2,8,10) _00_ (0,8,1,9)

04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 71 Prime Implicants (1,5) (5,7) (2,6,10,14) ABCD Term A’C’D A’BD CD’ (6,7) (0,1,8,9) (0,2,8,10) A’BC B’C’ B’D’ 0_01 01_1 011_ _0_0 _ _10 _00_

04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 72 PRIME IMPLICANT NUMERIC 1 2 5 6 7 8 9 10 14 X X X X X X X X X X A’C’D A’BD CD’ A’BC B’C’ B’D’ 0_01 01_1 011_ _0_0 _ _10 _00_ (1,5) (5,7) (2,6,10,14) (6,7) (0,1,8,9) (0,2,8,10) X X X X X X X X

Combinational Circuit 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 73

Logic circuits for digital systems may be combinational or sequential . A combinational circuit consists of input variables, logic gates, and output variables. 74 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Half Adder A combinational circuit that performs the addition of two bits is called a half adder . The truth table for the half adder is S = x ’ y + xy ’ C = xy 75 S: Sum C: Carry 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 1 1 1 1 1 1 1 x y C S 1 1 x y 2 3 1 1 1 1 x y 2 3 1 1 1 C: Carry S: Sum

Implementation of Half-Adder 76 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics S = x ’ y + xy ’  x ⊕ y C = xy xy = c x ’ y + xy ’ = s

Full Adder A combinational circuit that performs the addition of three bits is called a full adder . The truth table for the full adder is 77 S: Sum C: Carry 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics x y S C 10 1 11 1 x yz 4 5 6 7 m m 1 m 3 m 2 m 4 m 5 m 7 m 6 2 3 1 10 1 11 1 x yz 4 5 6 7 m m 1 m 3 m 2 m 4 m 5 m 7 m 6 2 3 1

Full-Adder One that performs the addition of three bits(two significant bits and a previous carry) is a full adder . 78 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Simplified Expressions S = x ’ y ’ z + x ’ yz ’ + xy ’ z ’ + xyz C = xy + xz + yz 79 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Full Adder implementation Full-adder can also implemented with two half adders and one OR gate (Carry Look-Ahead adder) . S = z ⊕ (x ⊕ y) = z ’ (xy ’ + x ’ y) + z(xy ’ + x ’ y) ’ = xy ’ z ’ + x ’ yz ’ + xyz + x ’ y ’ z C = z(xy ’ + x ’ y) + xy = xy ’ z + x ’ yz + xy 80 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Binary adder This is also called Ripple Carry Adder ,because of the construction with full adders are connected in cascade. 81 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Binary subtractor M = 1 subtractor ; M = 0adder 82 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Overflow It is worth noting that binary numbers in the signed-complement system are added and subtracted by the same basic addition and subtraction rules as unsigned numbers . Overflow is a problem in digital computers because the number of bits that hold the number is finite and a result that contains n+1 bits cannot be accommodated. 83 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Overflow on signed and unsigned When two unsigned numbers are added, an overflow is detected from the end carry out of the MSB position . When two signed numbers are added, the sign bit is treated as part of the number and the end carry does not indicate an overflow. An overflow can ’ t occur after an addition if one number is positive and the other is negative . An overflow may occur if the two numbers added are both positive or both negative. 84 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

BCD adder BCD adder can ’ t exceed 9 on each input digit. K is the carry. 85 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Rules of BCD adder When the binary sum is greater than 1001 , we obtain a non-valid BCD representation. The addition of binary 6(0110) to the binary sum converts it to the correct BCD representation and also produces an output carry as required. To distinguish them from binary 1000 and 1001, which also have a 1 in position Z 8 , we specify further that either Z 4 or Z 2 must have a 1. C = K + Z 8 Z 4 + Z 8 Z 2 86 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Implementation of BCD adder A decimal parallel adder that adds n decimal digits needs n BCD adder stages. The output carry from one stage must be connected to the input carry of the next higher-order stage. 87 If =1 0110 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Binary multiplier Usually there are more bits in the partial products and it is necessary to use full adders to produce the sum of the partial products. 88 And 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Magnitude comparator The equality relation of each pair of bits can be expressed logically with an exclusive-NOR function as: A = A 3 A 2 A 1 A ; B = B 3 B 2 B 1 B x i =A i B i +A i ’B i ’ for i = 0, 1, 2, 3 (A = B) = x 3 x 2 x 1 x 89 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Magnitude comparator We inspect the relative magnitudes of pairs of MSB . If equal, we compare the next lower significant pair of digits until a pair of unequal digits is reached. If the corresponding digit of A is 1 and that of B is 0, we conclude that A>B. (A>B)= A 3 B ’ 3 +x 3 A 2 B ’ 2 +x 3 x 2 A 1 B ’ 1 +x 3 x 2 x 1 A B ’ (A<B)= A ’ 3 B 3 +x 3 A ’ 2 B 2 +x 3 x 2 A ’ 1 B 1 +x 3 x 2 x 1 A ’ B 90 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Decoders The decoder is called n-to-m-line decoder, where m≤2 n . the decoder is also used in conjunction with other code converters such as a BCD-to-seven_segment decoder. 3-to-8 line decoder: For each possible input combination, there are seven outputs that are equal to 0 and only one that is equal to 1. 91 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Implementation and truth table 92 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Decoder with enable input Some decoders are constructed with NAND gates, it becomes more economical to generate the decoder minterms in their complemented form. As indicated by the truth table , only one output can be equal to 0 at any given time, all other outputs are equal to 1 . 93 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Demultiplexer A decoder with an enable input is referred to as a decoder/demultiplexer. The truth table of demultiplexer is the same with decoder. 94 Demultiplexer D0 D1 D2 D3 E A B 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Encoders An encoder is the inverse operation of a decoder . We can derive the Boolean functions by table z = D 1 + D 3 + D 5 + D 7 y = D 2 + D 3 + D 6 + D 7 x = D 4 + D 5 + D 6 + D 7 95 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Priority encoder If two inputs are active simultaneously , the output produces an undefined combination . We can establish an input priority to ensure that only one input is encoded. Another ambiguity in the octal-to-binary encoder is that an output with all 0 ’ s is generated when all the inputs are 0 ; the output is the same as when D is equal to 1. The discrepancy tables can resolve aforesaid condition by providing one more output to indicate that at least one input is equal to 1. 96 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Priority encoder V=0 no valid inputs V=1valid inputs X ’ s in output columns represent don ’ t-care conditions X ’ s in the input columns are useful for representing a truth table in condensed form. Instead of listing all 16 minterms of four variables. 97 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

4-input priority encoder Implementation of table x = D 2 + D 3 y = D 3 + D 1 D ’ 2 V = D + D 1 + D 2 + D 3 98 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Multiplexers S = 0, Y = I Truth Table  S Y Y = S ’ I + SI 1 S = 1, Y = I 1 0 I 1 I 1 99 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

4-to-1 Line Multiplexer 100 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Boolean function implementation A more efficient method for implementing a Boolean function of n variables with a multiplexer that has n-1 selection inputs. F(x, y, z) =  (1,2,6,7) 101 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

4-input function with a multiplexer F(A, B, C, D) =  (1, 3, 4, 11, 12, 13, 14, 15) 102 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Code Conversion Code-Conversion example, first, we can list the relation of the BCD and Excess-3 codes in the truth table. 103 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Karnaugh map For each symbol of the Excess-3 code, we use 1 ’ s to draw the map for simplifying Boolean function. 104 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Circuit implementation z = D ’ ; y = CD + C ’ D ’ = CD + (C + D) ’ x = B ’ C + B ’ D + BC ’ D ’ = B ’ (C + D) + B(C + D) ’ w = A + BC + BD = A + B(C + D) 105 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics

Thank You 04-07-2024 Dr. S. Yazhinian, AP/ CSE - Digital Electronics 106
Tags