Introduction 11
2. F. Chen and H. Khalil, Adaptive control of a class of nonlinear discrete-time
systems using neural networks,IEEE Transactions on Automatic Control, vol.
40, no. 5, pp. 791–801, 1995.
3. N. Cotter. The Stone-Weiertrass theorem and its application to neural networks,
IEEE Transactions on Neural Networks, vol. 1, no. 4, pp. 290-295, 1990.
4. L. A. Feldkamp, D. V. Prokhorov and T. M. Feldkamp, Simple and conditioned
adaptive behavior from Kalman filter trained recurrent networks,Neural Net-
works, vol. 16, pp. 683–689, 2003.
5. R. A. Felix,Variable Structure Neural Control, PhD Dissertation, Cinvestav,
Unidad Guadalajara, Guadalajara Jalisco Mexico, 2004.
6. S.S. Ge, T.H. Lee, and C.J. Harris, Adaptive Neural Network Control for Robotic
Manipulators, World Scientific, Singapore, 1998.
7. S. S. Ge, J. Zhang and T. H. Lee, Adaptive neural network control for a class of
MIMO nonlinear systems with disturbances in discrete-time,IEEE Transactions
on Systems, Man and Cybernetics, Part B, vol. 34, no. 4, August, 2004.
8. R. Grover and P. Y. C. Hwang,Introduction to Random Signals and Applied
Kalman Filtering, 2nd ed., John Wiley and Sons, N. Y., USA, 1992.
9. S. Haykin,Kalman Filtering and Neural Networks, John Wiley and Sons, N. Y.,
USA, 2001.
10. S. Jagannathan, Control of a class of nonlinear discrete-time systems using mul-
tilayer neural networks,IEEE Transactions on Neural Networks, vol. 12, no. 5,
pp. 1113–1120, 2001.
11. F.L. Lewis, J. Campos, and R. Selmic,Neuro-Fuzzy Control of Industrial Systems
with Actuator Nonlinearities, Society of Industrial and Applied Mathematics
Press, Philadelphia, 2002.
12. F.L. Lewis, S. Jagannathan, and A. Yesildirek, “Neural Network Control of Robot
Manipulators and Nonlinear Systems”, Taylor and Francis, London, 1999.
13. K.S. Narendra and K. Parthasarathy, “Identification andcontrol of dynamical
systems using neural networks,”IEEE Transactions on. Neural Networks, vol. 1,
pp. 4–27, Mar. 1990.