Math Exercise on Equalities and Inequalities for Grade 7
Size: 55.43 KB
Language: en
Added: Jul 01, 2024
Slides: 2 pages
Slide Content
Equations, identities and inequalities
Label the following as either
equations, identities or inequalities:
1) 3x + 1 = 4
2) x + 2 > 5
3) x² = 2x + 3
4) 5x(x – 2) ≡ 5x² - 10x
5) a² - b² ≡ (a + b)(a – b)
6) 7x + 4 < 4 – 2x
7) 4x² + 3x + 3 = 7
8) x(x+4) – 2x² ≡ 4x - x²
9) 8x² + 2x – 15 ≡ (2x + 3)(4x - 5)
10) x² - x + 5 > 5x - 6
Red: I can identify and recognise
equations, identities and
inequalities
Amber: I can prove algebraic
identities
Green: I can find missing values in
algebraic identities
Prove these identities:
1) 3(x + 2) + 4(x – 1) ≡ 7x + 2
2) 5(x – 2) + 3(x – 3) ≡ 8x – 19
3) 8(x + 4) + 5(x – 2) ≡ 13x + 22
4) x(x + 4) – 3(4 + x) ≡ x² + x - 12
5) x(x + 3) + 2(x + 3) ≡ x² + 5x +
6
6) 5(x + 2) - 3(x + 4) ≡ 2(x – 1)
7) 4(x + 2) + 2(x + 1) ≡ 2(3x + 5)
8) x(x – 4) + x(x + 2) ≡ 2x(x - 1)
Find the missing values:
1) 2(x + 2) + 5(x + 1) ≡ □x + □
2) 3(x – 2) + 4(x + 3) ≡ □x + □
3) 5(x + □) + 3(x - □) ≡ 8x – 19
4) x(x + □) + 2(x + □) ≡ x² + 3x + 4
5) x(x – 4) + 2x(x – 3) ≡ □x² - □x
6) x(2x + □) ≡ □x² + 6x
7) □x(3x + 2) ≡ 12x² + □x
8) □x(□x – 5) ≡ 16x² - 20x
9) 6(2x - □) + 3(□x – 4) ≡ 15x – 24
10) 7(7x - □) + 2x(□x + 9) ≡ 6x² +
□x - 56
Substituting into formulae
1) Equation
2) Inequality
3) Equation
4) Identity
5) Identity
6) Inequality
7) Equation
8) Identity
9) Identity
10) Inequality
Red answers: Amber answers: Green answers:
Proofs: Expand brackets to show that
the Right Hand Side equals the Left
Hand Side