Functional Smart Nanomaterials And Their Theranostics Approaches Alle Madhusudhan

siisikisper 7 views 86 slides May 15, 2025
Slide 1
Slide 1 of 86
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86

About This Presentation

Functional Smart Nanomaterials And Their Theranostics Approaches Alle Madhusudhan
Functional Smart Nanomaterials And Their Theranostics Approaches Alle Madhusudhan
Functional Smart Nanomaterials And Their Theranostics Approaches Alle Madhusudhan


Slide Content

Functional Smart Nanomaterials And Their
Theranostics Approaches Alle Madhusudhan
download
https://ebookbell.com/product/functional-smart-nanomaterials-and-
their-theranostics-approaches-alle-madhusudhan-55063206
Explore and download more ebooks at ebookbell.com

Here are some recommended products that we believe you will be
interested in. You can click the link to download.
Functional And Smart Materials Chander Prakash Sunpreet Singh J Paulo
Davim
https://ebookbell.com/product/functional-and-smart-materials-chander-
prakash-sunpreet-singh-j-paulo-davim-22064718
Advances In Functional And Smart Materials Select Proceedings Of
Icfmmp 2021 Lecture Notes In Mechanical Engineering 1st Ed 2023
Chander Prakash Editor
https://ebookbell.com/product/advances-in-functional-and-smart-
materials-select-proceedings-of-icfmmp-2021-lecture-notes-in-
mechanical-engineering-1st-ed-2023-chander-prakash-editor-49158764
Nanoengineering Of Structural Functional And Smart Materials 1st
Edition Mark J Schulz
https://ebookbell.com/product/nanoengineering-of-structural-
functional-and-smart-materials-1st-edition-mark-j-schulz-982216
Smart And Functional Textiles Bapan Adak Samrat Mukhopadhyay
https://ebookbell.com/product/smart-and-functional-textiles-bapan-
adak-samrat-mukhopadhyay-49181230

Smart And Functional Textiles Bapan Adak Samrat Mukhopadhyay
https://ebookbell.com/product/smart-and-functional-textiles-bapan-
adak-samrat-mukhopadhyay-49473990
Smart Hydrogel Functional Materials 1st Edition Liangyin Chu
https://ebookbell.com/product/smart-hydrogel-functional-materials-1st-
edition-liangyin-chu-4380568
Ionic Polymer Metal Composites Ipmcs Smart Multifunctional Materials
And Artificial Muscles Vol 1 Shahinpoor Mohsen Ed
https://ebookbell.com/product/ionic-polymer-metal-composites-ipmcs-
smart-multifunctional-materials-and-artificial-muscles-
vol-1-shahinpoor-mohsen-ed-5301426
Ionic Polymer Metal Composites Ipmcs Smart Multifunctional Materials
And Articial Muscles Gld Mohsen Shahinpoor Ed
https://ebookbell.com/product/ionic-polymer-metal-composites-ipmcs-
smart-multifunctional-materials-and-articial-muscles-gld-mohsen-
shahinpoor-ed-5301468
A Heterofunctional Graph Theory For Modeling Interdependent Smart City
Infrastructure 1st Ed Wester C H Schoonenberg
https://ebookbell.com/product/a-heterofunctional-graph-theory-for-
modeling-interdependent-smart-city-infrastructure-1st-ed-wester-c-h-
schoonenberg-7325480

Functional Smart
Nanomaterials and
Their Theranostics
Approaches
Alle Madhusudhan · Shiv Dutt Purohit ·
Rajendra Prasad · Azamal Husen Editors
Smart Nanomaterials Technology

Smart Nanomaterials Technology
Series Editors
Azamal Husen
, Department of Biotechnology, Smt. S. S. Patel Nootan Science &
Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
Department of Biotechnology, Graphic Era (Deemed to be University),
Dehradun, Uttarakhand, India
Laboratory of Bio Resource Management, Institute of Tropical Forestry and
Forest Product, University Putra Malaysia, UPM Serdang, Selangor, Malaysia
Mohammad Jawaid, Laboratory of Biocomposite Technology, Universiti Putra
Malaysia, INTROP, Serdang, Selangor, Malaysia

Nanotechnology is a rapidly growing scientific field and has attracted a great interest
over the last few years because of its abundant applications in different fields like
biology, physics and chemistry. This science deals with the production of minute
particles called nanomaterials having dimensions between 1 and 100 nm which may
serve as building blocks for various physical and biological systems. On the other
hand, there is the class of smart materials where the material that can stimuli by
external factors and results a new kind of functional properties. The combination of
these two classes forms a new class of smart nanomaterials, which produces unique
functional material properties and a great opportunity to larger span of applica-
tion. Smart nanomaterials have been employed by researchers to use it effectively in
agricultural production, soil improvement, disease management, energy and environ-
ment, medical science, pharmaceuticals, engineering, food, animal husbandry and
forestry sectors.
This book series in Smart Nanomaterials Technology aims to comprehensively
cover topics in the fabrication, synthesis and application of these materials for applications in the following fields:
•Energy Systems—Renewable energy, energy storage (supercapacitors and elec- trochemical cells), hydrogen storage, photocatalytic water splitting for hydrogen
production
•Biomedical—controlled release of drugs, treatment of various diseases, biosen- sors,
•Agricultural—agricultural production, soil improvement, disease management, animal feed, egg, milk and meat production/processing,
•Forestry—wood preservation, protection, disease management
•Environment—wastewater treatment, separation of hazardous contaminants from wastewater, indoor air filters

Alle Madhusudhan
Rajendra Prasad
Editors
Functional Smart
Nanomaterials and Their
Theranostics Approaches

Editors
Alle Madhusudhan
Department of Chemistry
The University of Memphis
Memphis, TN, USA
Rajendra Prasad
School of Biochemical Engineering Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, India
Shiv Dutt Purohit
School of Chemical Engineering Yeungnam University Gyeongsan, Korea (Republic of)
Azamal Husen
Department of Biotechnology Smt. S. S. Patel Nootan Science & Commerce College, Sankalchand Patel University Visnagar, Gujarat, India
Department of Biotechnology Graphic Era (Deemed to be University) Dehradun, Uttarakhand, India
Laboratory of Bio Resource Management Institute of Tropical Forestry and Forest Product, University Putra Malaysia UPM Serdang, Selangor, Malaysia
ISSN 3004-8273 ISSN 3004-8281 (electronic)
Smart Nanomaterials Technology
ISBN 978-981-99-6596-0 ISBN 978-981-99-6597-7 (eBook)
https://doi.org/10.1007/978-981-99-6597-7
© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Singapore Pte Ltd. 2024
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.
This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore
Paper in this product is recyclable.

Preface
In recent years, nanotechnology has become an epoch-making area with enormous
potential and can revolutionize every aspect of our lives. One of the most inter-
esting applications of nanotechnology is the development of functional intelligent
nanomaterials, which interact with nano-class biological systems with remarkable
capabilities. These data will open a new era of medical care by increasing the space
for the development of diagnosis, treatment, and customized medical care.
The book
explores their potential in the field of nanotechnology, which combines therapy and diagnosis, to explore the fascinating world of nanomaterials and realize accurate and personalized treatment strategies. This book outlines the latest development and
future prospects of functional intelligent nanomaterials in the medical field with the contribution of leading researchers and experts in this field.
This book is divided into 14 chapters and focuses on the specific aspects and
applications of functional intelligent nanomaterials. Chapters “Basic Principles
of Functional Materials for Biomedical Applications” and “Functional Biomaterials
for Targeted Drug Delivery Applications” introduce the basic principles of functional
materials, outline the unique characteristics of nanomaterials, and make them ideal candidates for biomedical applications and drug delivery applications. These chap- ters highlight the importance of exploring various materials and their manufacturing
techniques. Chapters “
Metallic Nanoparticles for Imaging and Therapy” and “Ther-
anostic Applications of Functional Nanomaterials Using Microscopic and Spectro- scopic Techniques
” comprise the information related to nanoparticles and their appli-
cations in the imaging and spectroscopy-based theranostic applications. After that, Chaps. “
Next-Generation Therapies for Breast Cancer”–“Functional Biomaterials
for Image-Guided Therapeutics of Solid Tumor” provide insights into the application
of functional nanomaterials in diagnosis and treatment of the cancer.
Chapters “Nanostructured Electrodes as Electrochemical Biosensors for Biomed-
ical Applications”to“Screen-Printed Electrode (SPE)-Based Biosensor
for Point-Of-Care (POC) Diagnostic in Medical Applications, Their Scope, and Challenges
” emphasize the role and significance of the use of nanostructures
for biosensor-based theranostics applications. The development in biosensor-based
v

vi Preface
diagnostics for bacterial diseases has been also explained (Chap. “Development
in
Biosensor-Based Diagnostics for Bacterial Diseases: Opportunities and Chal-
lenges”). The sensing applications range from electrochemical biosensors, screen
printed
electrode-based point-of-care devices to the organ on chip systems. Finally,
the book provides insights into the next generations of therapy for various applica-
tions including type 2 diabetes mellitus using natural products, quantum dots, and
nanomaterials (Chaps. “Next-Generation Therapies for Type 2 Diabetes Mellitus”
and
“Quantum Dots for Theranostic Applications”).
The ultimate goal of this book is to provide comprehensive resources to
researchers,
students, and experts in nanotechnology and biomedical fields to empha-
size the potential and importance of functional intelligent nanomaterials in nanotech-
nology. The text aims to deepen understanding of the principles and applications of
these materials and to encourage further research and innovation in this interesting
and rapidly evolving field.
We sincerely thank all authors for their contribution to the expertise and knowledge
of
this book. Their valuable insight and groundbreaking research enabled publica-
tions. Furthermore, we would like to thank the reviewers for their thoughtful opinions
and suggestions.
We hope this book will be a valuable resource for readers who want to explore
the
state-of-the-art development of functional smart nanomaterials and their rational
methods. We hope to contribute to improving the level of medical service and quality
of life by providing new ways of thinking, cooperation, and innovation to the global
public.
Memphis, USA
Gyeongsan, Korea (Republic of)
Varanasi, India
Visnagar, India
Alle Madhusudhan
Shiv Dutt Purohit
Rajendra Prasad
Azamal Husen

Contents
Basic Principles of Functional Materials for Biomedical
Applications......................................................1
Vaskuri G S Sainaga Jyothi, Valamla Bhavana,
and Nagavendra Kommineni
Functional Biomaterials for Targeted Drug Delivery Applications......33
Hemant Singh, Muzammil Kuddushi, Ramesh Singh, Sneha Sathapathi, Aniruddha Dan, Narayan Chandra Mishra,
Dhiraj Bhatia, and Mukesh Dhanka
Metallic Nanoparticles for Imaging and Therapy.....................65
Ibraq Khurshid, Hemant Singh, Alia Khan, Muzafar Ahmed Mir, Bilkees Farooq, Asif Iqbal Shawl, Shabir Hassan, Syed Salman Ashraf, Yarjan Abdul Samad, and Showkeen Muzamil
Theranostic Applications of Functional Nanomaterials Using
Microscopic and Spectroscopic Techniques...........................87
Sahil Tahiliani, Nishtha Lukhmana, and Shyam Aravamudhan
Next-Generation Therapies for Breast Cancer........................119
Anindita De, Sonam Patel, and K. Gowthamarajan
Nanostructures-Based Polymeric Composite for Theranostic
Applications......................................................147
Poonam Jain, K. Gireesh Babu, Alle Madhusudhan, and Mitchell Lee Taylor
Functional Biomaterials for Image-Guided Therapeutics of Solid
Tumor............................................................181
Sauraj
vii

viii
Development in Biosensor-Based Diagnostics for Bacterial
Diseases: Opportunities and Challenges.............................197
Arka Sanyal, Priya Mitra, Tanima Dey, Debatri Dutta, Koustav Saha,
Arunima Pandey, and Ritesh Pattnaik
Nanostructured Electrodes as Electrochemical Biosensors
for Biomedical Applications........................................241
Rajlakshmi Chetty, Varun Pratap Singh, Alle Madhusudhan,
Raymond Wilson, and Alberto Rodriguez-Nieves
State of the Art in Integrated Biosensors for Organ-on-a-Chip
Applications......................................................263
Tanima Dey, Priya Mitra, Binita Chakraborty, Arka Sanyal,
Aditi Acharjee, Anushikha Ghosh, and Dindyal Mandal
Nanotherapeutics for Rheumatoid Arthritis Therapy.................305
Poonam Jain, K. Gireesh Babu, Alle Madhusudhan,
and Sashikantha Reddy Pulikallu
Screen-Printed Electrode (SPE)-Based Biosensor for Point-Of-Care
(POC) Diagnostic in Medical Applications, Their Scope,
and Challenges....................................................331
Dinesh Rotake, Shruti Patle, and Shiv Govind Singh
Next-Generation Therapies for Type 2 Diabetes Mellitus..............347
Debarun Patra, Soumyajit Roy, Palla Ramprasad, and Durba Pal
Quantum Dots for Theranostic Applications.........................377
Swati Sharma, Pawan Kumar Pandey, Hemant Singh, Indu Yadav,
Shiv Dutt Purohit, and Narayan Chandra Mishra

About the Editors
Alle Madhusudhan is currently working as a Postdoc-
fellow at The University of Memphis, TN, U.S.A.
Earlier he worked as a Research Professor at Department
of Biomedical Science & Institute of Bioscience and
Biotechnology, Kangwon National University, South
Korea and also worked as an Associate Professor at
Department of Chemistry, Gondar University, Gondar,
Ethiopia (2014–2018). During this period, he served as
a Coordinator of MSc (Chemistry) Programs and as
the Head of the Chemistry Department. Four students
submitted their master’s thesis under his supervision. He
received his doctorate from Department of Chemistry,
Osmania University, India (2013), where he worked on
the research projects sponsored by University Grants
Commission, India. He has more than 18 years of expe-
rience in teaching and research in both academia and
industry. He has published more than 70 scientific papers
in SCI/SCIE-grade journals (>1900 citations; h-index =
22) as a first and corresponding author and published 1
book and 11 book chapters (Springer and Elsevier). He
is also listed as a potential reviewer for many reputed
international journals. He is also a member of Ethiopian
chemical society and Indian chemical society. He has
presented his work in several national and interna-
tional conferences in India, Ethiopia, South Korea, and
U.S.A. He has conducted two research projects spon-
sored by University Grants Commission (UGC), New
Delhi, India. His current research interests include liquid
biopsy, cancer biology, polymeric nano-drug delivery
systems, biomaterials for sustainability and catalysis.
Extraction and chemical modification of nanocellulose
ix

x About the Editors
from lignocellulosic biomass, green synthesis of metal
and metal oxide nanoparticles on nanocellulose support
and their novel applications in biomedicine, biosensors,
and catalysis.
Shiv Dutt Purohit is currently working as Interna-
tional Research Professor (Assistant Professor) at the
School of Chemical Engineering, Yeungnam University,
Gyeongsan, South Korea. He obtained his Ph.D. from
the Department of Polymer and Process Engineering,
Indian Institute of Technology Roorkee, in 2021. He
is Materials Scientist, and his research interests lie in
biomedical and related areas such as tissue engineering
and wound healing. Besides, he is also intrigued to work
in other areas such as food packaging materials. He has
published more than 20 research articles and chapters
and has more than 500 citations on his name with an h-
index of 10. He is also Reputed Reviewer for several
peer-reviewed international journals and working as
Academic Editor for Scientifica-Hindawi. He is also
involved in the editing of a few special issues in SCIE
journals.
Rajendra Prasad is currently working as Assistant
Professor at the School of Biochemical Engineering,
Indian Institute of Technology (BHU), Varanasi, India.
Prior to this position, Rajendra Prasad had postdoctoral
trainings from Tufts University, Medford, Boston, MA,
USA, NOVA Medical School, Faculdade de Ciências
Médicas Campo Mártires da Pátria, Lisboa, Portugal and
Technion-Israel Institute of Technology, Haifa, Israel,
and Indian Institute of Technology, Bombay, India, in
the area of Cancer NanoMedicine and targetable cancer
theranostics. Moreover, Rajendra Prasad had a chance
to help few master students during my postdoctoral
trainings, which gave me a confidence to handle scien-
tific challenges and lead independent research projects.
Rajendra Prasad has also cracked prestigious Postdoc-
toral Fellowships such as IPDF, PBC, and JSPS and hold
my membership for Royal Society of Chemistry.

About the Editors xi
Azamal Husen is presently working as a Professor
at Sankalchand Patel University, Visnagar, India; and
Adjunct Professor at Graphic Era (Deemed to be Univer-
sity), Dehradun, Uttarakhand, India. He is also working
as a Visiting Professor at University Putra Malaysia,
Selangor, Malaysia. Previously, he served as Professor
and Head of the Department of Biology, University of
Gondar, Ethiopia; and worked as a Foreign Delegate
at Wolaita Sodo University, Wolaita, Ethiopia. He also
worked as a Visiting Faculty of the Forest Research Insti-
tute and the Doon College of Agriculture and Forest
at Dehra Dun, India. His research and teaching expe-
rience of 25 years encompasses biogenic nanomaterial
fabrication and application; plant responses to nanoma-
terials; plant adaptation to harsh environments at the
physiological, biochemical, and molecular levels; herbal
medicine; and clonal propagation for improvement of
tree species. He has conducted research sponsored by
the World Bank, the National Agricultural Technology
Project, the Indian Council of Agriculture Research,
the Indian Council of Forest Research Education, and
the Japan Bank for International Cooperation. Husen
has published extensively (over 250) and served on
the Editorial Board and as reviewer of reputed jour-
nals published by Elsevier, Frontiers Media, Taylor &
Francis, Springer Nature, RSC, Oxford University Press,
Sciendo, the Royal Society, CSIRO, PLOS, MDPI, John
Wiley & Sons, and UPM Journals. He is on the advisory
board of Cambridge Scholars Publishing, UK. He is a
fellow of the Plantae group of the American Society
of Plant Biologists, and a member of the International
Society of Root Research, Asian Council of Science
Editors, and International Natural Product Sciences. He
is Editor-in-Chief of the American Journal of Plant
Physiology, and a Series Editor of Exploring Medicinal
Plants (Taylor & Francis Group, USA); Plant Biology,
Sustainability, and Climate Change (Elsevier, USA);
and Smart Nanomaterials Technology (Springer Nature,
Singapore).

Basic Principles of Functional Materials
for Biomedical Applications
Vaskuri G S Sainaga Jyothi, Valamla Bhavana, and Nagavendra Kommineni
Abstract
applications  playing  critical  role  in  drug  delivery  design.  Currently,  numerous  mate−
rials  of  synthetic  (metallic  and  nonmetallic  systems)  and  natural  origin  are  exten−
sively  studied  to  surpass  the  limitations  of  conventional  approaches.  In  a  broader 
context,  functional  nanomaterials  are  used  to  accomplish  targeted  delivery  and  reduce 
toxic  effects.  They  exhibit  an  extensive  variability  of  physical  and  chemical  prop−
erties,  allowing  for  the  fine−tuning  of  biocompatibility,  biodegradability,  stimuli−
responsiveness,  and  bioactivities.  These  functional  materials,  with  different  patterns 
and  versatile  functionality,  are  exhibiting  considerable  applications  in  diagnosis, 
controlled  delivery  of  therapeutic  agents,  efficient  adjuvants  of  immunotherapy, 
regenerative  medicine,  and  medical  devices.  This  book  chapter  provides  an  insight 
on  the  basic  principles  and  applications  of  the  revolutionized  functional  materials. 
Keywords ∙Targeted  delivery ∙Biomedical  applications ∙
Stimuli−responsiveness 
1 Introduction
Material  science  is  indispensable  in  the  field  of  biomedical  applications  including targeted  delivery,  bioimaging,  biosensing,  and  tissue  engineering.  Advancement  of 
nanotechnology  in  the  field  of  material  science  has  revolutionized  the  field  of  biomed−ical  sciences  which  enabled  the  ease  of  targeted  drug  delivery  and  diagnosis  [
1–3]. 
Notwithstanding,  customization  of  nanomaterials  is  to  be  accomplished  to  liberate
V.  G.  S.  S.  Jyothi 
Department  of  Pharmaceutics,  National  Institute  of  Pharmaceutical  Education  and  Research, 
Hyderabad,  Telangana,  India 
N.  Kommineni (B) 
Center  for  Biomedical  Research,  Population  Council,  New  York  NY−10065,  USA 
e−mail: [email protected] 
©  The  Author(s),  under  exclusive  license  to  Springer  Nature  Singapore  Pte  Ltd.  2024 
A.  Madhusudhan  et  al.  (eds.), 
and Their Theranostics Approaches
https://doi.org/10.1007/978−981−99−6597−7_1 
1

2 V. G. S. S. Jyothi et al.
the  desired  properties.  Functionalization  is  the  strategic  method  to  engineer  the  nano−
materials  that  eventually  leads  to  improved  efficacy  eventually  diminishing  its  side 
effects,  due  to  targeted  delivery  and  active  uptake  into  the  cells.  Functionalization 
leads  to  the  variability  of  the  physical  and  chemical  properties  of  the  nanomaterials, 
rendering  the  incorporation  of  desired  function  to  the  material  [
4]. 
Functionalization  is  the  deliberate  bonding  of  atoms  or  molecules  to  material 
customizing  the  physicochemical  properties  of  the  carrier  system  [5].  The  purpose 
of  functionalization  of  the  carrier  material  is  to  incorporate  the  required  properties  enabling  it  to  be  multifunctional  [
6].  Some  of  the  primary  objectives  of  function−
alization  are  to  reduce  cytotoxicity,  enhance  stability,  and  to  achieve  targeting  and 
diagnosis  (Fig. 1).  However,  progress  of  chemical  methods  in  the  arena  of  nano−
materials  is  the  utmost  requirement  for  its  advancement.  Numerous  methods  have 
been  explored  in  the  chemical  conjugation  and  functionalization  of  nanomaterials 
specifically  to  achieve  targeted  delivery,  in  tissue  engineering  and  for  diagnostic 
purposes  [7].  The  continuous  efforts  in  the  research  of  functional  materials  help  in 
the  technological  advancement  in  diagnosis  and  pharmacotherapy.  Functional  mate−
rials  with  different  patterns  and  versatile  functionality  are  manifested  with  a  variety 
of  nanomaterials. 
Fig. 1
functionalized  materials

Basic Principles of Functional Materials for Biomedical Applications 3
2 Different Categories of Functional Materials Explored
Functional  materials  are  easily  processed  into  various  device  modalities,  such  as  lipo−
somes,  polymeric  nanoparticles,  inorganic  nanoparticles  for  instance  quantum  dots 
(QDs),  magnetic  nanoparticles,  and  carbon  nanotubes  (CNTs)  (Fig. 
2).  So,  the  most 
widely  explored  functional  materials  in  the  field  of  biomedical  applications  including  QDs,  CNTs,  magnetic  nanoparticles,  silica  nanoparticles,  lipid−based  nanocarriers,  and  polymeric  nanoparticles  are  being  discussed  here  (Table 
1). 
2.1 Carbon Nanotubes
CNT  is  one  of  the  allotropes  of  carbon,  for  example  graphite,  diamond,  amorphous  carbon,  and  fullerene  [
30].  They  are  considered  as  one  of  the  novel  and  promising 
nanomaterials  in  biomedical  relevance  with  prominent  applications  [31, 32].  They 
are  widely  utilized  in  the  delivery  of  drugs,  biomolecules,  and  for  achieving  active  targeting  to  the  site  of  action.  Additionally,  unparalleled  electrical  and  optical  proper− ties  of  CNTs  enable  them  as  essential  candidates  in  biosensing  and  diagnostic  applica−
tions  [
33].  Nevertheless,  CNTs  were  found  to  be  cytotoxic  which  limit  their  utilization 
in  biomedical  field  [34].  To  surmount  the  cytotoxicity  and  facilitate  targeting,  func−
tionalization  of  CNTs  is  being  explored  in  the  field  of  biomedical  applications  [35]. 
Functionalized  CNTs  were  reported  for  their  use  in  bone  regeneration  [18]  cancer 
therapy,  and  diagnosis  [19, 20]  and  also  in  the  biosensing  [23],  angiographic  imaging 
[24],  and  molecular  targeting  [25].  Functionalization  also  enabled  CNT  biocompat−
ible  and  enhanced  the  permeability  across  the  biological  membranes.  Functionalized  CNTs  have  gained  immense  popularity  in  the  field  of  theranostics  due  to  their  unique
Fig. 2

4 V. G. S. S. Jyothi et al.
Table 1
Application
Functional  material
Active  ingredient
Description
References 
Wound  healing
Carbon  quantum  dots
Gentamicin  sulfate 
and  diammonium 
citrate 
Peilili  et  al.  synthesized  antibacterial carbon  quantum  dots  with  low−drug resistance  self−healing  hydrogel  with potent  wound  healing  for  treating bacterial  infections 
Li  et  al.  [
8

Biosensor  for  cholesterol sensing 
Nanocomposites  of  quantum  dots

Adel  et  al.  synthesized  nitrogen graphene  quantum  dots  and  copper indium  sulfide/zinc  sulfide  QDs  for cholesterol  sensing.  The  fluorescent nanocomposite  showed  a  highly sensitive,  selective  nonenzymatic cholesterol  optical  biosensor  in 0.312–5  mM  cholesterol 
Adel  et  al.  [
9

Imaging  of  microbial  cells
Nitrogen−doped  carbon  quantum  dots

Jain  et  al.  synthesized  nitrogen−doped grapheme  quantum  dots  with 
photoluminescence  ability  for bioimaging  of  microbial  cells including  E.  coli  and  Saccharomyces cerevisiae  yeast 
Jain  et  al.  [
10

Targeted  drug  delivery  and bioimaging  tool 
Folic  acid−based  carbon  dot
Doxorubicin
Sarkar  et  al.  developed  folic  acid−based carbon  dot  functionalized  stearic acid−g−polyethyleneimine  amphiphilic nanomicelle  for  targeted  doxorubicin delivery  and  imaging  for  triple−negative breast  cancer 
Sarkar  et  al.  [
11
]
(continued)

Basic Principles of Functional Materials for Biomedical Applications 5
Table 1
Application
Functional material
Active ingredient
Description
References
Targeted  delivery  of 
doxorubicin 
Maltose−functionalized  dendrimer/ graphene  quantum  dots 
Doxorubicin
Karimi  et  al.  prepared maltose−functionalized  dendrimer/ graphene  quantum  dots  as  a pH−sensitive  biocompatible  carrier  for targeted  delivery  of  doxorubicin 
Karimi  and  Namazi [
12

Targeted  delivery  of telmisartan 
Chitosan  Fe
3
O

magnetic 
nanoparticles 
Telmisartan
Dhavale  et  al.  grafted  chitosan  on Fe
3
O

magnetic  nanoparticles  and  used 
as  a  carrier  of  poorly  water−soluble anticancer  drug  telmisartan 
Dhavale  et  al.  [
13

Imaging  and  targeted delivery  in  breast  cancer cell 
FITC  functionalized  magnetic nanoparticles 
Cinnamaldehyde
Folate  mediated  targeted  delivery  of cinnamaldehyde  loaded  and  FITC functionalized  magnetic  nanoparticles in  breast  cancer:  in  vitro,  in  vivo  and pharmacokinetic  studies 
Shetty  et  al.  [
14

Quercetin  drug  delivery
Functionalized  magnetite  nanoparticle by  chitosan 
Quercetin
Quercetin−loaded  magnetite nanoparticles  exhibited  greater  toxicity against  MCF−7  cells  compared  to quercetin−free  magnetic  nanoparticles 
Askar  et  al.  [
15

Functionalized 
boron−dipyrromethene 
magnetic  nanoparticles 
Magnetic  nanoparticles

Scanone  et  al.  developed  functionalized 
magnetic  nanoparticles  with 
boron−dipyrromethene  for  bioimaging 
and  antimicrobial  activity.  They  used 
the  modified  nanoparticles  to  produce 
fluorescent  images  of  bacterial  cells 
and  photoinactivate  pathogens 
Scanone  et  al.  [
16
]
(continued)

6 V. G. S. S. Jyothi et al.
Table 1
Application
Functional material
Active ingredient
Description
References
Bioimaging  of  liver
Polymeric  micelles−coated  magnetic 
nanoparticles 

Popescu  Din  et  al.  developed  polymeric micelles−coated  magnetic  nanoparticles for  in  vivo  bioimaging  of  liver 
Popescu  Din  et  al. [
17

Bone  regeneration
Functionalized  multiwall  carbon nanotubes 

Shrestha  et  al.  engineered  a  novel fibrous  scaffold  with  the  aid  of  zein  and chitosan  into  polyurethane  with functionalized  multiwall  carbon nanotubes  as  a  bone  cell  repair  material for  bone  regeneration 
Shrestha  et  al.  [
18

SWCNT  bioconjugate
Annexin  A5  functionalized single−walled  CNTs 
Anti−CTLA−4
Annexin  A5  functionalized single−walled  CNTs  bioconjugate synergistically  enhances  an anti−cytotoxic  T−lymphocyte−associated protein  4  dependent  abscopal  response 
McKernan  et  al. [
19

Anticancer  drug  carriers
Functionalized  single−walled  carbon nanotubes 
5−Fluorouracil
Ershadi  et  al.  investigated  the  electronic properties  of  the  combination  metallic ((4,0))  or  semiconductive  ((8,0)) single−wall  carbon  nanotubes  plus 5−Fluorouracil 
Ershadi  et  al.  [
20

Bioimaging  and  biosensing of  acute  myeloid  leukemia 
Sgc8−aptamer  with  luminescent terbium  (III)  complexes  with thiacalix[4]arenesulfonate−doped  silica nanoparticles 

The  Sgc8  aptamer  conjugated  silica nanoparticles  showed  affinity  to CCRF−CEM  and  Jurkat  cells  with  flow cytometry  selectively.  The  resulted nanoparticles  were  promising  agent  for diagnosis  and  therapy  of  acute  myeloid leukemia  creating  an  opportunity  for bioimaging  and  biosensing 
Grechkin,  [
21
], 
Gubala  [
22
]
(continued)

Basic Principles of Functional Materials for Biomedical Applications 7
Table 1
Application
Functional material
Active ingredient
Description
References
Biosensors
Functionalized  multiwalled  carbon 
nanotubes 

Wang  et  al.  developed  functionalized multiwalled  carbon  nanotubes biosensors  that  mimic  the  hierarchically helical  assembly  of  tissues  for  chronic chemical  monitoring  in  vivo 
Wang  et  al.  [
23

Angiographic  imaging
Oxygen−doped  carbon nanotubes 

Takeuchi  et  al.  developed oxygen−doped  carbon  nanotubes  with phospholipid−polyethylene  glycol coating  to  provide  bioaffinity  and showed  prominent  fluorescence  and Raman  signals  in  spleen  and  liver;  the signals  remained  for  1  month 
Takeuchi  et  al.  [
24

Nanosensors  for  molecular targeting 
Biotin  functionalized single−walled  carbon nanotubes 

Chio  et  al.  developed  dual functionalized  single−walled  carbon nanotube  nanosensors  for  molecular 
targeting  and  evaluated  its  functionality by  attaching  biotin  as  an  affinity  pair with  avidin  protein 
Chio  et  al.  [
25

Gene  delivery
Protein  liposomes

Wang  et  al.  prepared transferrin−modified  liposomes  for  the targeted  delivery  of acetylcholinesterase  therapeutic  gene  to liver  cancer 
Wang  et  al.  [
26
]
(continued)

8 V. G. S. S. Jyothi et al.
Table 1
Application
Functional material
Active ingredient
Description
References
Targeted  delivery  for  spinal 
cord  injury 
Functionalized  liposomes 

Wang  et  al.  prepared  orally administered  targeted  delivery  system in  which  the  neuropeptide  apamin, stabilized  by  sulfur  replacement  with selenium,  was  adopted  as  a  targeting moiety,  and  the  liposome  surface  was protected  with  a  noncovalent cross−linked  chitosan  oligosaccharide lactate  layer 
Wang  et  al.  [
26

Targeted  delivery  of toll−like  receptor  (TLR) agonists 
C3  targeted  liposomes

Francian  et  al receptor  agonists,  within  the C3−liposomes,  including monophosphoryl  lipid  A,  R848,  and CpG  1826,  specific  for  TLR4,  TLR9 and  TLR7/8 
Francian  et  al.  [
27
]
(continued)

Basic Principles of Functional Materials for Biomedical Applications 9
Table 1
Application
Functional material
Active ingredient
Description
References
Drug  delivery  to  colon 
cancer  cells 
Polymeric  nanoparticles
Alpha  mangostin
Andrade  et  al.  formulated  genipin  and Eudragit
® 
L100  modified 
αthiolated  chitosan  nanoparticles  for colon−targeted  drug  delivery  against colorectal  cancer  cells  using pH−dependent  composite mucoadhesive  nanoparticles 
Andrade  et  al.  [
28

Targeted  nanodelivery
Polymeric  nanoparticle

Treekoon  et  al.  synthesized iodo−substituted  aza−BODIPY encapsulated  nanoparticles  via  the nanoprecipitation  method  using  the amphiphilic  poly(ethylene glycol)−
polymer  (PEG−
nanodelivery  system 
Treekoon  et  al.  [
29
]

10 V. G. S. S. Jyothi et al.
properties.  One  of  the  significant  benefits  of  functionalized  carbon  nanotubes  is  their 
ability  to  act  as  multifunctional  agents  for  both  imaging  and  therapeutic  applications. 
They  can  be  used  as  diagnostic  agents  to  detect  diseases  or  pathological  conditions 
and  simultaneously  act  as  therapeutic  agents  to  treat  the  disease  [
36].  Addition−
ally,  the  functionalized  CNTs  have  high  surface  area,  excellent  biocompatibility,  and  tunable  optical  and  magnetic  properties,  which  make  them  suitable  for  targeted  drug  delivery  and  imaging  [
37].  Overall,  functionalized  carbon  nanotubes  hold  great 
potential  for  theranostic  applications  and  can  play  a  crucial  role  in  the  development  of  personalized  medicine  in  the  future. 
2.2 Silica Nanoparticles
Silica  nanoparticles  are  extensively  investigated  in  biomedical  applications  owing  to  their  low  toxicity,  exceptional  biocompatibility,  and  high  surface  area  [
38–40].  It  is 
feasible  to  control  the  size,  crystallinity,  shape,  and  porosity  of  the  silica  nanopar− ticles.  Besides,  surface  chemistry  of  the  silica  nanoparticles  can  be  fabricated  to 
amend  loading  of  drug,  circulation  half−life,  and  enable  targeted  delivery  [
41].  Silica 
nanoparticles  doped  with  dye  can  be  used  as  a  potential  fluorescent  nanoprobe  with  fluorescent  capabilities  similar  to  heavy  metal.  The  ability  to  amalgamate  these  prop−
erties  renders  silica  nanoparticles  an  enviable  arena  for  biosensing,  drug  delivery,  monitoring,  and  ablative  therapies  [
42].  Sgc8  aptamer  conjugated  silica  nanoparti−
cles  were  used  in  bioimaging  and  biosensing  of  acute  myeloid  leukemia  [22].  Folic 
acid−conjugated  polyglycerol−grafted  Fe
3O4@SiO2 nanoparticles  were  prepared  for 
targeting  ovarian  cancer.  The  results  showed  the  preferential  uptake  of  nanoparticles  by  the  carcinoma  cells  (SKOV−3)  derived  from  human  ovary.  A  study  on  the  func−
tionalization  of  silica  nanoparticles  with  a  glypican−3  (GPC3)  targeting  peptide  for  ultrasound  molecular  imaging  of  human  hepatocarcinoma  cells  was  performed.  A  simple  co−precipitation  method  was  used  to  synthesize  the  nanoparticles  and  then 
conjugate  them  with  the  targeting  peptide.  The  results  of  the  study  showed  that  the  GPC3−targeting  nanoparticles  had  a  high  binding  affinity  to  hepatocarcinoma  cells  and  could  effectively  enhance  the  ultrasound  imaging  signal.  The  study  also  found 
that  the  nanoparticles  had  a  low  cytotoxicity  and  were  biocompatible  [
43]. 
2.3 Quantum Dots
QDs  are  nanoscale  particles  which  are  semiconductor  crystals  with  distinctive  elec− tronic  and  optical  properties  such  as  bright  and  intensive  fluorescence  [
44].  QDs 
discriminate  the  conventional  organic  label  dyes  by  high  absorption  of  light  yielding  high  quantum  and  large  extinction  coefficient.  They  offer  extensive  observation  period  with  good  sensitivity  during  observation  under  fluorescence  microscope.  They 
are  most  widely  implemented  in  theranostic  purposes  enabling  diagnosis  and  therapy

Basic Principles of Functional Materials for Biomedical Applications 11
simultaneously  in  the  multidisciplinary  fields  like  physics,  chemistry,  nanotech−
nology,  material  sciences,  drug  delivery,  and  pharmacology  [45].  However,  the 
uncoated  QDs  tend  to  undergo  photochemical  degradation,  surface  oxidation,  aggre−
gation,  and  even  leaching  of  metal  ions  on  long−time  exposure  in  the  biological  fluids 
[46].  This  makes  them  unsuitable  for  biomedical  applications.  Functionalization  of 
quantum  dots  is  the  emerging  field  in  the  biological  applications  which  makes  them 
conquer  all  the  limitations  associated  with  it.  They  are  used  in  wound  healing  [8], 
imaging  of  microbial  cells,  [10]  targeted  delivery  of  doxorubicin  in  cancer  therapy 
[11, 12],  and  also  used  as  nanozymes  [47]. 
2.4 Magnetic Nanoparticles
Magnetic  nanoparticles  are  the  promising  materials  in  the  biomedical  application  with  the  areas  focusing  on  diagnosis,  targeted  therapy,  hyperthermia,  and  tissue 
engineering  [
48].  Nonetheless,  functionalization  of  magnetic  nanoparticles  is  essen−
tial  to  execute  the  multifunctions  in  the  biomedical  field  [49].  It  empowers  the 
magnetic  nanoparticles  biocompatible,  increases  water  solubility,  and  is  bio−specific,  making  them  potential  carriers  in  the  pharmacotherapy  and  diagnosis.  Functionalized  magnetic  nanoparticles  were  used  in  targeted  delivery  of  telmisartan,  cinnamalde−
hyde  [
13, 14].  Functionalized  magnetic  nanoparticles  have  been  used  for  various 
applications  including  targeted  drug  delivery,  magnetic  hyperthermia,  and  magnetic  resonance  imaging  (MRI).  They  have  been  shown  to  improve  the  efficacy  of 
chemotherapy  drugs  and  reduce  the  toxicity  associated  with  these  treatments.  They  can  also  be  used  to  destroy  cancer  cells  through  magnetic  hyperthermia,  where  the  nanoparticles  generate  heat  when  exposed  to  a  magnetic  field  [
50].  In  addition,  it  can 
be  used  as  contrast  agents  in  MRI,  providing  high−resolution  images  of  tissues  and  organs. 
2.5 Lipid-Based Carriers and Colloidal Systems
Liposomes,  lipid,  and  polymeric  nanoparticles  have  evolved  as  prominent  carriers  in  the  pharmaceutical  formulation  development.  They  have  been  vastly  explored 
in  the  biomedical  applications.  They  have  demonstrated  as  highly  effective  drug  carriers  as  compared  to  the  conventional  drug  delivery  system.  However,  fabrica−
tion  of  liposomes,  lipids  and  polymeric  nanoparticles  with  longer  blood  circulation  and  site−specific  drug  delivery  is  still  an  ongoing  research  objective  which  needs  to  be  achieved  [
51].  One  exciting  means  to  accomplish  targeting  delivery  is  ligand 
tagging,  such  as  peptides  or  monoclonal  antibodies,  to  the  carrier  [52].  So,  liposomes, 
lipid,  and  polymeric  nanoparticles  are  extensively  studied  for  the  functionalization  to  achieve  the  targeted  delivery  and  to  escape  from  the  reticular  endothelial  system.

12 V. G. S. S. Jyothi et al.
Functionalized  liposomes  were  reported  to  target  the  spinal  cord  injury  [53].  Poly−
meric  nanoparticles  were  prepared  for  colon  targeting  where  the  polymer  exhibited 
pH−dependent  release  of  Alpha−mangostin  [28]  and  celecoxib  [54]. 
2.6 Basic Principles of Functionalization
Functionalization  is  the  key  to  incorporate  the  desired  properties  to  the  materials  which  can  be  characterized  as  an  intentional  addition  of  functional  groups  on  the 
surface  of  nanoparticles  to  accomplish  surface  moderation  that  renders  them  viable  by  improving  the  desired  physical,  chemical,  and  mechanical  properties.  Function− alization  can  be  achieved  by  binding  the  functionally  active  moiety  on  the  surface 
of  nanoparticles  and  conjugating  or  interacting  the  nanoparticle  with  the  carrier  or  ligand  molecule  [
55]. 
One  of  the  beneficial  outcomes  of  functionalizing  is  that  the  required  character−
istics  in  the  nanomaterial  can  be  superintended  in  a  predictable  approach  to  fit  the  specific  applications.  The  procedure  utilized  to  produce,  customize,  and  organize 
functionalized  materials  presents  exaggeratedly  new  opportunities  for  the  advance  of  new  multifunctional  tools  for  biological  and  pharmaceutical  relevance. 
Functionalization  of  materials  involves  the  molecular  level  of  interaction  with  the 
functional  moiety.  Subsequently,  numerous  categories  of  materials  are  used  for  the  biomedical  applications.  Thus,  different  materials  involve  different  approaches  to  functionalize.  Covalent  and  noncovalent  interactions  like  electrostatic  interactions, 
hydrogen  bonding,  and  Van  der  Waals  forces  are  widely  involved  in  these  reactions. 
2.7 Carbon Nanotubes
CNTs,  when  generated  originally,  are  not  soluble  in  water  and  biological  fluids  and,  therefore,  elevate  their  need  to  enhance  solubility  and  dispersion  in  the  biorel− evant  fluids.  Apart  from  solubility  and  dispersibility,  reducing  its  cytotoxicity  and 
improving  biocompatibility  and  enabling  them  site  specific  and  bioimaging  is  also  essential.  Hence,  surface  modification  of  CNTs  is  gaining  importance  in  the  biomed− ical  field.  CNT  surface  chemistry,  as  well  as  the  methods  used  to  purify  and  function−
alize  them,  has  a  significant  impact  on  both  their  biological  activities  and  cytotoxic  effects.  It  also  aids  in  targeted  delivery,  biosensing,  and  bioimaging  by  tagging  the 
CNTs  with  appropriate  ligands. 
Among  all  the  methods  followed  for  functionalization  (Fig. 3),  noncovalent  and 
covalent  surface  modifications  are  two  frequently  used  methods.  Recently,  a  study 
explored  the  use  of  CNT  for  bone  regeneration  where  the  CNTs  were  functionalized 
with  chitosan  and  zein  by  covalent  bonding  [18].

Basic Principles of Functional Materials for Biomedical Applications 13
Fig. 3
2.7.1 Noncovalent Functionalization
In  order  to  improve  solubility  of  CNTs  making  them  less  toxic,  biocompatibility, 
protein  assembly,  and  drug  delivery,  noncovalent  functionalization  is  regarded  as  one 
of  the  vital  means  as  no  considerable  alteration  in  structure  and  physical  properties 
occurs  [56].  CNTs  interact  noncovalently  with  various  molecules  via  weak  interac−
tions  such  as  surface  adsorption  onto  the  side  walls  of  CNTs, 
π
bonding,  and  van  der  Waals  force  [57, 58].  Many  polymers,  biomolecules,  and  surfac−
tants  have  been  explored  for  the  noncovalent  functionalization  of  CNTs  to  make  them 
biocompatible.  Sodium  dodecyl  sulfate  (SDS)  was  the  most  widely  used  surfactant 
to  yield  individual  single−walled  CNTs  (SWCNTs)  under  ultra−sonication  and  ultra−
centrifugation  conditions  [
59].  Instead  of  surfactants,  polymers  have  been  tried  to 
enhance  dispersion.  However,  the  observations  revealed  that  polymers  are  inefficient  as  compared  to  surfactants.  Correspondingly,  surfactants  with  different  charges  and  nonionic  charges  are  also  strived  for  their  effectiveness  in  enhancing  dispersion  of 
SWCNTs,  however,  the  quantity  of  surfactants  used  is  lower  than  5%  [
60].

14 V. G. S. S. Jyothi et al.
2.7.2 Covalent Functionalization
Direct  covalent  functionalization  can  notably  modify  the  solubility,  provide  better 
stability,  accessibility,  and  reduce  leaching  and  render  compatibility  of  CNTs  [61]. 
Thus,  covalent  functionalization  is  one  of  the  widely  utilized  methods  for  surface  modification  of  CNTs.  Diimide−activated  amidation  is  the  most  frequently  used  means  to  couple  the  CNTs  with  proteins.  Coupling  agents  are  being  employed 
in  coupling  of  proteins  and  peptides  to  the  CNTs  where 
aminopropyl)  carbodiimide  hydrochloride  (EDAC)  or  N,  N’−dicyclohexyl  carbodi− imide  (DCC)  is  being  widely  used  [
62].  Biomolecules  can  be  grafted  covalently  on 
the  surface  of  CNTs.  For  example,  multiwalled  CNTs  were  covalently  bonded  with  the  polyetherketones  in  phosphoric  acid  media  [
63].  Also,  the  covalent  modification 
of  the  nanotube  sidewalls  totally  changes  the  electronic  properties  of  the  CNTs.  The 
reliability  of  covalent  functionalization  implementation  in  CNTs  is  based  on  the  type 
of  biomolecule  used  and  the  desired  function  to  be  attained. 
2.7.3 Functionalizing by Oxidation
Oxidation  of  CNTs  is  the  stand−alone  technique  for  the  functionalization.  It  marks  in  addition  of  oxygen  to  the  surface  of  the  CNTs’  side  walls  making  them  soluble 
in  water  and  biological  fluids.  Oxidation  leads  to  the  introduction  of  carboxyl  or  hydroxyl  groups  on  CNTs  [
64].  Sulfuric  acid  or  nitric  acid  was  used  to  oxidize  CNTs. 
Acid  treatment  opens  the  tubes  and  creates  holes  on  the  surface  to  which  carboxyl, 
sulfate,  and  hydroxyl  groups  are  attached  [65].  Functionalization  makes  the  CNTs 
hydrophilic  and  soluble  in  aqueous  solvents  and  diminishing  its  cytotoxicity.  Various 
functional  groups  can  be  introduced  onto  the  surface  of  CNTs.  Oxidized  CNTs  can 
be  functionalized  further  by  esterification,  amidation,  etc.  [66].  Various  proteins  were 
found  to  be  absorbed  spontaneously  and  nonspecifically  onto  the  sidewalls  of  CNTs. 
They  act  as  carriers  and  deliver  the  proteins  and  other  biomolecules  directly  into  the 
mammalian  cells. 
2.8 Silica Nanoparticles
Silica  nanoparticles  are  usually  functionalized  to  enhance  the  colloidal  stability  and 
solubility  in  the  biological  fluids,  improve  biocompatibility,  enhance  high  cellular 
uptake,  enable  bioimaging,  and  promote  site−specific  delivery  [67].  Thereby,  surface 
modification  of  silica  nanoparticles  plays  an  important  role  in  influencing  the  inter−
action  of  functionalized  silica  nanoparticles  with  the  physiological  environment, 
biodistribution,  cellular  internalization,  and  disease  targeting  [68].  Currently,  there 
are  three  main  chemical  methods  to  functionalize  nanosilica  which  are  post−synthetic 
grafting,  co−condensation,  and  polymer  coating  (Fig. 3).

Basic Principles of Functional Materials for Biomedical Applications 15
2.8.1 Post-synthetic Grafting
Silica  nanoparticles  are  usually  functionalized  by  post−synthesis  grafting  for  surface 
modification.  Different  organic  and  inorganic  silane  precursors,  for  instance, 
alkoxysilanes/halosilanes,  are  incorporated  into  the  silica  nanoparticles  and  are  being 
used  for  cellular  imaging,  drug  targeting,  etc.  [69].  Silanes  and  silanols  are  coupled 
to  the  surface  of  silica  by  hydrolysis.  Nevertheless,  the  post−synthesis  grafting  often 
leads  to  heterogeneous  chemistry,  where  pore  opening  shows  higher  density  of 
grafting  and  interior  framework  shows  lower  efficiency. 
Alkoxysilanes  and  halosilanes  undergo  condensation  reaction  with  the  silanol 
groups  on  the  surface  of  silica  forming  1−3  Si−O−Si  links  where  the  halosilanes  clas− sically  hydrolyze  substituting  the  halide  for  alcohol  group  forming  1−3  Si−O−Si  links  [
70].  However,  halosilanes  react  directly  with  silanol  groups  on  the  surface  in  the 
anhydrous  condition.  Most  often,  3−mercaptopropyl  trimethoxysilane  (MPTS)  and  3−aminopropyl  triethoxysilane  (ATPS)  are  being  used  for  functionalization  of  silica  nanoparticles  [
71].  Subsequently,  PEGylation  is  the  most  frequently  used  function−
alization  method  to  improve  the  pharmacokinetics  of  drug  molecules  by  alteration  of  circulation  half−life  and  enhances  the  solubility,  stability,  and  biocompatibility 
of  nanoparticles.  Bovine  serum  albumin  (BSA)  is  also  used  more  usually  in  low  concentration  to  improve  the  stability  of  nanoparticles  [
72]. 
Silica  is  also  conjugated  with  the  antibodies  via  a  linker  group  through  the  func−
tional  moiety  on  the  surface  of  silica  and  amino  acid  residues.  Linker  group  prevents  the  interaction  between  the  antibody  and  silica  protecting  it  from  denaturation  by  creating  a  space  between  the  silica  and  antibody.  The  linker  groups  are  available  as 
monovalent  or  multivalent  based  on  the  functional  groups  available  on  the  surface  of  the  linker.  For  instance,  monovalent  linker  with  glutaraldehyde  functional  group  makes  imine  covalent  bond  between  the  amino  residue  on  the  biomolecule  and  the 
amine  group  on  the  surface  of  nanosilica  [
69].  However,  these  linkers  are  coupled 
with  few  limitations  like  aggregation  and  thereby  stability  in  the  biological  fluid. 
2.8.2 Co-condensation
In  co−condensation  method,  functionalization  of  silica  nanoparticles  is  carried  out  during  the  synthesis  process.  It  is  a  one−pot  synthesis  process  where  the  functional  organic  groups  are  incorporated  directly  into  the  silica  framework  via  sol–gel  method 
[
73].  Organosilanes  are  the  functional  organic  groups  widely  used  for  the  functional−
ization  of  nanoparticles  where  they  are  added  to  the  reaction  mixture  containing  the 
tetrafunctional  silane.  This  technique  aids  in  the  functionalization  of  internal  surface 
of  mesoporous  silica  nanoparticles  [74]. 
However,  the  degree  of  functionalization  depends  on  the  nature  of  co−condensing 
agents  and  its  concentration  and  size.  Alkoxysilanes  or  halosilanes  are  used  as  condensing  agents  same  as  with  the  post−synthetic  grafting.  These  alkoxy  or  haloxysi− lanes  form  1−3  Si−O−Si  links  with  the  surface  silanol  groups  [
75].  However,  halosi−
lanes  substitute  the  halide  with  alcohol  by  hydrolysis  forming  1−3  Si−O−Si  link.

16 V. G. S. S. Jyothi et al.
APTS  and  MPTS  are  the  most  frequently  used  functional  moieties  for  functional−
ization  of  silica.  Co−condensing  agents  also  impact  the  shape  of  the  particles  where 
hydrophobic  agents  yield  rod−shaped  particles  while  hydrophilic  agents  yield  round 
particles. 
2.9 Polymer Coating
Coating  of  silica  nanoparticles  with  the  polymer  can  be  attained  by  physical  absorp−
tion  and  chemical  conjugation.  Silica  has  negative  charge  on  its  surface  which 
has  the  affinity  toward  the  positively  charged  polymers  [76].  The  modified  silica 
surface  can  accommodate  various  biomolecules  which  include  polypeptides,  carbo−
hydrates,  nucleic  acids,  and  antibodies  [77].  The  versatile  chemical  nature  of  silica 
surface  makes  the  conjugation  of  functional  moieties  reliably  easy.  Thus,  the  desired 
characteristics  can  be  incorporated  in  the  silica  nanoparticles  by  functionalization 
approach. 
2.10 Quantum Dots
QDs  are  the  potential  nanoprobes  being  explored  in  the  biomedical  applications 
such  as  drug  delivery,  biomolecules  delivery,  site−specific  delivery,  and  theranostic 
approaches  [78].  However,  functionalization  is  the  crucial  step  in  utilizing  the  QDs 
for  multifunctional  purposes  as  QDs  are  suffering  from  stability  issues,  insolubility 
in  aqueous  solutions  [79].  Even  for  achieving  the  targeted  delivery,  conjugation  of 
ligands  onto  the  surface  of  QDs  is  essential  which  is  in  turn  achieved  by  functionaliza− tion  [
80].  Originally,  synthesized  QDs  are  hydrophobic  in  nature  where  hydrophiliza−
tion  of  QDs  is  the  first  step  in  utilizing  the  QDs  for  biomedical  applications.  Conse−
quently,  bioconjugation  of  QDs  after  their  hydrophilization  results  in  a  multifunc−
tional  nanoparticle  that  conglomerates  the  electrochemical/optical  properties  of  QDs 
with  the  biological  utility  of  the  biomolecule. 
2.10.1 Hydrophylization
Mainly  three  approaches  are  used  to  hydrophilize  the  QDs  which  include  ligand 
exchange,  silanization,  and  encapsulation  (Fig. 4).
(i) Ligand exchange
In  this  method,  the  ligands  with  bifunctional  molecules  are  exchanged  with  the 
original  hydrophobic  coating.  These  bifunctional  ligands  are  water  soluble  with  one 
end  is  being  attached  to  the  surface  of  QD  and  the  other  end  is  free  to  conjugate  with

Basic Principles of Functional Materials for Biomedical Applications 17
Fig. 4
a  biomolecule  [81, 82].  The  most  commonly  used  ligands  used  in  this  technique  are 
trioctylphosphine  oxide  (TOPO),  trioctylphosphine  (TOP),  tetradecyl  phosphonic 
acid  (TDPA),  oleic  acid,  and  hexadecyl  amine  (HDA)  [83, 84].  These  ligands  prevent 
aggregation  of  nanoparticles  and  their  growth  and  passivate  its  surface  defects  to 
preserve  quantum  yield  [85].  Organic  ligands  offer  exceptional  stability  and  solu−
bility  to  the  QDs  where  the  exchange  process  occurs  in  the  organic  noncoordinating 
solvents  via  simple  mass  action  [86]. 
Ligands  pre−existing  on  the  surface  of  QD  are  in  dynamic  equilibrium  with  the 
surrounding  solvent.  Hence,  the  ligands  are  in  continuous  motion  where  the  ligand 
on  the  surface  leaves  the  QDs,  whereas  free  ligands  in  the  solution  occupy  and 
attach  the  available  sites  on  the  surface  of  QD.  Thereby,  the  new  hydrophilic  ligands 
intended  to  attach  to  the  QD  are  added  to  the  solvent  where  the  pre−existing  ligands 
which  are  in  dynamic  equilibrium  are  exchanged  with  the  new  added  ligands  [
87]. 
However,  to  achieve  this  ligand  exchange  process  successfully,  the  concentration  of  the  newly  added  ligand  should  be  equal  to  the  concentration  of  the  pre−existing 
ligand  and  should  have  high  affinity  toward  the  QDs.  Conversely,  the  newly  added/  replacing  ligand  with  low  affinity  to  the  surface  of  QD  can  also  be  used  in  this  technique  by  increasing  the  concentration  of  ligand  thus  enhancing  the  probability 
of  attachment  of  replacing  ligand  [
88].  The  most  widely  used  ligands  for  the  ligand 
exchange  technique  are  polymers  with  functional  groups  such  as  carboxyl  and  amine  and  thiol,  which  can  replace  the  existing  ligands  on  the  surface  of  the  QDs. 
(ii) Silanization
Silanization  is  the  process  of  coating  the  QDs  with  a  layer  of  amorphous  silica 
[89].  This  technique  is  similar  to  the  ligand  exchange  process.  However,  it  is  regarded 
as  a  separate  technique  due  to  its  prevalent  use  in  the  hydrophilization  of  QDs.  In  the 
first  step,  the  surface  of  the  QD  is  activated  for  attaching  the  silane  molecules  to  the

18 V. G. S. S. Jyothi et al.
QD.  This  step  requires  the  exchange  of  TOPO  and  HDA  on  the  surface  of  QD  with 
the  polar  ligands  that  can  be  easily  dispersed  in  water  or  ethanol  [90].  This  method 
is  considered  as  highly  advantageous  as  compared  with  the  nanoparticles  coated 
with  organic  compounds.  This  method  results  in  a  shell  of  silica  on  the  surface  of 
QDs  where  it  achieves  hydrophilization  of  QD.  Apart  from  that,  silica  is  considered 
as  inert,  nontoxic,  and  optically  transparent.  It  also  provides  colloidal  stability  to 
the  QDs  and  protects  from  leaching  and  protects  physical  and  chemical  processes. 
Additionally,  silica  is  biocompatible,  and  its  surface  can  be  functionalized  easily 
making  it  suitable  for  further  conjugation  with  biomolecules. 
(iii) Encapsulation
In  this  approach,  the  hydrophobic  surface  of  QD  is  coated  with  a  variety  of  carriers 
which  includes  liposomes,  polymers  with  amphiphilic  nature  [91].  The  QD  with 
hydrophobic  shell  interacts  directly  with  the  coating  material  by  physical  interaction,  which  includes  electronic  or  hydrophobic  interactions.  Large  number  of  materials 
like  amphiphilic  copolymers  and  biopolymers  were  used  for  the  encapsulation  of  QDs  [
92].  Surfactants  can  also  be  used  to  encapsulate  the  QDs,  however,  their  weak 
interactions  make  them  unsuitable  for  encapsulation.  Thereby,  amphiphilic  polymers 
(PEG  are  widely  used  for  encapsulation  where  they  form  very  strong  interaction  with 
the  surface  of  QD  owing  to  its  numerous  hydrophilic  and  hydrophobic  units  [93]. 
Liposomes  are  also  being  explored  in  encapsulation  of  QDs.  Liposomes  are  spher−
ical  vesicles  with  hollow  structure  enabling  them  for  loading  of  hydrophobic  QDs.  The  hollow  structure  of  liposomes  captivates  high  loading  ability  and  loading  of  QDs  into  its  hollow  structure  makes  the  QDs  water  soluble  [
91].  It  also  facilitates  conjuga−
tion  with  a  variety  of  biomolecules  including  proteins,  enzymes,  etc.  and  enhances  its  stability  and  amplifies  its  analytical  signal.  However,  the  use  of  liposomes  as  encap−
sulating  agents  is  limited  by  their  instability  in  physiological  conditions  and  during  storage.  It  also  suffers  from  its  sensitivity  toward  the  slight  variations  in  pH,  temper− ature,  and  osmotic  pressure  [
94].  Nevertheless,  these  drawbacks  can  be  surmounted 
by  templating  or  covering  with  different  materials  such  as  silica,  polymers.  But  this  method  results  in  an  increase  in  the  hydrodynamic  diameter  of  the  particle  which  makes  it  unsuitable  for  biosensing  and  active  targeting  [
95]. 
2.10.2 Functionalization with Biomolecules
Immobilization  of  biomolecules  on  to  the  surface  of  QD  involves  two  approaches  which  include  covalent  linking  and  noncovalent  binding  where  the  biomolecules 
are  coupled  directly  to  the  surface  of  QD  (Fig. 
4).  Covalent  linkage  is  attained  by 
different  bioconjugation  chemistry  using  activated  functional  groups  at  the  surface  of  QDs,  whereas  noncovalent  binding  is  established  by  electrostatic,  hydrophobic, 
or  affinity  interactions  between  biomolecules  and  the  surface  of  the  QD. 
The  common  tactics  for  the  attachment  of  biomolecules  can  be  classified  as 
covalent  attachment  and  nonspecific  adsorption. 
(i) Adsorption of functional molecules

Basic Principles of Functional Materials for Biomedical Applications 19
Adsorption  is  the  simple  attachment  of  chemical  moieties  on  the  surface  of 
nanoparticles  with  any  chemical  reaction  or  bonds.  This  is  the  simple  and  highly 
utilized  technique  for  the  conjugation  of  ligands  or  molecules  on  the  surface  of 
nanoparticles  [
77, 96].  In  adsorption,  electrostatic  interaction,  hydrogen  bonding, 
and  hydrophobic  interactions  are  mainly  involved  in  this  functionalization  process.  The  large  surface  area  on  the  nanoparticles  can  be  used  for  the  adsorption  of  large  molecules  for  instance  proteins,  polymers,  nucleic  acids,  and  enzymes.  There  is  no 
role  of  functional  groups  in  this  strategy  and  considered  as  a  nonselective  binding  technique.  The  electrostatic  interaction  observed  in  this  adsorption  strategy  is  seen  in  molecules  with  charges  opposite  to  the  surface  of  QD.  For  example,  proteins 
engineered  with  positively  charged  terminal  are  interacted  electrostatically  with  the  negatively  charged  QD  resulted  from  the  ligation  of  QD  with  carboxyl  groups  [
97]. 
Hydrogen  bonding  is  another  weak  chemical  interaction  in  adsorption  where  the 
ligand  on  the  surface  of  QD  forms  hydrogen  bond  with  the  biomolecules.  Thereby,  this  adsorption  technique  depends  on  the  type  of  molecule  being  involved  in  the  conjugation  process.  For  instance,  oligonucleotides  adsorb  on  the  surface  of  QD 
depending  on  the  pH  and  type  of  medium,  ionic  strength.  It  was  reported  that  pH  plays  a  key  role  in  adsorption  of  oligonucleotides  where  it  adsorbs  strongly  in  the  acidic 
pH  when  the  carboxyl  groups  on  the  surface  of  QD  are  protonated.  In  the  presence  of  alkaline  or  neutral  pH  conditions,  the  adsorption  of  oligonucleotide  is  considerably  reduced.  This  suggested  that  the  hydrogen  bond  is  the  primary  mechanism  involved  in 
the  adsorption  of  oligonucleotide  on  to  the  surface  QD  [
98].  For  further  confirmation 
of  the  formation  of  hydrogen  bond  in  the  adsorption  of  oligonucleotide  to  the  QD,  formamide  was  added  to  the  solution  of  QD.  Formamide  is  a  well−known  molecule 
which  disrupts  the  hydrogen  bonding  interaction  of  nucleic  acid.  It  was  noticed  that  with  the  increase  in  concentration  of  formamide,  there  is  decrease  in  adsorption  of  oligonucleotide  to  the  QD  [
99, 100].  Thus,  it  was  evidenced  that  the  hydrogen  bond 
is  the  main  driving  force  for  the  adsorption  of  oligonucleotides. 
Despite  its  easiness  in  the  adoption  of  adsorption  strategy,  it  suffers  from  various 
drawbacks.  These  include  lack  of  specificity  in  the  adsorption  of  biomolecules 
leading  to  lack  of  control  on  the  number  of  molecules  conjugating,  lack  of  control 
on  the  orientation  of  biomolecules  attached  to  the  QD  and  the  presence  of  weaker 
interactions  between  the  molecules  and  the  QD  leading  to  competitive  binding  from 
the  host  ligands  with  the  surface  of  QD.  Thus,  assurance  of  the  biomolecules  attach−
ment  onto  the  surface  of  QD  and  their  orientation  is  critical  in  this  strategy  and  to  be 
monitored  carefully. 
(ii) Covalent coupling of biomolecules
QDs  can  be  coupled  with  the  biomolecules  by  covalent  bonding  that  involves 
different  bonds. 
Amide coupling
QDs  are  hydrophilized  with  attachment  of  various  ligands  which  makes  them  solu− bilized  in  the  aqueous  solutions.  The  ligand  attached  in  hydrophilization  of  QD  is 
made  in  such  a  way  that  the  terminal  groups  of  ligands  are  –OH,  –COOH,  –SH

20 V. G. S. S. Jyothi et al.
or  –NH2.  These  functional  groups  aids  in  easy  conjugating  with  the  biomolecules 
such  as  peptides,  proteins  or  antibodies  [101].  The  carboxyl−terminated  functional 
group  on  the  surface  of  QD  forms  the  amide  bond  with  the  amine  residues  in  the 
biomolecules.  The  amide  bonds  are  formed  easily  in  the  alkaline  buffered  conditions 
which  is  a  simple  water−soluble  process  [77].  This  simple  reaction  also  retains  the 
intact  structure  of  the  compounds  and  does  not  require  any  lengthy  spacers.  Thus, 
the  QDs  conjugated  with  the  amide  functionality  preserve  the  structure  and  also 
maintain  the  hydrodynamic  size  of  the  particles  as  the  size  of  the  particle  is  directly 
proportional  to  the  size  of  the  functional  moiety  attached  on  the  surface  of  QD  [102]. 
Thiol binding
Functionalization  of  QDs  involves  two  processes,  where  hydrophilization  of  QD  is  followed  by  conjugation  with  the  ligand.  However,  this  thiol  binding  technique  does 
not  require  any  solubilization  method,  and  both  functionalization  and  solubilization  are  achieved  by  this  single  step  [
45].  Thus,  this  is  an  alternative  to  the  two−step 
process  for  the  functionalization  of  QDs.  Peptides  can  be  customized  in  a  way  to 
act  as  both  targeting  and  anchoring  agent  [103].  The  same  procedure  can  be  used 
in  QDs  where  the  thiol−terminated  functional  group  on  the  surface  of  QD  can  be  attached  to  the  sulfur−containing  amino  acid  [
104].  The  thiol  or  amine  group  on  the 
surface  of  QD  forms  thiol  bond  with  the  thiol  or  amine  group  on  the  proteins  or  DNA 
or  peptide.  Even  the  stability  of  thiol  bonds  is  stronger  when  compared  to  disulfide 
bonds  as  the  disulfide  bonds  can  undergo  exchange  reaction  in  the  cellular  media 
with  the  competing  thiol  groups.  Thus,  the  thiol−bonded  QDs  can  be  used  for  the 
targeted  delivery  of  drugs,  proteins,  or  antibodies  where  the  release  of  conjugated 
molecule  from  the  QD  results  from  the  cleavage  of  thiol  bonds  by  selective  enzymes 
present  at  a  specific  site  in  the  body  [
105]. 
Click chemistry
Click  chemistry  is  the  most  prevailing  chemical  synthesis  technique  used  in  the  small  molecule  bioconjugation  reaction.  It  is  used  to  couple  the  ligands  onto  the  surface  of 
QDs.  This  reaction  is  also  used  to  attach  huge  number  of  biomolecules  and  coupling  agents  to  the  QDs.  The  reaction  was  carried  out  at  room  temperature  and  formed  a  thermodynamically  stable  bond  between  the  carbon  and  a  heteroatom  resulting  in 
a  higher  yield.  However,  the  click  reaction  with  the  biomolecules  results  in  lower  yield  which  is  resulted  by  the  synthesis  of  terminal  azide  or  alkyne  groups  [
106, 107]. 
The  stability  of  these  groups  gives  a  stable  final  reactant  which  can  be  introduced  to 
diverse  linking  groups  and  biomolecules.  Moreover,  multiple  functionalities  can  be 
achieved  with  the  same  QDs  possessing  the  azide  or  alkyne  termination  [108, 109].

Basic Principles of Functional Materials for Biomedical Applications 21
2.11 Magnetic Nanoparticles
Chemical  modification  of  magnetic  nanoparticles  is  essential  to  realize  its  biomedical 
application  which  is  achieved  mainly  by  three  different  mechanisms  which  include 
ligand  addition,  ligand  exchange,  and  encapsulation  (Fig. 
4). 
2.11.1 Ligand Addition
This  method  is  associated  with  the  coupling  of  a  ligand  to  the  surface  of  magnetic  nanoparticles.  There  is  no  involvement  in  the  removal  of  pre−existing  ligands  on  the 
surface  of  magnetic  nanoparticles.  Ligand  addition  is  accomplished  by  four  different  ways.  The  first  way  of  addition  is  to  conjugate  the  ligand  to  the  nanoparticles  with  no 
capping  agent.  The  second  way  of  addition  is  associated  with  indirect  method  where  a  layer  of  inorganic  material  is  developed  on  the  surface  of  magnetic  nanoparticle  and  the  ligand  is  adsorbed  to  the  nanoparticle  via  ionic  or  nonspecific  interactions  with  the 
added  layer  [
110–112].  As  the  surface  of  magnetic  nanoparticles  is  hydrophobic  in 
nature,  hydrophobic  moieties  are  capped  to  the  surface  by  the  hydrophobic  interaction  which  is  the  third  way  of  ligand  addition.  Covalent  bond  formation  between  the  newly 
added  ligand  and  the  pre−existing  ligand  also  assists  in  the  ligand  addition. 
2.11.2 Ligand Exchange
Ligand  exchange  is  the  exchange  of  pre−existing  ligands  with  the  newly  added 
ligands.  Here,  the  hydrophobic  ligands  on  the  surface  of  magnetic  nanoparticles 
are  replaced  with  the  hydrophilic  ligands.  The  detachment  and  attachment  of  ligands 
depend  on  their  strength  where  the  hydrophilic  ligand  needs  to  be  stronger  than  the 
hydrophobic  ligand  in  order  to  replace  them  [
113–115].  This  enables  the  magnetic 
nanoparticles  soluble  in  the  aqueous  solution. 
2.11.3 Encapsulation
Encapsulation  is  a  process  in  which  the  magnetic  nanoparticles  capped  with  the  hydrophobic  ligands  are  coated  with  the  amphiphilic  materials.  This  coating  of 
amphiphilic  material  on  the  surface  of  magnetic  nanoparticles  renders  them  soluble  in  aqueous  solution  and  makes  them  biocompatible.  The  amphiphilic  material  inter− acts  with  the  ligand  on  the  surface  of  nanoparticles  with  the  hydrophobic  part  and  the 
hydrophilic  part  is  exposed  toward  the  solution  thus  forming  a  coat  on  the  nanoparticle  surface  [
116].  Furthermore,  the  functional  groups  on  the  encapsulated  nanoparticles 
can  be  used  for  the  bioconjugation  of  different  biomolecules.

22 V. G. S. S. Jyothi et al.
Table 2
Nanocarrier
Class  of  chemical  interaction
Bonds  or  interactions  involved 
Liposomes Covalent  coupling
Thioether  bond Disulfide  bond Amide  bond Hydrazide  bond Amine–amine  bond 
Noncovalent  coupling
Weak  interactions 
Polymeric  nanocarrier Adsorption
Hydrogen  bond Hydrophobic  interactions 
Covalent  binding
PEGylation Biotinylation 
2.12 Lipid-Based Carriers and Colloidal Systems
Liposomes,  lipid  nanoparticles,  and  polymeric  nanoparticles  are  widely  explored  in 
pharmaceutical  technology  and  diagnosis.  However,  functionalization  is  the  key  to 
realize  all  the  desired  functions.  Binding  of  ligand  to  the  liposomes  and  the  polymeric 
nanoparticles  are  discussed  separately  here  (Table 2). 
2.12.1 Lipid-Based Carriers
Ligands  are  attached  to  the  surface  of  liposomes  by  two  methods  which  enable  them to  execute  multifunctional.  The  two  coupling  methods  are  covalent  and  noncovalent 
binding. 
(i) Covalent binding
Ligands  are  attached  to  the  liposomal  surface  via  an  anchor  which  aids  in 
connecting  the  ligand  and  the  liposome.  The  anchor  with  the  functional  groups  forms covalent  bonds  with  the  ligands.  The  most  widely  used  anchors  are  phospholipids 
such  as  phosphatidylinositol  and  phosphatidylethanolamine  and  fatty  acids  such  as palmitic  acid  [
117, 118].  Among  these,  phosphatidylethanolamine  is  the  most  widely 
used  anchor.  These  anchors  are  easily  incorporated  into  the  liposomes.  However,  there 
are  two  approaches  to  conjugate  the  ligand  to  the  liposomes  via  an  anchor.  In  the 
first  approach,  the  ligand  is  covalently  bound  to  the  anchor,  and  the  resulted  ligand  is 
mixed  with  the  constituents  of  the  liposome  during  its  synthesis  [
119].  In  the  second 
approach,  the  anchor  is  mixed  with  the  constituents  of  liposomes  during  its  fabrica− tion,  and  thus,  the  anchor  is  incorporated  in  the  liposome.  The  ligand  is  attached  to 
the  preformed  liposome  with  the  aid  of  anchor  [
120].  Thereby,  functionalization  of 
liposomes  with  the  ligands  is  achieved  by  the  anchor  molecules.  The  most  commonly

Basic Principles of Functional Materials for Biomedical Applications 23
employed  bonds  in  tagging  the  ligands  to  the  liposome  are  thioether  bonds,  disulfide 
bonds,  amide  bond,  hydrazide  bond,  and  amine–amine  bond  [121–123]. 
(ii) Noncovalent binding
Noncovalent  binding  is  the  alternative  way  to  tag  the  ligand  to  the  liposomes.  It 
is  the  easiest  way  of  coupling  ligand  to  the  liposomes  where  there  is  no  need  of  any 
anchor  molecule.  The  ligand  is  mixed  with  the  constituents  of  the  liposomes  and 
the  anchor  is  ligated  to  the  liposome  during  its  formation  [124].  However,  practical 
concerns  associated  with  this  technique  are  attachment  of  ligand  to  the  liposome  is 
low  about  4–40%,  and  the  control  of  ligand  attachment  is  not  possible  where  the 
orientation  of  biomolecules  cannot  be  assured.  It  also  results  in  physical  instability 
of  liposomes.  However,  detachment  of  ligand  from  the  liposomes  can  be  assured  in 
the  body  as  the  bond  involved  is  noncovalent  in  nature.  Attempts  have  been  made 
to  attach  antibodies  to  liposomes  by  noncovalent  interactions  via  heptanes  [
125]. 
Nevertheless,  the  noncovalent  technique  for  ligand  attachment  is  still  in  infancy  stage  due  to  its  weak  interaction  and  random  distribution  of  ligand  on  the  surface  of 
liposome  and  needs  to  be  explored  much. 
2.12.2 Polymeric Nanoparticles
Polymeric  nanoparticles  are  ligated  with  ligands  to  execute  various  functions,  and  it  is  achieved  by  two  different  methods  (Table 
2). 
(i) Adsorption
Fabrication  of  liposomes  with  the  ligands  is  achieved  by  the  adsorption  which 
is  widely  used  approach  to  mount  antibodies  onto  the  surface  of  nanoparticles.  The 
physical  adsorption  of  ligand  on  the  nanoparticle  surface  is  attained  by  the  hydrogen 
bond  or  by  hydrophobic  interaction  or  electrostatic  interaction  [126].  These  interac−
tions  immobilize  the  ligands  onto  the  surface  of  nanoparticles.  To  avoid  the  chemical 
reaction  between  the  ligand  and  the  nanoparticle,  coating  can  be  implemented  which 
ensures  the  stability  of  the  ligated  polymeric  nanoparticles. 
(ii) Covalent binding
Covalent  coupling  of  ligand  to  the  polymeric  nanoparticles  is  also  one  of  the 
approaches  to  tag  the  ligand  onto  the  polymeric  nanoparticles.  However,  only  very 
few  studies  have  been  reported  with  the  covalent  coupling.  A  study  was  reported  on 
the  poly(cyanoacrylate)  nanoparticles  where  the  nanoparticles  are  coated  with  PEG 
and  the  PEG  is  conjugated  with  the  transferrin  as  a  ligand  [127].  This  transferrin 
ligand  was  used  to  deliver  the  DNA  to  the  targeted  cells.  In  another  study,  poly(lactic 
acid)  nanoparticles  were  conjugated  with  the  biotin  where  the  biotin  and  poly  (methyl 
methacrylate−co−methacrylic  acid)  conjugate  was  precipitated  with  the  poly(lactic 
acid)  to  synthesize  stable  polymeric  nanoparticles  for  active  targeting  [128].  Thus, 
targeted  delivery  of  nanoparticles  can  be  attained  by  conjugating  with  the  appropriate 
ligands.

24 V. G. S. S. Jyothi et al.
3 Conclusion
Functional  materials  are  widely  explored  in  the  arena  of  biomedical  relevance. 
Various  classes  of  materials  are  being  used  which  include  quantum  dots,  silica 
nanoparticles,  carbon  nanotubes,  magnetic  nanoparticles,  etc.  However,  direct  usage 
of  these  materials  in  biomedical  applications  is  limited  due  to  various  reasons. 
Thereby,  functionalization  of  these  materials  can  be  performed  to  surmount  the  issues 
associated  with  them.  Consequently,  functionalization  is  considered  as  a  prerequisite 
for  the  versatile  usage  of  nanomaterials  in  the  diagnostic  and  therapeutic  applica−
tions.  Functionalization  involves  either  the  chemical  reaction  or  a  simple  adsorption 
of  nanomaterial  and  a  functional  moiety.  It  aids  in  the  attachment  of  biomolecules  or 
ligands  or  fluorescent  dyes  onto  the  surface  of  the  material  executing  multifunctions 
in  the  biological  applications. 
References
1. Fenton  OS,  Olafson  KN,  Pillai  PS,  Mitchell  MJ,  Langer  R  (2018)  Advances  in  biomaterials 
for  drug  delivery.  Adv  Mater  30(29):1705328. https://doi.org/10.1002/adma.201705328 
2. Husen  A,  Siddiqi  KS  (2023)  Advances  in  smart  nanomaterials  and  their  applications
vier  Inc.,  50  Hampshire  St.,  5th  Floor,  Cambridge,  MA  02139,  USA https://doi.org/10.1016/ 
C2021−0−02202−1 
3. Jin−Chul  K,  Madhusudhan  A,  Husen  A  (2021)  Smart  Nanomaterials  in  Biomedical  Applica− tions.  Springer  Nature  Switzerland  AG,  Gewerbestrasse  11,  6330  Cham,  Switzerland. 
https:// 
doi.org/10.1007/978−3−030−84262−8 
4. Bao  G,  Mitragotri  S,  Tong  S  (2013)  Multifunctional  nanoparticles  for  drug  delivery  and  molecular  imaging.  Annu  Rev  Biomed  Eng  15:253–282. 
https://doi.org/10.1146/annurev−bio 
eng−071812−152409 
5. Sapsford KE,Algar WR,Berti L, Gemmill KB,Casey BJ,OhE,Stewart MH,Medintz IL  (2013)  Functionalizing  nanoparticles  with  biological  molecules:  developing  chemistries  that  facilitate  nanotechnology.  Chem  Rev  113(3):1904–2074. 
https://doi.org/10.1021/cr300143v 
6. Alle  M,  Sharma  G,  Lee  S−H,  Kim  J−C  (2022)  Next−generation  engineered  nanogold  for  multi− modal  cancer  therapy  and  imaging:  a  clinical  perspectives.  J  Nanobiotechnol  20(1):1–34. 
https://doi.org/10.1186/s12951−022−01402−z 
7. Navya  P,  Daima  HK  (2016)  Rational  engineering  of  physicochemical  properties  of  nanoma− terials  for  biomedical  applications  with  nanotoxicological  perspectives.  Nano  Convergence  3(1):1. 
https://doi.org/10.1186/s40580−016−0064−z 
8. Li  P,  Liu  S,  Yang  X,  Du  S,  Tang  W,  Cao  W,  Zhou  J,  Gong  X,  Xing  X  (2021)  Low−drug  resis− tance  carbon  quantum  dots  decorated  injectable  self−healing  hydrogel  with  potent  antibiofilm  property  and  cutaneous  wound  healing.  Chem  Eng  J  403:126387. 
https://doi.org/10.1016/j. 
cej.2020.126387 
9. Adel  R,  Ebrahim  S,  Shokry  A,  Soliman  M,  Khalil  M  (2021)  Nanocomposite  of  CuInS/ZnS  and  nitrogen−doped  graphene  quantum  dots  for  cholesterol  sensing.  ACS  Omega  6(3):2167–2176. 
https://doi.org/10.1021/acsomega.0c05416 
10. Jain  R,  Vithalani  R,  Patel  D,  Lad  U,  Modi  CK,  Suthar  D,  Solanki  JD,  Surati  KR  (2021)  Highly  fluorescent  nitrogen−doped  graphene  quantum  dots  (N−GQDs)  as  an  efficient  nanoprobe  for  imaging  of  microbial  cells.  Fuller  Nanotub  Carbon  Nanostructures  29(8):588–595. 
https:// 
doi.org/10.1080/1536383X.2021.1872548

Basic Principles of Functional Materials for Biomedical Applications 25
11. Sarkar  P,  Ghosh  S,  Sarkar  K  (2021)  Folic  acid  based  carbon  dot  functionalized  stearic  acid−
g−polyethyleneimine  amphiphilic  nanomicelle:  Targeted  drug  delivery  and  imaging  for  triple 
negative  breast  cancer.  Colloids  Surf  B:  Biointerfaces  197:111382. 
https://doi.org/10.1016/j. 
colsurfb.2020.111382 
12. Karimi  S,  Namazi  H  (2020)  Simple  preparation  of  maltose−functionalized  dendrimer/  graphene  quantum  dots  as  a  pH−sensitive  biocompatible  carrier  for  targeted  delivery  of  doxorubicin.  Int  J  Biol  Macromol  156:648–659. 
https://doi.org/10.1016/j.ijbiomac.2020. 
04.037 
13. Dhavale  RP,  Dhavale  RP,  Sahoo  SC,  Kollu  P,  Jadhav  SU,  Patil  PS,  Dongale  TD,  Chougale  AD,  Patil  PB  (2021)  Chitosan  coated  magnetic  nanoparticles  as  carriers  of  anticancer  drug  Telmisartan:  pH−responsive  controlled  drug  release  and  cytotoxicity  studies.  J  Phys  Chem  Solids  148:109749. 
https://doi.org/10.1016/j.jpcs.2020.109749 
14. Shetty  V,  Jakhade  A,  Shinde  K,  Chikate  R,  Kaul−Ghanekar  R  (2021)  Folate  mediated  targeted  delivery  of  cinnamaldehyde  loaded  and  FITC  functionalized  magnetic  nanoparticles  in  breast  cancer:  in  vitro,  in  vivo  and  pharmacokinetic  studies.  New  J  Chem  45(3):1500–15. 
https:// 
doi.org/10.1039/D0NJ04319B 
15. Askar  MA,  El−Nashar  HA,  Al−Azzawi  MA,  Rahman  SSA,  Elshawi  OE  (2022)  Synergistic  effect  of  quercetin  magnetite  nanoparticles  and  targeted  radiotherapy  in  treatment  of  breast  cancer.  Breast  Cancer  (Auckl)  16:11782234221086728. 
https://doi.org/10.1177/117822342 
21086728 
16. Scanone  AC,  Santamarina  SC,  Heredia  DA,  Durantini  EN,  Durantini  A,  s.  M.  (2020)  Func− tionalized  magnetic  nanoparticles  with  BODIPYs  for  bioimaging  and  antimicrobial  therapy  applications.  ACS  Appl  Bio  Mater  3(2):1061–1070. 
https://doi.org/10.1021/acsabm.9b01035 
17. Popescu  Din  IM,  Balas  M,  Hermenean  A,  Vander  Elst  L,  Laurent  S,  Burtea  C,  Cinteza  LO,  Dinischiotu  A  (2020)  Novel  polymeric  micelles−coated  magnetic  nanoparticles  for  in  vivo  bioimaging  of  liver:  toxicological  profile  and  contrast  enhancement.  Materials  13(12):2722. 
https://doi.org/10.3390/ma13122722 
18. Shrestha  S,  Shrestha  BK,  Ko  SW,  Kandel  R,  Park  CH,  Kim  CS  (2021)  Engineered  cellular  microenvironments  from  functionalized  multiwalled  carbon  nanotubes  integrating  Zein/  Chitosan@  Polyurethane  for  bone  cell  regeneration.  Carbohydr  Polym  251:117035. 
https:// 
doi.org/10.1016/j.carbpol.2020.117035 
19. McKernan  P,  Virani  NA,  Faria  GN,  Karch  CG,  Silvy  RP,  Resasco  DE,  Thompson  LF,  Harrison  RG  (2021)  Targeted  single−walled  carbon  nanotubes  for  photothermal  therapy  combined  with  immune  checkpoint  inhibition  for  the  treatment  of  metastatic  breast  cancer.  Nanoscale  Res  Lett  16(1):1–9. 
https://doi.org/10.1186/s11671−020−03459−x 
20. Ershadi  N,  Safaiee  R,  Golshan  M  (2021)  Functionalized  (4,  0)  or  (8,  0)  SWCNT  as  novel  carriers  of  the  anticancer  drug  5−FU;  A  first−principle  investigation.  Appl  Surf  Sci  536:147718. 
https://doi.org/10.1016/j.apsusc.2020.147718 
21. Grechkin  YA,  Grechkina  SL,  Zaripov  EA,  Fedorenko  SV,  Mustafina  AR,  Berezovski  MV  (2022)  Aptamer−conjugated  Tb  (III)−doped  silica  nanoparticles  for  luminescent  detection  of  leukemia  cells.  Biomedicines  8(1):14. 
https://doi.org/10.3390/biomedicines8010014 
22. Gubala  V,  Giovannini  G,  Kunc  F,  Monopoli  MP,  Moore  CJ  (2020)  Dye−doped  silica  nanopar− ticles:  synthesis,  surface  chemistry  and  bioapplications.  Cancer  Nano  11(1):1–43. 
https://doi. 
org/10.1186/s12645−019−0056−x 
23. Wang  L,  Xie  S,  Wang  Z,  Liu  F,  Yang  Y,  Tang  C,  Wu  X,  Liu  P,  Li  Y,  Saiyin  H,  Zheng  S  (2020)  Functionalized  helical  fibre  bundles  of  carbon  nanotubes  as  electrochemical  sensors  for  long− term  in  vivo  monitoring  of  multiple  disease  biomarkers.  Nat  Biomed  Eng  4(2):159–171. 
https://doi.org/10.1038/s41551−019−0462−8 
24. Takeuchi  T,  Iizumi  Y,  Yudasaka  M,  Kizaka−Kondoh  S,  Okazaki  T  (2019)  Characterization  and  biodistribution  analysis  of  oxygen−doped  single−walled  carbon  nanotubes  used  as  in  vivo  fluorescence  imaging  probes.  Bioconjugate  Chem  30(5):1323–1330. 
https://doi.org/10.1021/ 
acs.bioconjchem.9b00088 
25. Chio  L,  Pinals  RL,  Murali  A,  Goh  NS,  Landry  MP  (2020)  Covalent  surface  modification  effects  on  single−walled  carbon  nanotubes  for  targeted  sensing  and  optical  imaging.  Adv  Funct  Mater  30(17):1910556. 
https://doi.org/10.1002/adfm.201910556

26 V. G. S. S. Jyothi et al.
26. Wang  K,  Shang  F,  Chen  D,  Cao  T,  Wang  X,  Jiao  J,  He  S,  Liang  X  (2021)  Protein  liposomes−
mediated  targeted  acetylcholinesterase  gene  delivery  for  effective  liver  cancer  therapy.  J 
Nanobiotechnol  19(1):1–15. 
https://doi.org/10.1186/s12951−021−00777−9 
27. Francian  A,  Widmer  A,  Olsson  T,  Ramirez  M,  Heald  D,  Rasic  K,  Adams  L,  Martinson  H,  Kullberg  M  (2021)  Delivery  of  toll−like  receptor  agonists  by  complement  C3−targeted  liposomes  activates  immune  cells  and  reduces  tumor  growth.  J  Drug  Target  29(7):754–760. 
https://doi.org/10.1080/1061186X.2021.1878364 
28. Andrade  RG,  Reis  B,  Costas  B,  Lima  SAC,  Reis  S  (2021)  Modulation  of  macrophages  M1/M2  polarization  using  carbohydrate−functionalized  polymeric  nanoparticles.  Polymers  13(1):88. 
https://doi.org/10.3390/polym13010088 
29. Treekoon  J,  Chansaenpak  K,  Tumcharern  G,  Zain  ZSZ,  Lee  HB,  Kue  CS,  Kamkaew  A  (2021)  Aza−BODIPY  encapsulated  polymeric  nanoparticles  as  effective  nanodelivery  system  for  photodynamic  cancer  treatment.  Mater  Chem  Front  5(5):2283–2293. 
https://doi.org/10.1039/ 
D0QM00891E 
30. Okpalugo  T,  Papakonstantinou  P,  Murphy  H,  McLaughlin  J,  Brown  N  (2005)  High  resolution 
XPS  characterization  of  chemical  functionalised  MWCNTs  and  SWCNTs.  Carbon  43(1):153– 
161. https://doi.org/10.1016/j.carbon.2004.08.033 
31. Bandi  R,  Tummala  S,  Dadigala  R,  Alle  M,  Lee  S−H  (2022)  Role  of  metal−doped  carbon  dots  in  bioimaging  and  cancer  therapy.  Smart  nanomaterials  in  biomedical  applications.  Springer,  pp  101–123. 
https://doi.org/10.1007/978−3−030−84262−8_4 
32. Dadigala  R,  Bandi  R,  Alle  M,  Gangapuram  BR,  Lee  S−H  (2022)  Graphene−based  smart  nanomaterials  for  photothermal  therapy.  Smart  nanomaterials  in  biomedical  applications.  Springer,  pp  125–153 
33. Liu  Z,  Tabakman  S,  Welsher  K,  Dai  H  (2009)  Carbon  nanotubes  in  biology  and  medicine:  in  vitro  and  in  vivo  detection,  imaging  and  drug  delivery.  Nano  Res  2(2):85–120. 
https://doi. 
org/10.1007/s12274−009−9009−8 
34. Zhang  Y,  Ali  SF,  Dervishi  E,  Xu  Y,  Li  Z,  Casciano  D,  Biris  AS  (2010)  Cytotoxicity  effects  of  graphene  and  single−wall  carbon  nanotubes  in  neural  phaeochromocytoma−derived  PC12  cells.  ACS  Nano  4(6):3181–3186. 
https://doi.org/10.1021/nn1007176 
35. Abidin  MN,  Goh  PS,  Ismail  AF,  Othman  MH,  Hasbullah  H,  Said  N,  Kadir  SH,  Kamal  F,  Abdullah  MS,  Ng  BC  (2017)  Development  of  biocompatible  and  safe  polyethersulfone  hemodialysis  membrane  incorporated  with  functionalized  multi−walled  carbon  nanotubes.  Mater  Sci  Eng  C  77:572–582. 
https://doi.org/10.1016/j.msec.2017.03.273 
36. Mostafavi  E,  Iravani  S,  Varma  RS,  Khatami  M,  Rahbarizadeh  F  (2022)  Eco−friendly  synthesis  of  carbon  nanotubes  and  their  cancer  theranostic  applications.  Mater  Adv  3(12):4765–4782. 
https://doi.org/10.1039/D2MA00341D 
37. Kohls  A,  Maurer  Ditty  M,  Dehghandehnavi  F,  Zheng  S−Y  (2022)  Vertically  aligned  carbon  nanotubes  as  a  unique  material  for  biomedical  applications.  ACS  Appl  Mater  Interfaces  14(5):6287–6306. 
https://doi.org/10.1021/acsami.1c20423 
38. Fu  C,  Liu  T,  Li  L,  Liu  H,  Chen  D,  Tang  F  (2013)  The  absorption,  distribution,  excretion  and  toxicity  of  mesoporous  silica  nanoparticles  in  mice  following  different  exposure  routes.  Biomaterials  34(10):2565–2575. 
https://doi.org/10.1016/j.biomaterials.2012.12.043 
39. Liu  T,  Li  L,  Teng  X,  Huang  X,  Liu  H,  Chen  D,  Ren  J,  He  J,  Tang  F  (2011)  Single  and  repeated  dose  toxicity  of  mesoporous  hollow  silica  nanoparticles  in  intravenously  exposed  mice.  Biomaterials  32(6):1657–1668. 
https://doi.org/10.1016/j.biomaterials.2010.10.035 
40. Rahman  I,  Vejayakumaran  P,  Sipaut  C,  Ismail  J,  Chee  C  (2009)  Size−dependent  physicochem− ical  and  optical  properties  of  silica  nanoparticles.  Mater  Chem  Phys  114(1):328–332. 
https:// 
doi.org/10.1016/j.matchemphys.2008.09.068 
41. Choi  JY,  Gupta  B,  Ramasamy  T,  Jeong  JH,  Jin  SG,  Choi  HG,  Yong  CS,  Kim  JO  (2018)  PEGylated  polyaminoacid−capped  mesoporous  silica  nanoparticles  for  mitochondria−targeted  delivery  of  celastrol  in  solid  tumors.  Colloids  Surf  B  Biointerfaces  165:56–66. 
https://doi.org/ 
10.1016/j.colsurfb.2018.02.015 
42. Peng  F,  Su  Y,  Zhong  Y,  Fan  C,  Lee  S−T,  He  Y  (2014)  Silicon  nanomaterials  platform  for  bioimaging,  biosensing,  and  cancer  therapy.  Acc  Chem  Res  47(2):612–623. 
https://doi.org/ 
10.1021/ar400221g

Basic Principles of Functional Materials for Biomedical Applications 27
43. Di  Paola  M,  Quarta  A,  Conversano  F,  Sbenaglia  EA,  Bettini  S,  Valli  L,  Casciaro  S  (2017) 
Human  hepatocarcinoma  cell  targeting  by  glypican−3  ligand  peptide  functionalized  silica 
nanoparticles:  implications  for  ultrasound  molecular  imaging.  Langmuir  33(18):4490–4499. 
https://doi.org/10.1021/acs.langmuir.7b00327 
44. Ekimov  A,  Onuschenko  A  (1981)  The  quantum  size  effect  in  three−dimensional  microscopic  semiconductors.  JETP  Lett  34(6):363 
45. Zrazhevskiy  P,  Sena  M,  Gao  X  (2010)  Designing  multifunctional  quantum  dots  for  bioimaging,  detection,  and  drug  delivery.  Chem  Soc  Rev  39(11):4326–4354. 
https://doi.org/ 
10.1039/B915139G 
46. Schiffman  JD,  Balakrishna  RG  (2018)  Quantum  dots  as  fluorescent  probes:  Synthesis,  surface  chemistry,  energy  transfer  mechanisms,  and  applications.  Sens  Actuators  B  Chem  258:1191–  1214. 
https://doi.org/10.1016/j.snb.2017.11.189 
47. Bandi  R,  Alle  M,  Dadigala  R,  Park  CW,  Han  SY,  Kwon  GJ,  Kim  JC,  Lee  SH  (2022)  Inte− grating  the  high  peroxidase  activity  of  carbon  dots  with  easy  recyclability:  immobilization  on  dialdehyde  cellulose  nanofibrils  and  cholesterol  detection.  Appl  Mater  Today  26:101286. 
https://doi.org/10.1016/j.apmt.2021.101286 
48. Pankhurst  Q,  Thanh  N,  Jones  S,  Dobson  J  (2009)  Progress  in  applications  of  magnetic  nanopar− ticles  in  biomedicine.  J  Phys  D:  Appl  Phys  42(22):224001. 
https://doi.org/10.1088/0022−
3727/42/22/220301 
49. Schladt  TD,  Schneider  K,  Schild  H,  Tremel  W  (2011)  Synthesis  and  bio−functionalization  of  magnetic  nanoparticles  for  medical  diagnosis  and  treatment.  Dalton  Trans  40(24):6315–6343. 
https://doi.org/10.1039/C0DT00689K 
50. Dash  S,  Das  T,  Patel  P,  Panda  PK,  Suar  M,  Verma  SK  (2022)  Emerging  trends  in  the  nanomedicine  applications  of  functionalized  magnetic  nanoparticles  as  novel  therapies  for  acute  and  chronic  diseases.  Nanobiotechnol  20(1):1–24. 
https://doi.org/10.1186/s12951−022−
01595−3 
51. Riaz  MK,  Riaz  MA,  Zhang  X,  Lin  C,  Wong  KH,  Chen  X,  Zhang  G,  Lu  A,  Yang  Z  (2018)  Surface  functionalization  and  targeting  strategies  of  liposomes  in  solid  tumor  therapy:  a  review.  Int  J  Mol  Sci  19(1):195. 
https://doi.org/10.3390/ijms19010195 
52. Borrajo  ML,  Alonso  MJ  (2022)  Using  nanotechnology  to  deliver  biomolecules  from  nose  to  brain—peptides,  proteins,  monoclonal  antibodies  and  RNA.  Drug  Deliv  Transl  Res  1–19 
https://doi.org/10.1007/s13346−021−01086−2 
53. Wang  X,  Wu  J,  Liu  X,  Tang  K,  Cheng  L,  Li  J,  Tang  Y,  Song  X,  Wang  X,  Li  C  (2021) 
Engineered  liposomes  targeting  the  gut–CNS  Axis  for  comprehensive  therapy  of  spinal  cord 
injury.  J  Control  Release  331:390–403. https://doi.org/10.1016/j.jconrel.2021.01.032 
54. Madhusudhan  A  (2018)  The  effect  of  colon  targeted  delivery  of  celecoxib  loaded  microspheres  on  experimental  colitis  induced  by  acetic  acid  in  rats.  Asian  J  Pharm  (AJP)  12(01). 
https:// 
doi.org/10.22377/ajp.v12i01.1919 
55. Subbiah  R,  Veerapandian  M,  Subbiah  R,  Yun  K  (2010)  Nanoparticles:  functionalization  and  multifunctional  applications  in  biomedical  sciences.  Curr  Med  Chem  17(36):4559–4577. 
https://doi.org/10.2174/092986710794183024 
56. Antonucci  A,  Kupis−Rozmysłowicz  J,  Boghossian  AA  (2017)  Noncovalent  protein  and  peptide  functionalization  of  single−walled  carbon  nanotubes  for  biodelivery  and  optical  sensing  applications.  ACS  Appl  Mater  Interfaces  9(13):11321–11331. 
https://doi.org/10. 
1021/acsami.7b00810 
57. Bai  L,  Bai  Y,  Zheng  J  (2017)  Improving  the  filler  dispersion  and  performance  of  silicone  rubber/multi−walled  carbon  nanotube  composites  by  noncovalent  functionalization  of  poly− methylphenylsiloxane.  J  Mater  Sci  52(12):7516–7529. 
https://doi.org/10.1007/s10853−017−
0984−y 
58. Mittal  V  (2011)  Carbon  nanotubes  surface  modifications:  an  overview  Surface  modification  of  nanotube  fillers.  Wiley  Online  Library 
59. O’connell  MJ,  Bachilo  SM,  Huffman  CB,  Moore  VC,  Strano  MS,  Haroz  EH,  Rialon  KL,  Boul  PJ,  Noon  WH,  Kittrell  C,  Ma  J  (2002)  Band  gap  fluorescence  from  individual  single−walled  carbon  nanotubes.  Science  297(5581):593–596. 
https://doi.org/10.1126/science.1072631

28 V. G. S. S. Jyothi et al.
60. Moore  VC,  Strano  MS,  Haroz  EH,  Hauge  RH,  Smalley  RE,  Schmidt  J,  Talmon  Y  (2003) 
Individually  suspended  single−walled  carbon  nanotubes  in  various  surfactants.  Nano  Lett 
3(10):1379–1382. 
https://doi.org/10.1021/nl034524j 
61. Daniel  S,  Rao  TP,  Rao  KS,  Rani  SU,  Naidu  G,  Lee  H−Y,  Kawai  T  (2007)  A  review  of  DNA  functionalized/grafted  carbon  nanotubes  and  their  characterization.  Sens  Actuators  B  Chem  122(2):672–682. 
https://doi.org/10.1016/j.snb.2006.06.014 
62. Gao  Y,  Kyratzis  I  (2008)  Covalent  immobilization  of  proteins  on  carbon  nanotubes  using  the  cross−linker  1−ethyl−3−(3−dimethylaminopropyl)  carbodiimide—a  critical  assessment.  Bioconjugate  Chem  19(10):1945–1950. 
https://doi.org/10.1021/bc800051c 
63. Oh  SJ,  Lee  HJ,  Keum  DK,  Lee  SW,  Wang  DH,  Park  SY,  Tan  LS,  Baek  JB  (2006)  Multiwalled  carbon  nanotubes  and  nanofibers  grafted  with  polyetherketones  in  mild  and  viscous  polymeric  acid.  Polymer  47(4):1132–1140. 
https://doi.org/10.1016/j.polymer.2005.12.064 
64. Prato  M,  Kostarelos  K,  Bianco  A  (2008)  Functionalized  carbon  nanotubes  in  drug  design  and  discovery.  Acc  Chem  Res  41(1):60–68. 
https://doi.org/10.1021/ar700089b 
65. Carrero−Sanchez  J,  Elias  A,  Mancilla  R,  Arrellin  G,  Terrones  H,  Laclette  J,  Terrones  M  (2006)  Biocompatibility  and  toxicological  studies  of  carbon  nanotubes  doped  with  nitrogen.  Nano  Lett  6(8):1609–1616. 
https://doi.org/10.1021/nl060548p 
66. Abuilaiwi  FA,  Laoui  T,  Al−Harthi  M,  Atieh  MA  (2010)  Modification  and  functionalization  of  multiwalled  carbon  nanotube  (MWCNT)  via  fischer  esterification.  Arab  J  Sci  Eng  35(1):37–48 
67. Cha  BG,  Kim  J  (2019)  Functional  mesoporous  silica  nanoparticles  for  bio−imaging  applica− tions.  Wiley  Interdiscip  Rev  Nanomed  Nanobiotechnol  11(1):e1515. 
https://doi.org/10.1002/ 
wnan.1515 
68. Rosenholm  JM,  Sahlgren  C,  Lindén  M  (2010)  Towards  multifunctional,  targeted  drug  delivery  systems  using  mesoporous  silica  nanoparticles–opportunities  and  challenges.  Nanoscale  2(10):1870–1883. 
https://doi.org/10.1039/C0NR00156B 
69. Liberman  A,  Mendez  N,  Trogler  WC,  Kummel  AC  (2014)  Synthesis  and  surface  functional− ization  of  silica  nanoparticles  for  nanomedicine.  Surf  Sci  Rep  69(2–3):132–158. 
https://doi. 
org/10.1016/j.surfrep.2014.07.001 
70. Banga  R,  Yarwood  J,  Morgan  AM,  Evans  B,  Kells  J  (1995)  FTIR  and  AFM  studies  of  the  kinetics  and  self−assembly  of  alkyltrichlorosilanes  and  (perfluoroalkyl)  trichlorosilanes  onto  glass  and  silicon.  Langmuir  11(11):4393–4399. 
https://doi.org/10.1021/la00011a036 
71. Hermanson  GT  (2013)  Bioconjugate  techniques.  Academic  press. 
72. Galdino  FE,  Picco  AS,  Sforca  ML,  Cardoso  MB,  Loh  W  (2020)  Effect  of  particle  functional− ization  and  solution  properties  on  the  adsorption  of  bovine  serum  albumin  and  lysozyme  onto  silica  nanoparticles.  Colloids  Surf  B:  Biointerfaces  186:110677. 
https://doi.org/10.1016/j.col 
surfb.2019.110677 
73. Huh  S,  Wiench  JW,  Yoo  J−C,  Pruski  M,  Lin  VS−Y  (2003)  Organic  functionalization  and  morphology  control  of  mesoporous  silicas  via  a  co−condensation  synthesis  method.  Chem  Mater  15(22):4247–4256. 
https://doi.org/10.1021/cm0210041 
74. Gottuso  A,  Armetta  F,  Cataldo  A,  Nardo  VM,  Parrino  F,  Saladino  ML  (2022)  Func− tionalization  of  mesoporous  silica  nanoparticles  through  one−pot  co−condensation  in  w/o  emulsion.  Microporous  Mesoporous  Mater  335:111833. 
https://doi.org/10.1016/j.micromeso. 
2022.111833 
75. Bagwe  RP,  Hilliard  LR,  Tan  W  (2006)  Surface  modification  of  silica  nanoparticles  to  reduce  aggregation  and  nonspecific  binding.  Langmuir  22(9):4357–4362. 
https://doi.org/10.1021/la0 
52797j 
76. Buchman  YK,  Lellouche  E,  Zigdon  S,  Bechor  M,  Michaeli  S,  Lellouche  J−P  (2013)  Silica  nanoparticles  and  polyethyleneimine  (PEI)−mediated  functionalization:  a  new  method  of  PEI  covalent  attachment  for  siRNA  delivery  applications.  Bioconjug  Chem  24(12):2076–2087. 
https://doi.org/10.1021/bc4004316 
77. Sperling  RA,  Parak  WJ  (2010)  Surface  modification,  functionalization  and  bioconjugation  of  colloidal  inorganic  nanoparticles.  Philos  Trans  Math  Phys  Eng  Sci  368(1915):1333–1383. 
https://doi.org/10.1098/rsta.2009.0273

Basic Principles of Functional Materials for Biomedical Applications 29
78. Thanh  NT,  Green  LA  (2010)  Functionalisation  of  nanoparticles  for  biomedical  applications. 
Nano  Today  5(3):213–230. https://doi.org/10.1016/j.nantod.2010.05.003 
79. Snee  PT  (2018)  The  role  of  colloidal  stability  and  charge  in  functionalization  of  aqueous  quantum  dots.  Acc  Chem  Res  51(11):2949–2956. 
https://doi.org/10.1021/acs.accounts.8b0 
0405 
80. Graf  C,  Dembski  S,  Hofmann  A,  Rühl  E  (2006)  A  general  method  for  the  controlled  embedding  of  nanoparticles  in  silica  colloids.  Langmuir  22(13):5604–5610. 
https://doi.org/10.1021/la0 
60136w 
81. Mattoussi  H,  Mauro  JM,  Goldman  ER,  Anderson  GP,  Sundar  VC,  Mikulec  FV,  Bawendi  MG  (2000)  Self−assembly  of  CdSe
recombinant  protein.  J  Am  Chem  Soc  122(49):12142–12150. 
https://doi.org/10.1021/ja0 
02535y 
82. Uyeda  HT,  Medintz  IL,  Jaiswal  JK,  Simon  SM,  Mattoussi  H  (2005)  Synthesis  of  compact  multidentate  ligands  to  prepare  stable  hydrophilic  quantum  dot  fluorophores.  JACS  127(11):3870–3878. 
https://doi.org/10.1021/ja044031w 
83. Bera  D,  Qian  L,  Tseng  T−K,  Holloway  PH  (2010)  Quantum  dots  and  their  multimodal  applications:  a  review.  Materials  3(4):2260–2345. 
https://doi.org/10.3390/ma3042260 
84. Ong  W−L,  Rupich  SM,  Talapin  DV,  McGaughey  AJ,  Malen  JA  (2013)  Surface  chemistry  mediates  thermal  transport  in  three−dimensional  nanocrystal  arrays.  Nature  Mater  12(5):410–  415. 
https://doi.org/10.1038/nmat3596 
85. Hammer  NI,  Emrick  T,  Barnes  MD  (2007)  Quantum  dots  coordinated  with  conjugated  organic  ligands:  new  nanomaterials  with  novel  photophysics.  Nanoscale  Res  Lett  2(6):282. 
https:// 
doi.org/10.1007/s11671−007−9062−8 
86. Mei  BC,  Susumu  K,  Medintz  IL,  Delehanty  JB,  Mountziaris  T,  Mattoussi  H  (2008)  Modular  poly  (ethylene  glycol)  ligands  for  biocompatible  semiconductor  and  gold  nanocrystals  with  extended  pH  and  ionic  stability.  J  Mater  Chem  18(41):4949–4958. 
https://doi.org/10.1039/ 
B810488C 
87. Olsson  C  (2009)  Synthesis  of  bifunctional  poly  (ethylene  oxides)  and  their  use  as  ligands  to  nanoparticles  (Doctoral  dissertation,  Staats−und  Universitätsbibliothek  Hamburg  Carl  von  Ossietzky) 
88. Zhang  Y,  Clapp  A  (2011)  Overview  of  stabilizing  ligands  for  biocompatible  quantum  dot  nanocrystals.  Sensors  11(12):11036–11055. 
https://doi.org/10.3390/s111211036 
89. Correa−Duarte  MA,  Kobayashi  Y,  Caruso  RA,  Liz−Marzán  LM  (2001)  Photodegradation  of  SiO2−coated  CdS  nanoparticles  within  silica  gels.  J  Nanosci  Nanotechnol  1(1):95–99. 
https:// 
doi.org/10.1166/jnn.2001.010 
90. Nann  T,  Riegler  J,  Nick  P,  Mulvaney  P  (2005)  Quantum  dots  with  silica  shells.  Paper  presented  at  the  nanobiophotonics  and  biomedical  applications  II,  vol  5705.  pp  77–84. 
https://doi.org/ 
10.1117/12.582871 
91. Beloglazova  NV,  Shmelin  PS,  Speranskaya  ES,  Lucas  B,  Helmbrecht  C,  Knopp  D,  Niessner  R,  De  Saeger  S,  Goryacheva  IY  (2013)  Quantum  dot  loaded  liposomes  as  fluorescent  labels  for  immunoassay.  Anal  Chem  85(15):7197–7204. 
https://doi.org/10.1021/ac401729y 
92. Fernández−Argüelles  M,  Costa−Fernández  JM,  Pereiro  R,  Sanz−Medel  A  (2008)  Simple  bio−conjugation  of  polymer−coated  quantum  dots  with  antibodies  for  fluorescence−based  immunoassays.  Analyst  133(4):444–447. 
https://doi.org/10.1039/B802360N 
93. Shen  L  (2011)  Biocompatible  polymer/quantum  dots  hybrid  materials:  current  status  and  future  developments.  J  Funct  Biomater  2(4):355–372. 
https://doi.org/10.3390/jfb2040355 
94. Ciobanu  M,  Heurtault  B,  Schultz  P,  Ruhlmann  C,  Muller  C,  Frisch  B  (2007)  Layersome: 
development  and  optimization  of  stable  liposomes  as  drug  delivery  system.  Int  J  Pharm  344(1– 
2):154–157. https://doi.org/10.1016/j.ijpharm.2007.05.037 
95. Banerjee  A,  Grazon  C,  Nadal  B,  Pons  T,  Krishnan  Y,  Dubertret  B  (2015)  Fast,  efficient,  and  stable  conjugation  of  multiple  DNA  strands  on  colloidal  quantum  dots.  Bioconjug  Chem  26(8):1582–1589. 
https://doi.org/10.1021/acs.bioconjchem.5b00221 
96. DeLong  RK,  Reynolds  CM,  Malcolm  Y,  Schaeffer  A,  Severs  T,  Wanekaya  A  (2010)  Func− tionalized  gold  nanoparticles  for  the  binding,  stabilization,  and  delivery  of  therapeutic  DNA,

30 V. G. S. S. Jyothi et al.
RNA,  and  other  biological  macromolecules.  Nanotechnol  Sci  Appl  3:53. https://doi.org/10. 
2147/NSA.S8984 
97. Clapp  AR,  Medintz  IL,  Mattoussi  H  (2006)  Förster  resonance  energy  transfer  investigations 
using  quantum−dot  fluorophores.  ChemPhysChem  7(1):47–57. https://doi.org/10.1002/cphc. 
200500217 
98. Algar  WR,  Krull  UJ  (2010)  Developing  mixed  films  of  immobilized  oligonucleotides  and  quantum  dots  for  the  multiplexed  detection  of  nucleic  acid  hybridization  using  a  combination  of  fluorescence  resonance  energy  transfer  and  direct  excitation  of  fluorescence.  Langmuir  26(8):6041–6047. 
https://doi.org/10.1021/la903751m 
99. Algar  WR,  Krull  UJ  (2011)  Interfacial  chemistry  and  the  design  of  solid−phase  nucleic  acid  hybridization  assays  using  immobilized  quantum  dots  as  donors  in  fluorescence  resonance  energy  transfer.  Sensors  11(6):6214–6236. 
https://doi.org/10.3390/s110606214 
100. Xiao  Q,  Huang  S,  Qi  Z−D,  Zhou  B,  He  Z−K,  Liu  Y  (2008)  Conformation,  thermodynamics  and  stoichiometry  of  HSA  adsorbed  to  colloidal  CdSe/ZnS  quantum  dots.  BBA  Proteins  Proteomics  1784(7–8):1020–1027. 
https://doi.org/10.1016/j.bbapap.2008.03.018 
101. Pereira  M,  Lai  EP  (2008)  Capillary  electrophoresis  for  the  characterization  of  quantum  dots  after  non−selective  or  selective  bioconjugation  with  antibodies  for  immunoassay.  J 
Nanobiotechnol  6(1):1–15. 
https://doi.org/10.1186/1477−3155−6−10 
102. Kairdolf  BA,  Smith  AM,  Stokes  TH,  Wang  MD,  Young  AN,  Nie  S  (2013)  Semiconductor  quantum  dots  for  bioimaging  and  biodiagnostic  applications.  Annu  Rev  Anal  Chem  6:143–  162. 
https://doi.org/10.1146/annurev−anchem−060908−155136 
103. Koolpe  M,  Burgess  R,  Dail  M,  Pasquale  EB  (2005)  EphB  receptor−binding  peptides  identi− fied  by  phage  display  enable  design  of  an  antagonist  with  ephrin−like  affinity.  J  Biol  Chem  280(17):17301–17311. 
https://doi.org/10.1074/jbc.M500363200 
104. Wolcott  A,  Gerion  D,  Visconte  M,  Sun  J,  Schwartzberg  A,  Chen  S,  Zhang  JZ  (2006)  Silica− coated  CdTe  quantum  dots  functionalized  with  thiols  for  bioconjugation  to  IgG  proteins.  J  Phys  Chem  B  110(11):5779–5789. 
https://doi.org/10.1021/jp057435z 
105. Derfus  AM,  Chen  AA,  Min  D−H,  Ruoslahti  E,  Bhatia  SN  (2007)  Targeted  quantum  dot  conjugates  for  siRNA  delivery.  Bioconjug  Chem  18(5):1391–1396. 
https://doi.org/10.1021/ 
bc060367e 
106. Kolb  HC,  Sharpless  KB  (2003)  The  growing  impact  of  click  chemistry  on  drug  discovery.  Drug  Discovery  Today  8(24):1128–1137. 
https://doi.org/10.1016/S1359−6446(03)02933−7 
107. Nwe  K,  Brechbiel  MW  (2009)  Growing  applications  of  “click  chemistry”  for  bioconjugation  in  contemporary  biomedical  research.  Cancer  Biother  Radiopharm  24(3):289–302. 
https:// 
doi.org/10.1089/cbr.2008.0626 
108. Huisgen  R  (1963)  Kinetics  and  mechanism  of  1,  3−dipolar  cycloadditions.  Angew  Chem  Int  Ed  2(11):633–645. 
https://doi.org/10.1002/anie.196306331 
109. Speers  AE,  Cravatt  BF  (2004)  Profiling  enzyme  activities  in  vivo  using  click  chemistry  methods.  Chem  Biol  11(4):535–546. 
https://doi.org/10.1016/j.chembiol.2004.03.012 
110. Al−Saadi  A,  Yu  CH,  Khutoryanskiy  VV,  Shih  S−J,  Crossley  A,  Tsang  SC  (2009)  Layer−by− layer  electrostatic  entrapment  of  protein  molecules  on  superparamagnetic  nanoparticle:  a  new  strategy  to  enhance  adsorption  capacity  and  maintain  biological  activity.  J  Phys  Chem  C 
113(34):15260–15265. 
https://doi.org/10.1021/jp903100j 
111. Sun  B,  Zhang  Y,  Gu  K−J,  Shen  Q−D,  Yang  Y,  Song  H  (2009)  Layer−by−layer  assembly  of  conjugated  polyelectrolytes  on  magnetic  nanoparticle  surfaces.  Langmuir  25(10):5969–5973. 
https://doi.org/10.1021/la804217w 
112. Xie  J,  Peng  S,  Brower  N,  Pourmand  N,  Wang  SX,  Sun  S  (2006)  One−pot  synthesis  of  monodisperse  iron  oxide  nanoparticles  for  potential  biomedical  applications.  Pure  Appl  Chem  78(5):1003–1014. 
https://doi.org/10.1351/pac200678051003 
113. Jun  YW,  Huh  YM,  Choi  JS,  Lee  JH,  Song  HT,  Kim  S,  Yoon  S,  Kim  KS,  Shin  JS,  Suh  JS,  Cheon  J  (2005)  Nanoscale  size  effect  of  magnetic  nanocrystals  and  their  utilization  for  cancer  diagnosis  via  magnetic  resonance  imaging.  J  Am  Chem  Soc  127(16):5732–5733. 
https://doi. 
org/10.1021/ja0422155

Basic Principles of Functional Materials for Biomedical Applications 31
114. Patil  R,  Thorat  N,  Shete  P,  Otari  S,  Tiwale  B,  Pawar  S  (2016)  In  vitro  hyperthermia  with 
improved  colloidal  stability  and  enhanced  SAR  of  magnetic  core/shell  nanostructures.  Mater 
Sci  Eng  C  59:702–709. 
https://doi.org/10.1016/j.msec.2015.10.064 
115. Xu  C,  Xu  K,  Gu  H,  Zheng  R,  Liu  H,  Zhang  X,  Guo  Z,  Xu  B  (2004)  Dopamine  as  a  robust  anchor  to  immobilize  functional  molecules  on  the  iron  oxide  shell  of  magnetic  nanoparticles.  J  Am  Chem  Soc  126(32):9938–9939. 
https://doi.org/10.1021/ja0464802 
116. Shin  J,  Anisur  RM,  Ko  MK,  Im  GH,  Lee  JH,  Lee  IS  (2009)  Hollow  manganese  oxide  nanopar− ticles  as  multifunctional  agents  for  magnetic  resonance  imaging  and  drug  delivery.  Angew  Chem  Int  Ed  48(2):321–324. 
https://doi.org/10.1002/anie.200802323 
117. Huang  A,  Huang  L,  Kennel  SJ  (1980)  Monoclonal  antibody  covalently  coupled  with  fatty  acid.  A  reagent  for  in  vitro  liposome  targeting.  J  Biol  Chem  255(17):8015–8018. 
https://doi. 
org/10.1016/S0021−9258(19)70595−X 
118. Torchilin  V,  Klibanov  A,  Smirnov  V  (1982)  Phosphatidylinositol  may  serve  as  the  hydrophobic  anchor  for  immobilization  of  proteins  on  liposome  surface.  FEBS  Lett  138(1):117–120. 
https://doi.org/10.1016/0014−5793(82)80408−0 
119. Harsch  M,  Walther  P,  Weder  H,  Hengartner  H  (1981)  Targeting  of  monoclonal  antibody− coated  liposomes  to  sheep  red  blood  cells.  Biochem  Biophys  Res  Commun  103(3):1069–1076. 
https://doi.org/10.1016/0006−291X(81)90917−7 
120. Torchilin  V,  Omel’Yanenko  V,  Klibanov  A,  Mikhailov  A,  Gol’danskII  V,  Smirnov  V  (1980)  Incorporation  of  hydrophilic  protein  modified  with  hydrophobic  agent  into  lipo− some  membrane.  BBA−Biomembranes  602(3):511–521. 
https://doi.org/10.1016/0005−273 
6(80)90330−2 
121. Chua  M−M,  Fan  S−T,  Karush  F  (1984)  Attachment  of  immunoglobulin  to  liposomal  membrane  via  protein  carbohydrate.  Biochim  Biophys  Acta  Gen  Subj  800(3):291–300. 
https://doi.org/ 
10.1016/0304−4165(84)90408−2 
122. Hansen  CB,  Kao  GY,  Moase  EH,  Zalipsky  S,  Allen  TM  (1995)  Attachment  of  antibodies  to  sterically  stabilized  liposomes:  evaluation,  comparison  and  optimization  of  coupling  proce− dures.  Biochim  Biophys  Acta  Biomembr  1239(2):133–144. 
https://doi.org/10.1016/0005−273 
6(95)00138−S 
123. Nässander  UK,  Steerenberg  PA,  Poppe  H,  Storm  G,  Poels  LG,  De  Jong  WH,  Crommelin  DJ  (1992)  In  vivo  targeting  of  OV−TL  3  immunoliposomes  to  ascitic  ovarian  carcinoma  cells  (OVCAR−3)  in  athymic  nude  mice.  Cancer  Res  52(3):646–653 
124. Huang  L,  Kennel  SJ  (1979)  Binding  of  immunoglobulin  G  to  phospholipid  vesicles  by  sonication.  Biochemistry  18(9):1702–1707. 
https://doi.org/10.1021/bi00576a011 
125. Leserman  LD,  Weinstein  JN,  Moore  JJ,  Terry  WD  (1980)  Specific  interaction  of  myeloma  tumor  cells  with  hapten−bearing  liposomes  containing  methotrexate  and  carboxyfluorescein.  Cancer  Res  40(12):4768–4774. 
http://www.ncbi.nlm.nih.gov/pubmed/7438109 
126. Illum  L,  Jones  P,  Kreuter  J,  Baldwin  R,  Davis  S  (1983)  Adsorption  of  monoclonal  antibodies  to  polyhexylcyanoacrylate  nanoparticles  and  subsequent  immunospecific  binding  to  tumour  cells  in  vitro.  Int  J  Pharm  17(1):65–76. 
https://doi.org/10.1016/0378−5173(83)90019−4 
127. Li  Y,  Ogris  M,  Wagner  E,  Pelisek  J,  Rüffer  M  (2003)  Nanoparticles  bearing  polyethyleneglycol−coupled  transferrin  as  gene  carriers:  preparation  and  in  vitro  evaluation. 
Int  J  Pharm  259(1–2):93–101. 
https://doi.org/10.1016/S0378−5173(03)00211−4 
128. Gautier  S,  Grudzielski  N,  Goffinet  G,  De  Hassonville  SH,  Delattre  L,  Jérôme  R  (2001)  Prepa− ration  of  poly  (D,  L−lactide)  nanoparticles  assisted  by  amphiphilic  poly  (methyl  methacrylate− co−methacrylic  acid)  copolymers.  J  Biomater  Sci  Polym  Ed  12(4):429–450. 
https://doi.org/ 
10.1163/156856201750195306

Functional Biomaterials for Targeted
Drug Delivery Applications
Hemant Singh, Muzammil Kuddushi, Ramesh Singh, Sneha Sathapathi,
Aniruddha Dan, Narayan Chandra Mishra, Dhiraj Bhatia,
and Mukesh Dhanka
Abstract the absorption and biodistribution of small molecules and biologics at the targeted diseased sites to maximize therapeutic performances without affecting the healthy
cells of the tissue or organ inside the body. For this purpose, it is essential to select effective biomaterial-based platforms that can release drugs in a sustained manner
without altering their bioactivity and causing toxic effects in off-targeted tissues. Such biomaterials can be directly implanted/injected into the targeted diseased area of the body to enhance drug delivery efficiency. Various materials have been explored
to fabricate targeted drug delivery systems. Functional biomaterials with desired physicochemical and biological properties are getting colossal attention because they can respond to their environmental cues, such as fluctuations in pH, temper-
ature, or cell-associated enzymatic activity, and improve drug delivery integration and tissue regeneration. This chapter explores the progress of different approaches in functionalizing polymeric, metallic, and ceramic biomaterials for targeted drug
delivery systems.
Keywords ·Biomaterials ·Functionalized polymer ·
Functionalized metals and ceramics
H. Singh (B) · (B)
Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar,
Gandhinagar, Gujarat, India
e-mail: [email protected]
M. Dhanka e-mail:
[email protected]
M. Kuddushi
Department of Chemical and Materials Engineering, University of Alberta, Alberta, Canada
N. C. Mishra
Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 A. Madhusudhan et al. (eds.), and Their Theranostics Approaches
https://doi.org/10.1007/978-981-99-6597-7_2
33

34
1 Introduction
Drug delivery is the process of delivering drugs to humans or animals to achieve a
desirable therapeutic effect in treating illnesses [1]. Various drug delivery systems
(e.g., tablets, capsules, syrups, ointments, and among others) have been developed
and tested for therapeutics molecule delivery [1, 35]. However, these traditional drug
delivery technologies are ineffective in providing a sustained drug release profile and
suffer from low bioavailability and rapid fluctuation in plasma drug levels [1, 35].
Thus, the entire treatment procedure may be ineffective without an effective delivery method [
35, 118]. Moreover, the drug must be administered at an actual controlled
rate and at the target site to provide optimal efficacy and safety [35, 118]. Therefore,
properly designed targeted drug delivery systems with controlled drug release are being developed to address the issues with traditional drug delivery technologies [
5,
35, 65, 79, 118]. Presently, there is a high demand for developing effective targeted
therapeutic delivery systems to reduce dosage frequency and boost drug efficiency at the required site to minimize its adverse side effects [
118]. A collaborative effort
by engineers, chemists, biologists, clinicians, and biomaterial scientists who have been using biomaterial for fabricating the targeted drug delivery system for specific cells has sparked a surge in interest in improving human health [
1, 35, 118]. Various
pharmacological substances, including antibodies, peptides, vaccines, drugs, and enzymes, have increased delivery and effectiveness thanks to the development of biomaterials-based targeted drug delivery systems [
99]. Biomaterials are generally
grouped into three classes: metals, ceramics, and polymers [1]. These biomaterials
have been used as a carrier, and many of these materials with combinations have been created to release medicines over long periods of time [
51, 58, 77, 78, 99].
They may be further customized to target certain cells/tissues of the body [99].
This phenomenon allows the reduction of dosage of pharmaceutical drugs while still huge gap in achieving the desired therapeutic effect and lowering patient toxicity
[
99]. An overview of available possibilities in the polymers, metals, and ceramics
for fabricating targeted drug delivery systems has shown in Fig. 1, and this chapter
explores the progress of different approaches in functionalizing polymeric, metallic, and ceramic biomaterials for the application in targeted drug delivery.
2 Functionalization of Polymeric Materials for Targeted
Drug Delivery
The use of polymers and polymer-based nanomaterials in the biomedical field has risen dramatically in recent years [
3, 35]. Identifying and understanding the intended
applications that call for modifying these materials is crucial before designing or
selecting polymers and their nanocomposites [35, 118]. Specific moieties and conju-
gated compounds that enhance material performance can be grafted onto polymers
through chemical functionalization [1]. Since a wide range of inert polymers and

Functional Biomaterials for Targeted Drug Delivery Applications 35
Fig. 1
available possibilities in the
polymers, metals, and
ceramics for fabricating
targeted drug delivery
systems
nanomaterials are commercially available, surface modification is a necessary step to
increase their adherence and enable the development of these materials for special-
ized applications across a variety of sectors [35, 76, 99]. The properties of poly-
meric materials are typically determined by functional groups other than the back-
bone chains [35, 99]. Metal coordination is a type of noncovalent bond that has
been employed in the functionalization of supramolecular polymers [35, 99]. Since
numerous pyridine-based ligands are commercially accessible and can structurally
be changed, pyridyl-based systems have a high probability of success as polymer-
izable metal complexes and polymers functionalized by metal coordination [118].
Bipyridines and terpyridines in particular are appealing because they may act as
acceptors to maintain different metal oxidation states and are well known for coordi-
nating a range of metals [118]. For example, hyaluronic acid derivatives were func-
tionalized by the maleic anhydride ring opening process by reacting with awaiting
hydroxyl groups [99, 118]. One such promising application of the functionalization
of polymeric materials is the usage of the same for targeted drug delivery [1, 118].
For fabricating the drug delivery systems, the immobilization of bioactive substances on a polymeric surface through physical adsorption, i.e., noncovalent interactions, is
desirable [
1, 118]. These variations are crucial, especially for various drug delivery
methods that are intended to deliver an adequate amount of medication to the targeted site while minimizing the adverse impacts of the drugs to the other body organs [
1,
118]. In order to address the limitations of the traditional dosage forms, targeted
and customized drug delivery systems were developed [1, 118]. Moreover, to enable
an effective drug delivery, several materials have been created through employing
nanotechnology techniques in polymeric materials for anticancer drug delivery [5, 6,
100, 107]. Various disciplines are actively developing products using carbon-based
biomaterials and nanomaterials. In the biomedical industry, intensive research is

36
being done to create new carbon nanotubes (CNT) for targeted disease diagnosis and
their treatment [100, 106, 107]. Due to their smaller size (nanometers in diameter and
micrometers in length), which allows them to interact with living biological tissues
thereby improving the efficiency of drug delivery. Moreover CNTs also have some
significant properties [100, 106, 107] like,
•Biocompatible with a variety of cell types, making them a safe material for use
in drug delivery systems.
•CNTs can be functionalized with specific targeting molecules, such as antibodies or peptides, to enable targeted delivery of drugs to specific cells or tissues.
•CNTs can help to stabilize the drugs, protecting them from degradation and increasing their shelf life.
•CNTs can be engineered to release drugs in a controlled manner, which can
improve the efficacy of the drug while reducing potential side effects.
•CNTs have been shown to be nontoxic in low concentrations, making them an
attractive material for use in medical applications.
Therefore, drug delivery systems in the cancer treatment, CNTs can be employed.
Targeted tissue distribution of CNTs via microencapsulation by employing biocom-
patible polymeric membranes like alginate-poly-l-lysine-alginate can be performed
as a part of cancer therapy [100, 106, 107]. To address the issue of intrinsic toxicity of
CNTs, it has been suggested that CNTs covalently functionalized with phenyl-SO
3H
or phenyl (COOH)
2 groups provide less toxicity to cells than raw CNTs treated
with surfactants [
100, 106, 107]. Focusing on CNTs in particular, their low solu-
bility in aqueous media severely hinders their use in almost all biological media
[100]. Therefore, surface functionalization of the CNTs is equally important for their
activity [100]. In addition to resolving the issue of CNTs’ hydrophobic nature, which
can lead to the formation of highly poisonous aggregates, surface functionalization also improves the material’s biocompatibility [
37, 100]. In the area of diagnostic
and imaging, CNTs have another promising powerful use [100]. CNTs have been
used to detect the prostate and colorectal cancer marker, and a hepatocarcinoma marker [
106]. Drugs that could not ordinarily be given to cancer cells by microscale
vehicles can now be supplied to them using a nanoscale vehicle, such as CNTs
mixed with other composites [106]. CNTs are potential needle-like transporters of
macromolecules like genes and proteins as well as tiny medicinal compounds [18,
38]. In the treatment of cancer, single-walled nanotubes (SWNTs) functionalized
by Polyethylene glycol (PEG) and phospholipid, further coupled with the anticancer
paclitaxel (PTX) successful used [73]. SWCNTs, graphene-based nanomaterials, and
their prototypes have also been evaluated for their use in TB and cancer chemotherapy [
105]. It is still essential to concentrate on the metabolism, biodistribution, clearance,
and accumulation of nanomaterials, especially CNTs [100]. Additionally, CNTs have
been discovered to be potential scaffold materials for the bone and nerve tissue regeneration [
13]. By regulating its type, delivery site, and dosage, CNTs can be
a secure, novel, and high-performance biomaterial [13]. Furthermore, cross-linked
polymers known as hydrogels are essential in many biomedical fields including drug administration, sensor systems, and tissue engineering [
85]. Recent progresses in the

Functional Biomaterials for Targeted Drug Delivery Applications 37
development of magnetic hydrogels as a drug carrier uses the natural polymers like
polysaccharides, protein, and DNA have been documented [85]. According to studies,
adding versatility to the hydrogel formulation by functionalizing PEG chains with
hydrazone groups or chemically orthogonal ester and grafting Rhodamin B (RhB)
allows for the release of the hydrophilic drug mimic load to last for longer [85]. In
terms of drug delivery effectiveness, aggregating norfloxacin molecules in hydro-
gels and raising drug concentration both improved drug delivery performance [50].
In a number of soft tissue applications, thermosensitive injectable hydrogels have been employed to administer pharmacological and cellular therapy [
39]. Magnetic
hybrid hydrogels have also been constructed. They mix the magnetic characteristics
of nanoparticles with the usual properties of the hydrogel to enhance the desired prop-
erties [19]. A substantial amount of medication can be put into the hybrid hydrogel
before being administered [19]. Because the hydrogels contain magnetic nanoparti-
cles, the hydrogel can be transferred and localized in the target spot using a magnet [
19]. Therapeutic agent delivery to bladder lesion hope will soon be transformed by
hydrogel-based drug delivery devices. The efficacy of therapy seems to be increased
by combining a variety of treatment modalities based on hydrogels and combina-
torial drug delivery systems with distinct mechanisms of action [102]. This section
focuses on a couple of highly applicable polymeric biomaterials that can be applied to the delivery of certain drugs.
2.1 Functionalized Collagen for Targeted Drug Delivery
The discipline of tissue engineering is currently seeing a revival in the usage of collagen as a biomaterial [
9]. In many different drug delivery systems and biomate-
rial applications, collagen plays a significant role [9]. Because it is widely avail-
able and has great biocompatibility and biodegradability qualities, collagen has been frequently used in drug delivery [
9]. The most effective and exciting appli-
cations include mini-pellets containing protein medicines, injectable dispersions for treating local tumors, and sponges carrying antibiotics [
9]. The subcutaneous
injection of soluble collagen for the treatment of dermatological problems has been
one of collagen’s most successful commercial applications [9]. Some instances of
frequently utilized collagen-based delivery vehicles are corneal shields, scaffolds
for various chronic and burn wounds, nanoparticles for gene delivery, growth factor-
loaded injectable hydrogels, and antibiotic dressings [9]. The physical or chemical
cross-linking of collagen modulates biodegradability and drug release to control the impact of drug delivery [
9]. It has been demonstrated that collagen nanoparticles are
thermally stable particles that quickly reach sterilization and work well as carriers for
medicinal substances and cytotoxicity agents [14]. Collagen-based polymeric mate-
rials also exhibit high efficacy in being used as a system for the controlled release of antibiotics/steroids [
14]. In the upcoming years, smart collagen nanoparticles can
direct the growth of in vivo tissues, engage stem cells, and direct them to particular
body regions [14]. It has been reported that thermoresponsive drug delivery vehicles

38
made of elastin-b-collagen-like peptide (ELP-CLP) vesicles can target collagen-
containing matrices, as shown in Fig. 2 [74]. For the targeted therapy of various
diseases like joint problems linked to high collagen remodeling activity, ELP-CLP
vesicles may be viable contenders as drug carriers for such associated problems
[74]. Using collagen in combination with biodegradable hydrophobic polyesters is a
feasible approach for creating therapeutic biomaterials [74]. With the help of these
polymeric materials, additional lipophilic medications supporting tissue repair can be delivered [
74].
Fig. 2
with permission from [74])

Functional Biomaterials for Targeted Drug Delivery Applications 39
2.2 Functionalized Chitosan for Targeted Drug Delivery
Natural cationic biopolymer chitosan was developed by partial deacetylated of chitin
[69]. Chitosan-modified metallic and polymer scaffolds have been the subject of
extensive research during the past ten years [69]. Chitosan coatings have been created
using a variety of techniques, including electrophoretic deposition, sol–gel processes, dip and spin coating, electrospinning, etc. Chitosan’s surface is functionalized to improve the interaction with the scaffolds. CS-based coatings offer a promising
alternative for promoting successful orthopedic applications [
69]. The synthesis of
chitosan nanoparticles using collagen peptide (CP) is particularly intriguing since the produced nanoparticles found stable under physiological settings, as shown in
Fig.
3a[69]. Such nanoparticles offer a great deal of potential for application as
intelligent drug delivery systems as cutting-edge cancer therapies [69]. In contrast to
chemical processes that change the bulk properties of chitosan, employing collagen in chitosan films can preserve the native qualities of chitosan [
10]. Although the creation
of collagen-chitosan films and their application in the delivery of drugs have been
previously reported, the fabrication of collagen peptide-chitosan nanoparticles and an
examination of the fundamental bonding mechanisms on the size and morphology of
nanoparticles have not yet been done [
10, 69]. According to a study, the synthesized
chitosan-based polymeric material had good cytocompatibility with 3T3 fibroblast cells [
10]. The pH-controlled release of DOX (a medication) suggests that its potential
for administering antitumor medications is based on the extracellular pH of the tumor
environment. Hence, proper functionalization of chitosan-based polymeric material
encapsulated with other suitable composites results in the better release of antitumor
drugs at the targeted site [
10].
2.3 Functionalized Gelatin for Targeted Drug Delivery
The irreversible denaturation of collagen protein yields gelatin also known as the molecular derivative of collagen [
70]. Gelatin is widely being used in cell and
tissue culture as an alternative of collagen for biomaterial purposes because it has
a molecular structure and function that seem to be remarkably similar to those of
collagen [70]. Gelatin is a frequently utilized natural macromolecule with outstanding
biocompatibility and biodegradability in the biomedical field [70]. Nanoparticles-
based drug delivery has drawn significant attention among numerous promising new drug delivery methods for the analysis and handling of a number of diseases, and at the moment, several formulations are being used in clinical settings [
81].
Nanoparticles-based drug delivery methods have been created using a variety of biodegradable and biocompatible polymers from both natural and synthetic sources [
81]. By employing exfoliated graphene oxide as a precursor, a straightforward and
environmentally acceptable synthetic method for producing gelatin-functionalized

Random documents with unrelated
content Scribd suggests to you:

CHAPTER XV
LAW REFORM
When the personnel of the Government of India from the bottom to the
top has been reorganised on a basis of understanding of the people, it will
begin to revise its laws, and the first will be its Penal Law, its Criminal
Courts and Procedure.
To do this with any success it will be necessary first to study the
causation of crime, because until you know how it is caused you cannot
possibly frame any system of prevention that is likely to do less harm than
good.
This is a subject that many men have been studying for some years past,
but very little progress has yet been made. The old shibboleths that crime
results from a desire for crime and that the only cure is savage punishment
still hold good with all Governments, though quite discredited outside
official circles. It is a most fascinating subject, and as it is one I have
worked at for many years I may be excused for devoting a somewhat large
space to it here.
It is more than twenty-five years ago that my attention was first attracted
to the causation of crime. I was a young magistrate then, trying my first
cases; very nervous, very conscientious that I should fulfil all the legal
requirements as laid down in the Codes. It had never occurred to me then
that there was any gulf between justice and law—I supposed that they were
one, that law was only codified and systemised justice; therefore, in
fulfilling the Law I thought that I was surely administering Justice.
I was trying a theft case. I cannot remember now what it was that had
been stolen, but I think it was a bullock. The accused was undefended, and
I, as the custom is, questioned him about the case, not with the view of
getting him to commit himself, but in order to try to elicit his defence, if

any. He had none. He admitted the theft, described the circumstances quite
fully and frankly, and said he was guilty. I asked him if he knew when he
took the bullock from the grazing ground that he was stealing it, and he
answered "Yes." I asked him if he knew that the punishment for cattle theft
was two years' imprisonment, which practically meant ruin for life, and he
replied that he knew it would be heavy.
Then I asked, "Why did you do it?"
He moved uneasily in the dock without answering, looked about him,
and seemed puzzled.
I repeated the question.
Evidently he was trying to remember back why he had done it, and
found it difficult. He had not considered the point before, and introspection
was new to him. "Why did I do it?" he was saying to himself.
"Well?" I asked.
He looked me frankly in the face. "I don't know," he said. "I suppose I
could not help it. I did not think about it at all; something just made me take
it."
He was convicted, of course, and I forgot the case.
But I did not forget what he had said. It remained in my mind and
recurred to me from time to time, I did not know why. For I had always
been taught that crime was due to an evil disposition which a person could
change, only he would not, and I had as yet seen no reason to question this
view. Therefore the accused's defence appealed to no idea that was
consciously in my mind. I did not reflect upon it. I can only suppose that,
unconsciously to myself, these words reached some instinct within me
which told me that they were true. And at last from the very importunity of
their return I did begin to think about them, and, consequently on them, of
the causation of crime in general. A curiosity awoke which has never
abated, has indeed but grown, as in some small ways I was able to satisfy it.

What causes crime? Is it a purely individual matter? If so, why does it
follow certain lines of increase or decrease, or maintain an average? That
looks more like general results following on general causes than the result
of individual qualities. Why is it not curable? It should have been cured
centuries ago. Why does punishment usually make the offender worse
instead of better? If his crime were within the individual's control, its
punishment certainly would deter. It does not. Any deterrent effect it may
have is rarely on him who is punished, but on the outside world, and that is
but little. So much I saw very clearly in practice, and every book I read on
the subject confirmed this. The infamous penal laws of England a hundred
years ago did not stop crime; flogging did not stop garotting, it ceased for
other causes. I began to think and to observe.
Some three years later my attention was still more strongly drawn to this
subject.
I was then for a short time the Governor of the biggest gaol in the world,
that in Rangoon. It was crowded with prisoners under sentence for many
different forms of crime, from murder or "dacoity"—that is gang robbery—
to petty theft.
The numbers were abnormal, and they were so not only here, but in all
the gaols of both the Upper and Lower Provinces. The average of crime had
greatly risen.
Why was this?
The reason was obvious. The annexation of the Upper Province six years
before had caused a wave of unrest, not only there, but in the delta districts
as well, that found its expression in many forms of crime. There was no
doubt about the cause. But this cause was a general cause, not individual.
The individual criminals there in the gaol did not declare the war. That was
the consequence of acts by the King of Burma and the Government of India
controlled by the English Cabinet, and was consequent on acts of the
French Government. Therefore half of these individuals had become
criminals because of the disagreements of three Governments, two of which
were six thousand miles away from Rangoon.

There is no getting out of that. In normal times the average of convicts
would have been only half what it was. The abnormality was not due to the
convicts themselves.
Thus if A and B and C were suffering punishment in the gaol the fault is
primarily not theirs. A special strain was set up from without which they
could not stand and they fell.
But if this is true of half the prisoners, why not of the other half? There
was no dividing line between the two classes. Political offences apart, you
could not walk into the gaol and, dividing the convicts into two parts, say:
"The crimes of this half being due to external causes, they must be
pardoned; the crimes of the other half being due to their own evil
disposition, they must continue to suffer." There was no demarcation.
Therefore, general causes are occasionally the cause of crime. Here was
a long step in advance.
Again, four years later I was on famine duty in the Upper Province, and
the same phenomenon occurred. There was an increase in certain forms of
crime. Thefts doubled. Other crimes such as cheating and fraudulent
dealings with money decreased. Here was again a general cause. Half of
those thieves would have remained honest men all their lives, been
respected by their fellow-men, and, according to religions, have gone to
heaven when they died, but for the famine.
The causes of the famine were want of rain acting on the economic
weakness of the people reared by the inability of government. Thus, had
rain fallen as usual, had the people been able to cultivate other resources,
had government been more advanced and experienced, half these thieves
would not have been in gaol; and no one knew which half, for thefts of food
did not increase. There was, in fact, no reason they should, as Government
provided on the famine camps a subsistence wage for everyone who came.
On the other hand, certain individuals were saved from misappropriating
money, or cheating in mercantile transactions, because there was little
money left to misappropriate and not much business. If they lived honestly
and went to heaven, the chief cause would be the failure of rain that year,

not any superior virtue of their own. But no one knew who these individuals
were who were so luckily saved.
But when you have acknowledged this, what is becoming of the doctrine
of individual responsibility for crime? If a man has complete free-will to sin
or not, if crime be due to innate wickedness, how does want of rain bring
this on? And where is the common sense or common justice in punishing
him for what is really due to a defective climate? He cannot control the rain.
Manifestly then, as regards at least half of these thieves, there was no innate
desire to steal, because that could not be affected by the famine. Had they
desired to be thieves they would have been so in any case. The truth is that
they did not desire to be thieves, but when the famine increased the
temptation, and, through physical weakness, decreased their power of
resistance, they fell. They sinned—not through spiritual desire of evil, but
through physical inability to resist temptation.
But if this is true of half, why not of the whole? There is no line of
demarcation. If true of some crime, why not of all? The doctrine of a man's
perfect free-will to sin or not to sin as he pleases is beginning to look shaky.
It will be as well to consider it.
What is free-will?
There is no necessity to discuss the meaning of "free"; we all know it;
there is nothing ambiguous about it; but with "will" it is different. There are
few words so incessantly misused as this word "will." Philosophers are the
worst offenders, and the general public but follow their blind lead; yet
unless you know exactly what you mean by it how can you use it as a
counter of your thought?
What does will mean? "Where there's a will there's a way"—what does
this mean? Does it mean wish? If, for instance, you are poor and stupid, can
any quantity of wish make you rich? If you are weak will it make you
strong? If you have no ear will it make you a musician? If you are a convict
can it liberate you? That is absurd.
"Will," then means more than wish; to the desire must be added the
ability—actual or potential. That is evident, is it not? Without the ability the

wish avails nothing.
"Will," then, has two complements, both of which are necessary to it. Its
meaning is not simple but compound; never forget this; never suppose that
merely wishing with all your power can produce "will." It cannot unless the
ability be developed to aid it.
And now we get back from words to human nature—Is the criminal so
because he wants to be so? No, and No, and No again. No such wicked
fallacy was ever foisted upon a credulous world as this. Nobody at any
period of the world ever wished to be criminal. Everyone instinctively hates
and fears crime; everyone is honest by nature; it is inherent in the soul. I
have never met a criminal that did not hate his crime even more than his
condemners hate it. The apparent exceptions are when a man does not
consider his act a crime; he has killed because his victim exasperated him to
it; he has robbed society because society made war on him. The offender
hates his crime.
"But he is not ashamed of it."
Now that is true. He is not ashamed of it in the current sense. He hates it;
he fears it; but it does not fill him with a sense of sin.
"Therefore," says the purist, "he has a hardened conscience. It is his
conscience, as I said, that is at fault."
But the purist is wrong. He does not understand the criminal. He has
never tried to understand him as I have tried. What the criminal feels
towards his crime is what the sick man feels towards the delirium that
seizes him—what the "possessed of devils" feels towards the possession
when it comes. It terrifies him; he knows he must succumb; he fears not the
mere penalty, but the crime. But he is not ashamed, because he knows he
cannot help it. And punishment exasperates him because he has not
deserved it, and it will do him harm, not good. He wants to be cured—not
made a fit dwelling for still worse devils. And that is what punishment does.
The effect of punishment in deterring a criminal from repeating his
crime is small. All study of criminal facts proves this. It generally makes

him more prone to crime, not less; and all the great crimes are committed
by men who have been still further ruined in gaols. What good effect
punishment may have is mainly exercised on other than the criminal.
Punishment has some effect, but how much we do not yet know, because
the matter has never been investigated, and it is not on the patient. Crime is
a disease, and will you stop a fever by punishing the patients? Whatever
good gaols do lies in the fact that they isolate the unhealthy from the
healthy and so stop for a time infection, as do hospitals with disease. But
the hospitals do not discharge the patient till he is cured; the gaol aggravates
the liability to the disease and turns out the sufferer worse than before.
Let us go back. A man is criminal not because he wishes to be so, but
because he cannot resist the temptation. He lacks will. True, but it is the
ability he lacks, not the wish. Why does he lack ability?
This brings us to the second theory of crime—a new one—that criminals
are born, not made. The tendency to crime is said to be inherent, to be a
reversion, to be inherited. That explains why it is generally incurable when
once contracted.
Many books have been written on this, but one fallacy vitiates them all.
The observers have not observed the criminal in the making but when
made. They have assumed the criminal to be of a race apart, and so founded
their house upon the sand. Lombroso went so far as to lay down certain
stigmata that inferred a criminal disposition. The stigmata have been shown
to be universal, and there is no such thing as a "criminal disposition." If
there be other qualities that do differentiate the criminal from the normal
man, they are not innate.
That those born crippled in some way frequently become criminals is no
exception; it denotes no criminal disposition. But the cripple is handicapped
in the struggle for life. He is cut off from the many pleasures of work and
play, of love and children, which his fellows have. He is sensitive and he is
jeered at and despised. Is it any wonder that under such circumstances he
becomes sometimes embittered? A cripple is set apart from his fellow-men.
There are for him but two alternatives—to be a saint or a criminal. Love

and care and training will make him a saint; neglect too often makes him a
criminal. But to whom the blame for the latter? Not to him.
Connected with this theory is the supposition that criminality is
hereditary.
There are few subjects on which so much "scientific" nonsense is talked
and written as this of heredity. Not very much is known of it as regards
plants, less of animals, and almost nothing as regards humanity.
Furthermore, the experience gained in plants and animals is useless as
regards humanity. Evolution in humanity tends to greater brain power, but
all cultivation in animals and plants has tended to destroy brain power and
even adaptability. To read books on heredity is to read a mass of
suppositions and hazardous inductions where most of the facts are negative
and the exceptions are positive. There is nothing so easy and nothing so
fatal as this tendency to attribute to heredity what is due to training, or want
of training. It excuses supineness in Governments and professions. Here is
what John Stuart Mill, a profound thinker, thought of this facile recourse to
heredity as an excuse:
"Of all vulgar methods of escape from the effects of social and moral
influences on the mind, the most vulgar is that of attributing the diversions
of conduct and character to inherent natural differences."
This, too, is what Buckle said: "We often hear of hereditary talents,
hereditary vices, and hereditary virtues; but whoever will critically examine
the evidence will find that there is no proof of their existence. The way in
which they are usually proved is in the highest degree illogical; the usual
course being for writers to collect instances of some mental peculiarity
found in a parent and his child, and then to infer that the peculiarity was
bequeathed. By this mode of reasoning we might demonstrate any
proposition. But this is not the way in which the truth is discovered; and we
ought to enquire not only how many instances there are of hereditary
talents, etc., but how many instances there are of such qualities not being
hereditary."

I have for myself, neither in life nor in books, found one single case in
which it could be confidently said that a criminal weakness was inherited.
That A, a criminal, has a son B, who also became criminal, proves nothing.
You must first prove that a similar child of different stock would not
become criminal if brought up as A's son was. You must also prove that if
you took away A's son as a child and brought him up differently he would
still show criminal weakness. But all the facts negative this. The child even
of a criminal tribe in India, if removed from its environment, grows up like
other children. Coming of criminal ancestors has not handed down a
criminal aptitude. You must not mistake inheritance of other traits for
inheritance of criminal aptitudes. A is very quick-tempered, which he has
not from a child been trained to control. Under sudden provocation he kills
a man. His son B inherits his father's quick temper, is similarly badly
brought up, and the same thing occurs. The hasty hereditary theorist says:
"Behold the inheritance of a propensity to murder." But quick temper is not
a criminal trait; it is often an accompaniment of the kindest disposition. It is
an excess of sensitiveness. The training, physical and mental, was in each
case lacking, and a coincidence of provocation caused a coincidence of
crime.
Let it be once clearly discerned that if a quality be hereditary it is always
hereditary, and cannot appear, except as the result of heredity—and the
absurdity of modern theories will be manifest.
There is not—there has never been in anyone—a tendency to crime until
either gaols or criminal education creates it. No one ever wanted to commit
crime as crime. A daring boy with no outlet for his energy may break out
into violence, robbery, and later into burglary; he would not have done so
had his physical need for exercise and his spiritual need for facing danger
had another outlet. The instincts that led him into crime were good and
noble instincts which, finding no legitimate channel, found an illegitimate
channel for themselves.
In that fine book of Mr. Holmes', entitled London's Underworld, is an
account of how hooligans are made. The young men are full of energy—
they want exercise, struggle, the fight of the football field or the hockey

match, and they cannot get it. They have no playground but the streets and
no outlet for their energy save hooliganism. The pity of it!
What, then, causes crime?
It is never the wish for crime. It is one of two causes. Either it is the only
outlet for some natural instinct which is denied legitimate outlet by the
environment, or it is due to an inability to resist temptation when it offers.
How can it be prevented?
Now this inability is physical. The wish is spiritual—the ability is
physical and depends greatly on health. With ill-health or malnutrition in
the young the first thing to give is the power of control. The average of
criminals are a stone underweight. Therefore, crime is dependent to a great
extent on health. Ill-health causes crime; accidental mutilation causes
crime; accident creates an aptitude to crime; neglected youth and education
cause crime.
Religion does not affect crime one way or another. The greatest
criminals are often religious. Mediæval Europe was very religious and very
criminal, and there are many other instances. Honesty is inborn in all; it is
part of the "light that lighteth every man that is born into this world"; it
requires no teaching. What must be acquired is the ability to give effect to
it. Crime is a physical, not a spiritual disease. And crime is no defect of the
individual. It is a disease of the nation—nay, of humanity—exhibited in
individuals. You have gout in your toe, but it is your whole system that is
wrong. This disease can be cured by Humanity alone. Criminals are those
whom we should pity, should prevent, should isolate, and, if possible, cure.
Remember what John Bradford said, looking on a man going to be
hanged: "But for the grace of God there goes John Bradford." He, too,
would have been the same had he had bad training in his youth.
We have all of us within us instincts which rightly directed result in
good, which in default of outlet we can be trained to control, but which
without outlet and without the receipt of training may result in crime. Crime
is, therefore, a defect of training and environment, not of personality.

CHAPTER XVI
COURTS REFORM
But, pending any such great change as must come in all penal law when
the subject has been carefully studied, there are many smaller amendments
that might be made both in Civil and Revenue Courts and Law.
The pressing need in Criminal Procedure is, I think, a change in the
treatment of an accused person when he is arrested.
The first instinct of an offender is, as I have said, to confess, even if an
understanding person is not available to confess to. He has offended the
Law; he wants to make all amends he can by confessing to the
representative of that offended Personality. I have seen very many first
offenders and talked to them before they got into the hands of pleaders and
others, and my experience tells me that a man who has committed his first
offence is very like a man who has caught his first attack of serious illness.
He is afraid not so much of the results as of the thing itself. Sin has caught
him, and he is afraid of sin. He wants protection and help and cure. He does
not want to hide anything; his first need is confession to some
understanding ear. Many, many such confessions have I heard in the old
days. That is the result of the first offence.
But this tendency to truth is choked when it is ascertained that as a result
the offender will be vindictively punished and made in the end far worse
than he was at the beginning. Naturally the offender says to himself: "I am
bad now. What shall I be after two years' gaol? Better fight it out. If I win
and get acquitted, at least I shall have a chance to reform. If convicted that
chance will be taken from me for ever. And fighting will not lose me
anything. The penitent prisoner who confesses gets no lighter punishment
than if he had put the Court to the expense of a long trial. Why therefore

repent? It will do me harm, not good." That is the case now; under
reasonable laws it would be the other way. But even yet in country places
he often confesses to the police by whom he is arrested.
Now by Indian Law no confession to the police may be offered in
evidence. The reason of this is that the police, in their keenness to secure a
conviction, may extort a false confession by torture, and there have been in
fact enough of such cases to cause doubt and to prevent the police being
allowed to receive a confession. Therefore if the offender wishes to confess
he is taken now to a magistrate, there his confession is recorded. Then he is
sent back to police custody. He is visited by his relatives, a pleader is
engaged for him. His folly in confessing is pointed out to him and he
withdraws the confession, alleging that he had been tortured to confess. His
confession is not only negatived, but a slur is cast on the police which is
hard to remove. Their case and evidence appear tainted, and the accused
often secures an acquittal though the Magistrate knows that the confession
was true.
All this is very common both in Burma and India, and it is disastrous to
allow and to encourage such things, as by our procedure we do encourage
them. There should be a complete change.
When a man is arrested some such procedure should be adopted as this:
He should be told by the police that he is being taken direct to the
magistrate who will try the case, who will hear anything accused has to say.
He should be warned to say nothing to the police. Then he should be taken
direct to the magistrate, who should explain to him fully what he is accused
of and ask him what he has to say.
Whatever his statement be, the magistrate should tell him that he will
himself at once investigate it and summon witnesses; meanwhile the
accused should be remitted to custody, but not to police custody. That is
where all the trouble comes in and all opportunities for making charges
against the police. If there be no gaol there should be a lock-up in charge of
Indian police who are under the magistrate and are not concerned in the
guilt or otherwise of the accused. The investigating police should only have
access to accused by permission of the magistrate. He should, however, be

allowed to see his friends and a pleader if he wish. But I am sure of this,
that the first offender would rather trust the magistrate, if he were a
personality who he knew would help him, than any pleader.
Further, if a man confess truly, his punishment should be greatly
reduced. I do not say this should be done because he gives less trouble, but
because the frame of mind induced by a free and full confession is a
sounder frame of mind on which to begin reformation than are defiance and
negation, which are now inculcated by our system.
The trial need not wait till the case is complete. The magistrate could
summon the police witnesses at once, and he should examine them himself,
allowing only the police to suggest questions if they wish. Similarly, with
the defence witnesses, they could be examined as they came in and should
be examined by the magistrate himself. No one but the magistrate should be
allowed to speak directly to any party to the case.
All cross-examination should be absolutely prohibited. If either side
have matters they wish brought out of a witness, they should tell the
magistrate and he would ask such questions as he thought fit. There is no
such curse now to justice as cross-examination by a clever pleader or
barrister. It is a sort of forensic show-off by the advocate at the cost of the
witness, and frequently at the cost of justice. For, naturally, no one cares to
be bullied by a licensed bully, and witnesses consequently will not come to
Court if they can help it. When in Court they are bamboozled and made to
contradict themselves where they have originally spoken the truth.
I have often been told that acute cross-examination by a clever barrister
is the greatest safeguard justice can have from false evidence. I don't
believe a word of it. A magistrate can by far fewer and simpler questions
expose false evidence better than an advocate does, because the magistrate
is intent only on his business—to find the truth; the advocate is advertising
himself, and trying to destroy truth as well as falsehood.
But if the magistrate did all the questioning I don't believe there would
be much false evidence. Witnesses will lie to the opposite side, but not to an
understanding Court.

Perjury would disappear. What is its present cause? Contempt of the
Court and sympathy with either complainant or accused, which sympathy
sees no chance of justice for its object except by perjury. Because a trial is a
fight. There is not a human being East or West who would not be ashamed
to lie to a Court he knew was trying to do its best for all—parties and
public. It is because the Courts as at present constituted do as much harm as
good that perjury is rampant and condoned. It is so in all countries, it has
been so in all periods.
Then, as soon as possible, juries should be introduced. This cannot be
done until the law, especially as regards punishment, is greatly altered in
accordance with the common sense of the people, but it is the objective to
be aimed at as soon as possible. Until the public co-operate with the Courts
in all ways you will never have a good system of justice. Crime hurts the
people far more than it hurts Government. Don't you think the people know
that? And don't you suppose they want it prevented even more than
Government does? In any case that is the fact. They hate the Courts now
because they don't prevent or cure crime; they only make matters worse.
The only objection I see to this proposed alteration is that it will take
more time and so cost more money. At first it may do so, but even then
what the public loses by more taxes it will more than save in having to pay
less to lawyers. How much unnecessary money is now paid to lawyers?
Enough, I am sure, to double the magistracy and then leave a big balance.
Courts should be made for the people, not for lawyers. And in time crime
would so decrease that there would be saving all round.
The reform of the Civil Courts should follow somewhat the same lines.
A man should not have to wait to see a civil judge till his case is all made
out. He should be able to go to him at once and confide in him, and the
judge should send for the other party and try to make an arrangement
between them so that no suit should be filed. Not until that has been done
and not unless a judge give a certificate of its necessity should a suit be
allowed to be filed as it is now. And then when it is filed the judge should
conduct the case and not the advocates on each side. That is the only way to

stop the perjury which increases and will increase. Magistrates and judges
must cease to be umpires of a combat, and become investigators of truth.
As regards the laws of marriage and inheritance, no great change can be
made until there is a real representative Assembly to make these changes,
but even there something could be done. That fossilisation of custom
described by Sir Henry Sumner Maine should stop. Because a High Court
proved a hundred years ago that a certain custom existed there is no
evidence that it does or should exist now. To establish precedents of this
nature is to stop all progress of every kind; we have a vision different from
the poet's
Of bondage slowly narrowing down
From precedent to precedent.
Why should not fresh inquiries into custom be made from time to time, it
being understood that any Court-ruling only applied to that time and place,
and did not bind the future? Something must be done. Things cannot go on
as they are. We reproach the Indians for want of progress, but we ourselves
are the main cause of that stagnation. We bind them and they cannot move.
As regards land policy there is this to be said, that fixed ideas are a
mistake.
In Bengal there was at one time a fixed idea that all land did and must
belong to large land-owners, and so, partly out of sheer ignorance, partly
out of prejudice, a race of Zemindars was created out of the tax-gatherers to
the Mogul Empire. The result has been sad.
Again in Burma the same idea prevailed for a while, and headmen were
encouraged to annex communal waste as their private land. This was
unfortunate.
Then came a reaction, and all large estates were denounced as bad. There
was to be a small tenantry holding direct from Government, forbidden to
alienate their land, and all leasing of land to tenants was forbidden.

This I understand to be the policy still. It is a policy of fixed ideas, and
as applied to anything that has life, like land tenure, it is unfortunate, no
matter what the fixed idea be.
If there be one truth above another that is clear in studying land systems
it is that no one permanent system is good. The cultivation of land, like all
matters, undergoes evolution and change. What is good to-day may not be
good to-morrow. The English system of large estates cultivated by tenants
did, at one time in English history, produce the best farming in the world.
English farming was held up as an example to all countries and was so
admitted by them. The system of large estates allowed of the expenditure of
capital, experiments in new cultivations and new breeds of cattle, and
variety of crops. It suited its day well. And though its full day has passed,
there will never be a time when some large estates will not be able to justify
themselves. Even if, as apparently is the case now in England, petite culture
is that best adapted to the cultivation of the day and the needs of the people,
yet there is still room for large estates. A dead uniformity of small holdings
could not but be unfortunate for any country.
Further, although excessive alienation of land through money-lenders
may be very bad, yet stagnation in ownership may be worse. India and
Burma are progressive, and changes must take place. Cultivators will
become artisans and traders; city people will like to return to the land. There
is an ebb and flow which is good for all. Too great rigidity of system will
stop progress. A good system of land tenure is that which is in accordance
with the evolution of the people it applies to and assists in that evolution.
While recognising that for the bulk of the people small holdings are best,
it will not forbid larger estates; while admitting that the alienation of land
through borrowing recklessly from money-lenders is bad, it will see that the
progress of the people from purely agricultural towards a state of industrial
activity is not checked. It takes all sorts to make a State.
It may be good for the cultivator to hold direct from Government, but if
Government is to be the landlord it must act up to its name. It must give
compensation for improvements when a tenant has to relinquish the land.
Otherwise no tenant will improve, and the necessity for improvement, for
wells, irrigation, embankments, manuring, and so on, is the greatest

necessity of agriculture. In my own experience I have seen that the system
of State land tenure in Upper Burma does stop improvements.
That is the light in which the land question has to be worked out, on
broad comprehensive lines—that, while acknowledging the present, sees
also the future, which, while seeing one form of good does not deny
another.
So, with an understanding and a sympathetic personnel, the
administration would be brought nearer to the people, until at length when
their capacity for self-government had developed they would be able to take
over our administrative machine little by little and work it themselves.
They could never do that now. If by any chance they did get possession
of the machinery at present, they would set to work to smash it till none
remained.
CHAPTER XVII
SELF-GOVERNMENT
And thus the sheltering Government of India having been reformed both
in its personnel and in its laws, brought into touch and sympathy with its
people, a start would be made with self-government.
That, of course, must begin with the village, which is the germ from
which all self-government that is of any value has always begun, and on the
health and vitality of which it must always depend. The village organism
must be restored to the state in which we found it, and from that be helped
and encouraged to grow to greater things.
The whole of the present conception of the village as an appanage of the
headman, and the conception of the headman as an official of Government,

must be swept away and a new and true conception must be arrived at.
The village is a self-contained organism, and the headman is its
representative before Government and its executive head, the real power
being in the Council. Powers and responsibility reside in the village as a
whole and in no individual. The people must not be ruled, but rule
themselves.
Now as to the exact way in which this conception should be carried out
it is impossible to say. In each Province—in distinct parts of the same
Province—the village system assumed different forms to meet different
circumstances. In Madras the village community was in many details
different from that in Burma, and in the North-West still more so.
Therefore, the particular way in which the conception should be realised
would vary greatly. And only by experience could a satisfactory form for
each Province be evolved. Neither would it be possible even in Burma to go
back to the old form exactly. Events have marched since then, and what was
satisfactory thirty or more years ago would not be so now. The villages
must not be reconstituted by copying the past; they must be constituted
anew, maintaining, however, the spirit of the past and giving scope for
evolution in the future.
Therefore, the scheme that I am about to unfold must be taken to be
merely tentative and apply only to Burma. The principles are, I think, right;
the details must, of course, be discovered by experience. Practice alone
would show how far they realised the objective that is to be aimed at—the
constitution of a village organism on natural lines that would govern itself
without any need for interference and would be able to grow and evolve.
My scheme is as follows:
In every village a Council should be constituted and the headman should
be its executive head.
How this Council should be constituted I do not know. I think there
should be wards, each of which should have an elder, representative of the
people, but no rigid system of election should be laid down. I have found
that villages and wards can very often appoint a representative man by

general consent, which is much better than by election. That should only
occur in case of a dead-lock. The Council should itself define the wards,
and it should be allowed to co-opt additional members. All representation
by class or religion should be prohibited. The unit is not so many people,
but a section of a village—neighbours dwelling together and whose
interests are thereby united. Appointment to the Council should be
indefinite; that is to say, an elder should remain an elder until he resigned or
until the ward turned him out. I don't think they would like continual
elections. An election is a bad means to a desired end—that of obtaining the
best representative. And in small communities the sense is usually apparent
without it.
The headman should be chosen by the Council from among its members
and his election confirmed by Government. His appointment should be
according to the wish of the Council, that is to say, for life, unless he
resigned or the Council turned him out. He should be responsible to the
Council. The Council, as representing the village, should be responsible to
Government, and it would always be possible for the Deputy Commissioner
to bring pressure on a recalcitrant Council by threatening to suspend the
constitution and place the village under an appointed headman for a time if
they did not carry out their duties properly.
To this village community should be handed over certain duties, rights,
and responsibilities, much what the headman has now, the collection of
revenue, etc. All civil, criminal, and revenue cases under certain values and
of certain denominations should be handed over to them to try; that is to
say, that cognisance should be refused by our police and our Courts, so that
the parties could go to the Village Council if they liked. There should be no
appeal from the decisions of the Council, no advocates should be allowed,
and no record should be required. All penalties imposed should be paid into
the village fund.
This fund should exist for all villages, and its nucleus should be, say,
half an anna in the rupee of the revenue collections, to which should be
added fines, special rates which the Council should be empowered to
impose for specific purposes, and other forms of revenue which would vary
from place to place. I think a percentage of the district fund should be given

to them. A rate on inhabited houses—a rent on house sites—would be a
good way of raising money. The purposes for which the fund could be used
would be water-supply, sanitation, roads, lighting, watchmen, and so on.
Simple account-books would have to be kept, and these accounts would
have to be audited once a year.
Model schemes for sanitation, village roads, etc., could be made out for
each village to live up to as fast as it could.
Further, villages should have the power to carry out irrigation works on
their own initiative and under their own control. I consider this a most
important proviso, because I know many villages where this could be done
by the village, whereas it is not possible to individuals. I also know one
recent case in my district where it was done with great success by the
headman and elders. I got them a small grant, and I often went to see how
the work was getting on, but I never interfered in any way, and the result
was most satisfactory. There was at first a difficulty about collecting the
rates, because there was no legal system under which a man who used the
water could be made to pay. However, this also settled itself.
Irrigation works, roads, and bridges are most necessary to many villages,
but now, unless Government carry out the work, there is no one to do it.
And Government will not carry out small works.
It is by the execution of such works that the village would prosper and
the village fund grow. Loans should be granted for these purposes by
Government, to be repaid out of the profits.
Before our annexation all works were executed by the villages, and the
considerable irrigation works in many places are evidence of their ability.
All this initiative has now been killed. Yet it is a most valuable asset, not
only materially, but morally.
As regards this fund, it will, I know, be objected by many people that it
will be simply an excuse for peculation. "Orientals," they say, "cannot be
honest, and the funds would be misappropriated right and left."

Exactly this same charge was made when the Co-operative Credit Banks
were started. Their history will sufficiently refute such an absurdity.
Orientals are just as honest as any other people, and, given a good system,
village funds will no more be stolen in India or Burma than municipal funds
are in England.
In organising these villages there is another point to be borne in mind. In
that desperate struggle after rigid uniformity which distinguishes the Indian
Government, every separate hamlet in Burma was put under a separate
headman, and thus made a separate organism.
Now it may be that occasionally the village was too large, and a division
was needed, but in many other cases the disintegration of long-established
units was severely felt. Several hamlets may have one interest in common.
They may be grouped round a small irrigation work, or along a stream, or
have a fishery in common, or be in other matters of great use to each other.
If run as separate organisms there is bound to be strife, each trying for his
own benefit. If allowed to remain one organism they will be not only more
peaceful, but stronger, and better able to manage their affairs. Thus the rigid
formulæ of Government in this matter as in others should give place to
common sense.
Further: in future, villages should be allowed to coalesce if mutual
interests attract them. Two or three villages if allowed to combine would
carry out works that one could not do.
I see no great difficulty in Burma in thus restoring the organism of
village life. It would require mainly tact on the part of the District Officer
and ability to let alone. His tendency now is always to interfere if he can.
His rule should be never to interfere if he can help it. When things go wrong
persistently it will probably be found that there is something amiss with the
way the village is organised, and that it requires some slight modification. If
a horse can't draw a cart it is better to see what is wrong with the horse or
the cart than try to move them both along by turning the wheels round
yourself. You won't get far that way. The more you push the more the horse
will jib. And Village Councils will be very willing horses if let alone and
the cart be not too cumbersome or the hill they have to climb too steep. But

they must be left alone. Read the history of municipal institutions in
England and note the principles. They are universal.
Once the village communities are strong and healthy, a further step could
be made by instituting a township or sub-divisional Council, and later a
District Council.
For these I am not prepared to offer any suggestions. It would require a
very careful study of local conditions and of the people, a wide experience
gained from the working of the resuscitated villages, to know how these
should be constituted and what powers and responsibilities should be
entrusted to them. I think a sound analogy might be obtained from a study
of English counties—not so much perhaps as they are now, but as they were
—in spirit, not in law.
After the village organism was established, perhaps in order to its proper
establishment, a local Government Board would have to be created. This
would have to be in time entirely native to the Province. It is, I think,
essential that it should be so. What its relations with the District Officer
would be I do not know. I foresee difficulties. It is essential for good order
in the district that there be no one between the head and the people.
Nevertheless, I don't think he could establish and work the village organism
himself. I think he would be too tempted to interfere; and, moreover, there
would have to be a certain co-ordination between the systems in various
districts. They need not be the same in detail, but the idea should be the
same. That is because eventually they must coalesce into bigger organisms.
But a District Officer with a strong personality would, I think, be liable to
impress that personality on the village, and as it must be self-governing that
might create difficulties. For as the villages increased the District Officer
would decrease. Gradually his powers would devolve on the local
organisms. There would thus be a certain rivalry between the District
Officer and the local organisms, which, if the officer were the head of both,
might result in injury to the latter. Perhaps some such relation as exists
between the Land Records Department and the District Officer would be
possible. The Land Records has its own organisation, which works
independently of the district but in harmony with it. All this, however, is not
a matter which can be thought out. It will have to be worked out, and a

correct system can only come little by little, experience showing how
modifications should be made. I do not see any great difficulty provided
there are common sense and unity of aim on both sides.
And from districts—when they had settled down into distinct organisms
more or less self-governing—representatives, not delegates, could be sent to
a Provincial Council. Then you would have a real Council, one
representative of the people because proceeding from the people, not less
surely because not directly. I am not sure that direct election such as is
practised in England and America, for instance, does cause representation
of the people. In England, at all events, it is not so now. The only power the
people have now is to choose between the delegates of two or more parties.
Beyond this they have no voice nor choice. They cannot find any
expression for their own wishes. Their member may be, probably is, a man
they never heard of before the "Party" sent him to contest the seat. There is,
in fact, in England to-day no real representation of the people at all. By
people, of course, I mean the people as a whole, including all classes. But
under some such scheme as I have sketched out for Burma there would be
real representation of the people, of localities as a whole, units; local men
acquainted with the local conditions would be chosen and not pleaders, and
the locality would hold them responsible. Thus the opinion of such a
Council would represent the wishes of the people; it could be depended on,
and to it could considerable powers be delegated permanently. It would, in
fact, in time constitute a Provincial Government in federal relations with the
other Provincial Governments. That is the only possible way that a real
government can be built up.
And it must always be remembered that the basis is the Village. On the
health of the Village all other things depend; from the healthy working of
the Village all things may proceed. It is the first but not last word in local
self-government.
A very integral part of any self-government is Education, and to that I
come in the next chapter.

CHAPTER XVIII
EDUCATION
To the success of any form of self-government a good education is
absolutely essential; that a people should be able to exercise self-
government it is necessary that they be educated to self-government; for
this capacity no more comes by itself than ability to build a ship or steer it
when built. And as the government must be self-government, so the
education must be a national education and not an imported one.
I have already had something to say on this subject in former chapters
when writing of the Indian civilian, and the principles which underlie good
education are the same everywhere. A well-educated man is he in whom his
mental and physical powers have been so brought out that he can face the
ordinary vicissitudes of his life with confidence, that he can understand
them and combat them materially to the best of his ability, and that when
materially defeated he may still rise spiritually above all defeat and
discouragement. Education is necessary to everyone—man or woman,
peasant or prince, merchant or artisan—and that man is best educated who
can make the best of his life whatever its station may be.
Thus it will be seen that education is mainly relative. A man who would
be well educated if in one station of life would be hopelessly ignorant if in
another. I doubt if Whewell would have been considered educated had fate
suddenly made him a soldier, a political officer on a frontier, or a cultivator.
A keen eye gained by experience for market fluctuations is better for a
merchant than all the learning of all the libraries.
But this specialisation belongs properly to higher education. There are
certain foundation principles necessary to any success in life, to being able
to live it in whatever station with dignity and with prosperity. What are
those principles?
I think the Indian Education Department would say that these are
reading, writing, and arithmetic—that is to say, acquirements. I should say

they are qualities of character.
What are these qualities?
First and foremost is belief in his own people, not his caste or his creed,
but in the people who inhabit his Province, who will eventually make up his
nationality. If the man is to do good work for his people the boy must desire
to do good work—he must have a certainty in the unlimited possibilities of
his people, that though they may be young now they will grow to a world
stature. Therefore, that it is his duty to help them. He must be sure that this
world is good—to be made better by him and his fellows and his
descendants. He has inherited much; he must hand on more. He has no right
to live unless he does his duty to life and in life—that is to say, he must
have a purpose in life, for without a purpose life cannot be lived.
Secondly, he must see that to the accomplishment of his purpose, which
is but part of the World's Purpose, he must cultivate two qualities,
obedience in act and freedom of thought. He must learn to obey, because he
must see for himself that only by men acting together under authority can
anything be achieved. His obedience will then be a willing and cheerful
obedience, because necessary to his own purpose. He must obey that later
he may be obeyed. He must keep his mind free, because to admit authority
in thought is to kill thought. He must see things for himself and judge for
himself, that when he is able to act for himself he may do so on truth and
not on hearsay. He must learn to respect the opinions of others which they
have founded also on experience, while not necessarily adopting them,
because he may see things differently.
He must learn self-knowledge to recognise what he can do and what he
can't.
He should cultivate self-command that must not mean self-extinction.
On a base like this all other things come naturally.
Is there any such ideal in elementary education in India? I can safely say
that there is no such ideal. All that the Department seeks to do is to stuff a

child with reading, writing, and arithmetic, and other learning, regardless of
his character or his objective in life.
Therefore elementary education is not popular in Burma, because it
seems to have no good purpose.
That was true of education before we took the country. It was then
mainly, for boys, in the hands of monks, and I do not think that education
when controlled by religion has been popular anywhere in the world. It has
been accepted because there was no other means of education available, but
it was not admired. Our Government has accepted the monastery schools,
and it has also encouraged lay schools, but neither seem to give much
satisfaction.
Now this is not the place to discuss religion of any kind, and I have no
intention of entering into such a vexed question. There are good things in all
religions—borrowed from humanity; there are doubtful things; there are
bad things. But the foundation of every religion is a declaration that this
world is evil and that we should despise it. Now the objective of all
education is to fit a boy for his life, and he cannot be so fit if he despise life.
He must love it, admire it, desire in all ways to help it, to increase it,
beautify it. His objective must be in this life. Further, the tendency of all
faiths is to raise barriers between races and castes. But it is an essential part
of any true education that a boy understand that in striving for the good of
the community he must ignore all differences. Humanity is one, and the
God of Humanity is One, whatever faiths may say.
Thus religions when mixed with education have a paralysing effect. I
have often heard this said in Burma. Here is a conversation I once had at a
village I knew very well. It occurred, as did most of the talks I had with the
people, just after sunset, when I had my chair set outside my rest-house, and
the people came dropping in to gossip. There were a number of people, the
headman, elders, their wives and children, and two monks from a
neighbouring monastery. They talked quite freely because they knew that
after office hours I forgot I was an official, or even an Englishman, and just
talked to them as one human being to another. I may add that I had been
inspecting the village school where little boys and girls learned together. I
had also been to a monastery where the elder boys went.

"Well," I said, "what is the news?"
There was an expectant silence. Evidently there was some news; the
question was—who should tell it?
"What is it, Headman?" I asked.
The Headman rubbed an ankle reflectively. "The fact is," he answered,
"there is no news that would interest your Honour; only just village doings,
foolish doings."
"Hum," I said; "that sounds to me as if a young man had been doing
something."
Several of the men smiled—"Possibly with the assistance of a girl"—and
I glanced at some girls. They giggled, and the Headman said briefly:
"Maung Ka's son has run off with a girl."
"Oh!" I said, turning to Maung Ka, whom I knew well enough—a tall,
fine-looking man, who was looking very gloomy. "It's a way boys have.
There's no harm in it."
"Not if he can support her afterwards," said Maung Ka gruffly.
"Can't he do that?" I asked.
It appeared he couldn't. He had spent all his boyhood in a monastery
"learning" till his father fetched him out. Then he went to the other extreme
and levanted with a girl. "He doesn't know one end of a bullock from the
other," said the father; "he can't plough or sow; he can't work; he has no
common sense. That's what schooling does for a boy."
Most of the other men agreed with him, and we had a discussion on
education, in which everyone took part.
The general opinion was that schooling should be to fit you for life. The
monks said for eternity, but the villagers—though out of respect for the
monks they said little—evidently didn't make any such distinction. What

wasn't fit for time wasn't fit for eternity. Reading, writing, and arithmetic
were good, because a boy needed these. Beyond that they seemed to think
schooling did harm. A boy learned more from his father and the other
villagers than from school. As to a girl, "What," asked an elder indignantly,
"is the use of a girl learning to write? What will she write? Love-letters
only."
"Well," I asked, "and isn't that good—for the boy who gets them?"
The fact is, the villagers are plain, common-sense men and women, and
what they want for their children is that they be better fitted for the struggle
of life. They do not observe that to be the case at present. They judge by
results, and the results are not good, they say.
In fact, except as to the actual acquisition of reading, writing, and
arithmetic, which may or may not be of much use, the teaching—and still
more than the teaching, the influence—is bad. It unfits for life, it gives
wrong ideals, or it kills all ideals.
The higher education is, I think, worse. It follows an imported system,
and in the importation all the good is left out. In England a boy's real
education comes from association with the other boys and from his father.
From them he learns whatever he does learn of conduct, of ambition to true
ends, of acting in concert, of ability to judge for himself and stick up for
himself.
In India a wrong ideal has been conceived from the beginning. It has
been assumed, tacitly maybe, that an Englishman is the final and
completely perfected work of God and man, and that all nations should
copy him and try to become, if not a sterling Englishman, at least an
electro-plate one.
That is disastrous. It depresses the people by depreciating their own
races and holding up an objective which is impossible, and if possible
would be wrong.
There are in the pasts of nearly all Oriental people ideals which are quite
as good as ours, and far better fitted for them. Are these ever taught to

them? India once led the civilisation of the world; is that past ever brought
up and explained and realised for them? Never, I think.
Further, higher education to be of any use must be objective. You must
know what you want the boy to be. What does Government want the
products of its higher education to be? I have no idea. Has the Government?
Of what use are these products of the higher education in India? They
are useful but for two things, to be lawyers or pleaders, or to be clerks. They
are dealers in words, and not in facts or in humanity.
Government accepts a certain number into its service, because the first
ideal of Government is a man who can fill up forms and returns, speedily,
accurately, and punctually. They can do that. When they have district work
to do they fail, because they have no personality, no freedom of thought,
and because the people despise them. The old officials whom we took over
from the Burmese Government, whatever their defects, had "auza"—
personality. It is a commonplace to say that the Burmese have deteriorated.
That is not true. They have as much potentiality as before, but this
potentiality is wiped out by "education." Far from being really educated,
they are merely stuffed, and their natural abilities stifled. Moreover, they
cease to be Burmans, or Madrassis, or Bengalis, and become a sort of
hybrid. This is due to their English masters, who are obsessed with the idea
that the only way to "educate" anyone is to turn him into a plaster
Englishman. I have had some experience of these unfortunate boys who
have taken degrees.
Personally, if I had to administer a difficult district, I should choose my
Burmese assistants from men who had never been to school, and to satisfy
Government I would engage some B.A.'s and F.A.'s to be their clerks and
fill up the forms. I should be sorry for the B.A.'s, because I think they have
as good stuff in them as the others, but their want of education has unfitted
them for work requiring "auza."
That is really what it amounts to; the school-trained boy is not educated,
whereas the boy brought up in contact with the world is perforce educated.
The first is a hothouse plant; the second a useful field plant.

I am aware that current opinion puts down the failure of the educated
young Indian to his want of religion. He has been educated out of his own
faith and not accepted into any other; hence his want of character. Of all the
wild shibboleths about India and the Indians this is, I think, the wildest.
That a man is injured by being brought to see the foolishness of caste, of
infant marriage, of harems and zenanas, of all the forms and ceremonies
with which all religions are covered, seems to me a triumph of illogic. Only
the "Occidental mind" at its best could conceive such an idea. In so far as
education destroys these ideas it does good. Wherein it harms him is by
taking him apart from his people, rendering him not desirous to help them
but to disown them. He is taught that to be an Englishman should be his
ideal—that he "should cultivate English habits of thought"—as if true
thought had any habits—so that, finally, he can't think at all. He is directed
to wrong ideals; he is rendered unhappy; he is dépaysé; he is useless for any
work, except being a clerk or lawyer; he has no more character than a jelly-
fish. Instead of wishing to lead his people he wishes to identify himself with
the English Government, be a civilian, and rule his people. He should be
filled with a boundless confidence in the future of his people, and that it is
his duty to help that future to be realised. He is discouraged and rendered
hopeless. Instead of being a help he is the greatest danger his own people
will have to meet when they move forward. He is a danger to all.
The Education Department of the Government of India is the new
Frankenstein, and the Higher Education is its monster. The students have
sunk under their "education," and in consequence they are unhappy. Who
wonders? But, in fact, an alien Power cannot introduce or work any real
system of education. It must be indigenous—something of the soil, and not
exotic. It, like self-government, must begin with small things in the village
and gradually rise.
Like all things, if it is to live and prosper and extend it must have a soul.
And the soul of education, like the soul of life, is an emotion tending
towards a desired end. The desired end of education is the rise and progress
not merely of the individual but of the nation. That has been the soul of the
progress of Japan; that must be the soul of the progress of any people; and
education will only be enthusiastically taken up when it is seen to be a
means to that end.

Welcome to our website – the perfect destination for book lovers and
knowledge seekers. We believe that every book holds a new world,
offering opportunities for learning, discovery, and personal growth.
That’s why we are dedicated to bringing you a diverse collection of
books, ranging from classic literature and specialized publications to
self-development guides and children's books.
More than just a book-buying platform, we strive to be a bridge
connecting you with timeless cultural and intellectual values. With an
elegant, user-friendly interface and a smart search system, you can
quickly find the books that best suit your interests. Additionally,
our special promotions and home delivery services help you save time
and fully enjoy the joy of reading.
Join us on a journey of knowledge exploration, passion nurturing, and
personal growth every day!
ebookbell.com