GENERAL MATHEMATICS-FUNCTION_LESSON1.pptx

RenellGonzales 45 views 23 slides Jul 30, 2024
Slide 1
Slide 1 of 23
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23

About This Presentation

FIRST LESSON ON FUNCTION - GENERAL MATHEMATICS


Slide Content

Function

Objectives The learner represents real life situations using functions, including piece wise functions . evaluates a function

PROBLEM A supermarket holds a closing-out sale. All merchandise are sold 30% discount. For the convenience of the shoppers, the marketing supervisor considers a table of mark prices ($x) and their corresponding selling prices ($y). A portion of the table is given and he/she needs your help to complete it.

PROBLEM 30% of Php 50.00 = Php 15 PhP 50.00 – PhP 15.00 = PhP 35.00 Marked Price ( PhP x) 50 100 150 200 250 300 350 Selling Price ( PhP y) 35 70 105 140 175 210 245

The set of ordered pairs of marked price and selling price : (50, 35) , (100, 70), (150, 105), (200, 140) , (250, 175), (300, 210) ,(350, 245) There is exactly one value of y that corresponds to every value of x. And that’s what we called FUNCTION

Functions VS Relations Relations – any set of ordered pairs Functions - A type of relation where there is exactly one output (RANGE) for every input (DOMAIN).

Domain and Range Domain – (set of inputs) it is the first coordinates Range – (set of outputs) it is the second coordinates

Example Pairing of names and their height RELATIONS: ( names, height) or (height, names)

Example NAME HEIGHT James 6’8 Irving 6’3 Love 6’10 Thompson 6’9 Smith 6’7 Clarkson 6’5 FUNCTION ( james , 6’8) , ( irving , 6’3), (love, 6’10), ( thompson , 6’9), (smith, 6’7), ( clarkson , 6’5)

FUNCTION - For every x there is exactly one y A= { (1,2) , (2,3) , (3,4) , (4,5) } X 1 2 3 4 Y 2 3 4 5 ONE TO ONE RELATION IT IS A FUNCTION

FUNCTION - For every x there is exactly one y A= { (1,2) , (2,2) , (3,2) , (4,5) } X 1 2 3 4 Y 2 3 4 5 MANY TO ONE RELATION IT IS A FUNCTION

FUNCTION - For every x there is exactly one y A= { (2,2) , (2,3) , (2,4) , (4,5) } X 1 2 3 4 Y 2 3 4 5 ONE TO MANY RELATION IT IS NOT A FUNCTION

FUNCTION B= { (1,0) , (0,1) , (-1,0) , (0,-1) } X 1 -1 Y 1 -1 MANY TO MANY RELATION IT IS NOT A FUNCTION

GRAPH of a Function Vertical line test A graph of a mathematical relation is a function if any vertical line drawn passing through the graph intersects the graph at exactly one point.

Vertical Line Test - Functions x y x y x y x y x y x y x y x y Function

Vertical Line Test - Functions x y x y x y x y x y x y x y x y Function Function

Vertical Line Test - Functions x y x y x y x y x y x y x y x y Function Function Not a Function

Vertical Line Test - Functions x y x y x y x y x y x y x y x y Function Function Not a Function Function

Vertical Line Test - Functions x y x y x y x y x y x y x y x y Function Function Not a Function Function Not a Function Function Not a Function Not a Function

Real life situation The area A of a circle is a function of its radius r . A =   Set of input Function rule Set of output Areas of Circle All radii (r) A = All areas (A) Set of input Function rule Set of output Areas of Circle All radii (r) All areas (A)

Real life situation The table below shows the PHILPOST rates for sending printed materials Weight Price 20 g and below Php 14 More than 20 g but not over 50 g Php 32 More than 50 g but not over 100 g Php 54 More than 100 g but not over 250 g Php 132 More than 250 g but not over 500 g Php 263 More than 500 g but not over 1000 g Php 525

Real life situation The table below shows the PHILPOST rates for sending printed materials Set of input Function Rule Set of output Postal price Weight of material to be sent {Php 14 Php 32, PhP 54, PhP 132, Php 263, Php 525 Set of input Function Rule Set of output Postal price Weight of material to be sent

DOMAIN AND RANGE OF A FUNCTION The area A of a circle is a function of its radius r . A =  
Tags