CHAPTER 1
Partially Hyperbolic Dynamical Systems
Boris Hasselblatt
Department of Mathematics,Tufts University,Medford,MA 02144,USA
E-mail:
[email protected]
url:http://www.tufts.edu/~bhasselb
Yakov Pesin
Department of Mathematics,The Pennsylvania State University,University Park,PA 16802,USA
E-mail:
[email protected]
url:http://www.math.psu.edu/pesin/
Contents
1. Introduction . . . . . . . . . . ......................................... 3
1.1.Motivation................ ................................. 3
1.2. Outline . . . . . . . . . . ......................................... 5
1.3.Othersources .............. ................................. 7
2.Definitionsandexamples............................................ 7
2.1. Definition of partial hyperbolicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.Examplesofpartiallyhyperbolicsystems................................ 12
2.3.TheMatherspectrum....... .................................... 15
3. Filtrations of stable and unstable foliations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.Existenceandsubfoliation ........................................ 17
3.2.Absolutecontinuity............................................ 19
4.Centralfoliations ................................................ 21
4.1.Normalhyperbolicity........................................... 21
4.2. Integrability of the central foliation and dynamical coherence . . . . . . . . . . . . . . . . . . . . . 23
4.3.Smoothnessofcentralleavesvianormalhyperbolicity......................... 25
4.4.Robustnessofthecentralfoliation.................................... 25
5.Intermediatefoliations ............................................. 27
5.1. Nonintegrability of intermediate distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2. Invariant families of local manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.Lackofsmoothnessoftheintermediatefoliations ........................... 30
6.Failureofabsolutecontinuity ......................................... 31
6.1. An example of a foliation that is not absolutely continuous . . . . . . . . . . . . . . . . . . . . . . 31
6.2.Pathologicalfoliations .......................................... 33
HANDBOOK OF DYNAMICAL SYSTEMS, VOL. 1B
Edited by B. Hasselblatt and A. Katok
© 2006 Elsevier B.V. All rights reserved
1