History of Zero

adityaraj462 3,701 views 10 slides May 20, 2021
Slide 1
Slide 1 of 10
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10

About This Presentation

history of zero


Slide Content

Welcome to Aditya raj’s p.p.t This ppt is based on “historical details of zero”.

Historical details of zero , its requirements and importance... .. Name – Aditya raj Class – ix ‘c’ Roll no. – ‘3’ Subject- math's ‘ holiday homework’

What is zero? Z e r o i s a str ang e numbe r an d on e o f t h e g r ea t e s t pa r ado x e s o f hu m a n t hough t . I t m ean s bo t h e v ery t h i n g an d no t h i ng . I t i s bo t h a numbe r an d t h e nu m e r i c a l digi t u s e d t o r ep r e s en t t ha t nu m be r s i n nu m e r al s . I t f ul f il s a c en tr a l r ol e i n m a t he m a t i c s a s t h e addi t i v e iden t i t y o f t h e in t ege rs , r ea l nu m be r s an d m an y o t he r a l gebra i c s t ruc t ures . W i t hou t zero , no t j us t ma t hema t i cs , bu t al l b r an c he s o f sc ien c e s woul d ha v e str uggle d f o r c lea r e r de f ini t ion s . A s a digi t , i s use d a s a p l aceho l de r i n pla c e v alu e syst e ms . T h e v alu e o f Z e r o i s wel l k now n t oda y a s i t hold s t h e highe s t v alu e t oda y . W i t hou t t h e in v en t io n o f , th e bina r y sys te m an d compute r a r e no t possible . I t i s a g r ea t e s t in v en t io n o n whi c h e v e r y c al c ula t io n depend s . Z e r o i s a t in y nu m be r bu t i t c a n ne v e r b e igno r ed .

Existence of zero.. Initia l l y , zero wa s no t cons i dere d a numbe r . Th e re wa s th e i d e a of empt y spac e , w h ic h may b e tho u gh t conceptua l l y simi l a r to zero. B a by l o n i a n s arou n d 7 BC use d two h o ok s to d e n o te an empt y space i n th e pos i tional notatio n. R e cords show that the anc i en t G reek s seemed uns u re abou t the stat u s o f zero a s a numbe r . The concept o f z er o a s a numbe r an d no t merely a symbol for se p arati o n i s attribute d to Ind i a w h er e b y the 9th century AD practica l calc u l a tions w e re ca r ried ou t usin g zero, w h ic h w a s t reated l ik e an y othe r n umbe r , eve n i n case of d i vis i on . The concept o f z er o took some tim e for acceptanc e. It w a s onl y aroun d 16 that zero be g a n to c o me i nto w i des p read us e af te r enc o unterin g a lo t of sup p or t an d a l so criticism f rom mat hematic i an s f ro m the w o rld.

History of zero I t i s sa i d t ha t t h e numbe r zer o or i g i na t e d o r w a s crea t e d i n t hes e 3 p l aces . Anc i en t I nd i a , Anc i en t B aby l on , an d t h e Maya n Ci v ili za t i on . Hi s t or i an s be li eve d t ha t i t cam e i n t o ex i s t enc e f ro m 45 8 A D . Z ero s w er e crea t e d a t d i f f eren t t i me s i n eac h o f t hes e c i v ili za t i ons . Bu t t h e on e t ha t peop l e t h i n k w a s use d f i rs t w a s i n A nc i en t I nd i a b y t h e Hi ndu s an d t h e A rab i cs . U ndoub t ed l y t h e comp l e t e cred i t goe s t o I nd i a f o r t h e i nven t i o n o f Z er o an d i t s e f f ec t s us e a s a nu m b e r .

More- history of zero it i s a lso s a id t ha t Aryabhatta i nvented the numb er 0. Aryabhatta was one of the world ’ s greatest mathemat i c i a n - a stron ome r . Aryabhata devi s e d a n umber system, whi ch ha d n o zer o, a s a p os i tion a l s y ste m , but u s e d to d en ote empt y s p a c e . Th ere i s evid e n c e th a t a do t h ad be e n us e d i n ear l ier manu scripts to d en ote a n empt y s p a c e i n po s it i on a l notat i on . H e g a ve the wor l d the d i g it " " (z er o) for whi c h he b e c am e immorta l . He wa s the first mathemati c ian to u s e the co nc e p t o f zer o. H e u s e d z ero for the first time to de fi ne d e c ima l system it i s s ai d that h e wa s awa re of t h e c o n c ep t an d even u s e d it i n h is c alc u l at i on s. H e c erta i n ly did no t u s e th e symbol, bu t the Fre n c h mathemat i c i a n Georges Ifrah arg ue s that k n owl e dg e o f z ero w as imp l icit i n Aryabhata's p l a c e -value syst em a s a pl ace ho l de r for the pow ers of ten with n u l l c oe f fici ent s.

Language used to pronounce “zero” in other countries It wa s k n o w n b y the n a me “SHUN Y A” .After the tra n sl a ti o n of the In di a n w ord “ Shu n y a ” b e ca me ‘ Sif r ’ in Arab i c l an g ua ge. The word ‘ Sif r ’ b eca me ‘Zephy r ’ in La t in. La t er the word ‘Zephy r ’ be c ame Z E R O . In the sa me w ay i t wa s c a l le d b y d i f fe r e n t w o r d s i n d i f fe r e n t la n g u a g es. Cyf r a – i n p o li s h. Cifra – in Spain. Zero – i n French . Son n e – i n Kan n a d a .

Equations related to zero T h e gr e a t m a t he m a t i c i a n o f I nd i a B r ah m a gup t a w r o t e o n n a t u r e o f Z e r o i n h i s boo k “ B r a m h a g u p t a S i d dha n t h ” 1 ) A + = A 2 ) A – = A 3 )A × = 4 ) A / = Hi s fi r s t 3 equ a t i on s w e r e co r r ec t bu t h e f a il e d t o e xp r e s s t h e p r oduc t o f 4 t h one . H e t o l d i t a s Z e r o i ns t ea d o f I n fi n it y . L a t e r i t w a s so l v e d b y ano t he r f a m ou s I nd i a n m a t he m a t i c i a n B ha s ka r I t w a s m en t i one d i n h i s f a m ou s boo k “ Lee l a v a t h i ”

The rules of brahma gupta T h e s u m o f z e ro a nd a n e g ative n umb e r i s n e g ative. The sum o f z er o an d a positiv e num b e r i s po s it i ve. T h e s u m o f z e ro a nd z e ro i s z e ro. T h e s u m o f a p ositive a nd a n e g ative i s their di f ferenc e ; o r , i f their ab s olut e v a lue s ar e e q u a l , z e ro.  A po s it i ve o r ne g ativ e n umb e r w h e n di v ide d b y zerois a fraction wit h the z e ro a s d e n omin a to r . Z e ro di v ide d b y a ne g ativ e o r po s it i ve n umb e r i s eithe r z e ro o r i s e x pres s e d a s a fraction wi t h zero a s n umerator and the finite q u a ntit y a s d e n omin a to r . Z e ro di v ide d b y zero i s z e ro.

Thank you Name – Aditya raj Class – ix ‘c’ Roll no. – ‘3’ Subject- math's ‘ holiday homework’