HO1 Water content dan proses biokimia dalam sel tubuh
darmawan205399
0 views
34 slides
Oct 07, 2025
Slide 1 of 34
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
About This Presentation
biokimia air
Size: 751.75 KB
Language: en
Added: Oct 07, 2025
Slides: 34 pages
Slide Content
1
PENDAHULUAN
1.Air dapat dianggap sebagai unsur makanan
yang paling penting
2.Manusia dapat hidup tanpa makanan selama 20
sampai 40 hari, tetapi tanpa air manusia mati
dalam 4 sampai 7 hari
3.Lebih dari 60 persen berat tubuh manusia
terdiri dari air
4.Sekitar 61 persen adalah intraseluler dan
sisanya ekstraseluler (termasuk plasma ± 25%)
2
Umur Total cairan
tubuh (%
terhadap BB
Bayi BL 77
6 bln 72
2 tahun 60
16 tahun 60
20 – 39 thn (pria/wanita)60/50
40 – 59 thn (pria/wanita)55/47
Prosentase total cairan tubuh dibandingkan berat
badan
FUNGSI AIR
•Media semua reaksi kimia biomolekul
organik dan anorganik polar dalam sel
hidup
•Melarutkan dan mengubah struktur
biomolekul (asam nukleat, protein dan
karbohidrat) membentuk ikatan hidrogen
dengan gugus fungsional polarnya
•Biomolekul non-polar (seperti lipida)
mengubah struktur air
3
SIFAT KIMIA
•Pelarut biologis ideal
•Bentuk molekulnya tetrahedron
•Molekul membentuk dipol (muatan listrik
elektron tersebar sama)
•Membentuk ikatan hidrogen, ikatan paling
lemah berpotensi menguraikan molekul lain
•Terdisosiasi membentuk proton/ion hidrogen
(H+) dan ion hidroksil (OH-)
•Sangat polar (bipolar)
•Donor dan aseptor hidrogen
4
Ionic and Polar Substances
Dissolve in Water
•Hydrophilic (water-loving) substances
(polar and ionic (electrolytes)) readily
dissolve in H
2
O
•Polar water molecules align themselves
around ions or other polar molecules
•A molecule or ion surrounded by solvent
molecules is solvated
•When the solvent is water the molecules
or ions are hydrated
5
6
Dissolution of NaCl in water
(a) Electrostatic
forces hold ions
together in
crystalline
sodium
(b) Water
molecules form
solvation
spheres around
Na
+
and Cl
-
7
Solubilities of molecules in water
•Solubility in water depends
upon the ratio of polar to
nonpolar groups in a molecule
•The larger the portion of
nonpolar groups the less
soluble the molecule is in water
•The larger the portion of polar
groups (e.g. hydroxyl groups (-
OH)) the more soluble the
molecule is in water
8
Solubilities of
short-chain
alcohols in
water
∞
∞
∞
9
Structure of glucose
•Glucose has five
hydroxyl groups and a
ring oxygen which can
hydrogen bond
•Glucose is very soluble
in water
10
Nonpolar Substances Are
Insoluble in Water
•Hydrophobic (water-fearing) molecules
are nonpolar
•Hydrophobic effect - the exclusion of
nonpolar substances by water (critical for
protein folding and self-assembly of
biological membranes)
•Amphipathic molecules have
hydrophobic chains and ionic or polar
ends. Detergents (surfactants) are
examples.
12
Detergents in water
•Monolayers can
form on the surface
•At higher
concentrations
detergents can
form micelles
13
Noncovalent forces
There are four major types of
noncovalent forces:
(1) Charge-charge interactions
(2) Hydrogen bonds
(3) Van der Waals forces
(4) Hydrophobic interactions
14
A. Charge-Charge Interactions (Ion
Pairing)
•Electrostatic interactions between two
charged particles
•Can be the strongest type of
noncovalent forces
•Can extend over greater distances
than other forces
•Charge repulsion occurs between
similarly charged groups
15
B. Hydrogen Bonds
•Among the strongest of noncovalent
interactions
•H atom bonded to N, O, S can hydrogen
bond to another electronegative atom
(~0.2 nm distance)
•Total distance between the two
electronegative atoms is ~0.27 to 0.30
nm
•In aqueous solution, water can H-bond
to exposed functional groups on
biological molecules
Hydrogen bonding between
two water molecules
16
Hydrogen bonding by
a water molecule
17
•A water molecule
can form up to
four hydrogen
bonds
•Hydrogen bonds
shown in yellow
Structure of ice
18
•Hexagonal
lattice structure
•Every water
molecule is H -
bonded to 4
others
19
(a)Hydrogen bonding
between
A-H and B
(b) Some biologically important H-bonds
20
Hydrogen bonding between
complementary bases in DNA
21
C. Van der Waals Forces
•Weak short range forces between:
(a) Permanent dipoles of two uncharged
molecules
(b) Permanent dipole and an induced dipole
in a neighboring molecule
•Although individually weak, many van der
Waals interactions occur in biological
macromolecules and participate in
stabilizing molecular structures
22
Van der Waals radii
of several atoms
23
D. Hydrophobic Interactions
•Association of a relatively nonpolar
molecule or group with other nonpolar
molecules
•Depends upon the increased entropy (+S)
which occurs when water molecules
surrounding a nonpolar molecule are freed
to interact with each other in solution
•The cumulative effects of many
hydrophobic interactions can have a
significant effect on the stability of a
macromolecule
24
Noncovalent interactions
in biomolecules
•Charge-charge interactions
•Hydrogen bonds
•Van der Waals interactions
•Hydrophobic interactions
25
Ionization of Water
•Pure water consists of a low concentration of
hydronium ions (H
3O
+
) and an equal
concentration of hydroxide ions (OH
-
)
•Acids are proton donors (e.g. H
3
O
+
) and bases
are proton acceptors (e.g. OH
-
)
26
The pH Scale
•pH is defined as the negative logarithm
of the concentration of H
+
27
28
pH values for
some fluids
•Lower values are
acidic fluids
•Higher values are
basic fluids
29
Acid Dissociation Constants
of Weak Acids
•Strong acids and bases dissociate
completely in water
HCl + H
2
O Cl
-
+ H
3
O
+
•Cl
-
is the conjugate base of HCl
•H
3
O
+
is the conjugate acid of H
2
O
30
Acetic acid is a weak acid
•Weak acids and bases do not dissociate
completely in H
2
O
31
The Henderson-Hasselbalch Equation
•Defines the pH of a solution in terms of:
(1) The pK
a
of the weak acid
(2) Concentrations of the weak acid
(HA) and conjugate base (A
-
)
32
SISTEM BUFFER
• Merupakan larutan yang terbentuk
dari hasil pencampuran asam
lemah atau basa lemah dengan
garamnya
•Kapasitas buffer menyatakan
kemampuan maksimum sistem
bufer untuk mempertahankan pH
33
34
Buffered Solutions Resist Changes in pH
•Buffer capacity is the ability of a solution to resist
changes in pH
•Most effective buffering occurs where:
solution pH = buffer pK
a
•At this point: [weak acid] = [conjugate base]
•Effective buffering range is usually at pH values
equal to the pKa ± 1 pH unit