-
Individual demand curve
:
the
graphical
3.Tofind EV
,
.
Steps
to determine optimal decision under
relationship btw
p
,
EX
,
when
optimizing
i.Calculate
Utility
of
new
bundle Wnew)
uncertainty
When U (X)=XFXzLl
-
a)
Over
budget
set
x.
= a.
¥
.
×z=u
-as
.
¥
ii.Solve forX.
equiv
and
Xzequiv
I.Determine thepossible Statesof
theworld
L= ULXITXCI
-
pix
,
-
pzxz
)
(Mlk
,
1MHz )
=
Pxilpxz 2.Under each state
,
determine the
-
Law
of demand
:
If
p.lv
,
then X.
T Uncw
=
ULX
,,
Xz)
t
Use
Oldprices wealth the individual would have
If
¥170
,
Law of demand holds
iii.Solve for
compensated income 3.Setup
expected utility
.
Engle
Curve
:
function that
shows an
I
equiv
=p
,
orig
X.
equivtpzxzequivEU-p.ULX.lt/2zULXzlti..tpnULXn
)
individual'sdemand foragood
atdiff
.
iv.EV=I
equiv
-
long
4.Take first
order conditions)ofEU
Levelsof
income
3.TOfindCV
,
function
wrtthevariablels )the individual
-
ElasticityA.B
:
EA
, ,,
elasticity
ofAWrt
i.Calc
.
Origutility
(
Uorig
) can
choose
B
,
B
elasticity
ofA.thef.
change
in
ii.SolveforXsubsdaysubs
5.Solvefor
variables)to determine
the
Athat
results from
a
I't
change
inB t.MU//MUy)=px1py
choice that
would maximize EU
Uorig
=
ULX
,
y
)
-
Risk Adverse
:
avoid
an even
bet
,
dislike
EA,B=fF3
.Ben = -
BF
iii.Solvefor
compensated income risk'swould
pay
to
avoid it
,
ULX)is
strictly
.
magnitude
OfEa
, B
→
whether effect
Of
lump
=
phew Xsubtpyysub
concave
,
U'
'
LN LO
B becomes
"
magnified
"
(IEA
,
13171)or
iv.C✓=/
orig
-
lamp
.
Risk Neutral
:
indifferent to
even
bet
.
"
dampened
"
(IEA
,
BILL)asit
Changes
A
CVEEV canbe used to evaluate policies
.
indifferent to
riskda wouldn't
pay
to
.
sign
ofEA.rs
→
A moves in same l
t
)Or
Ex
:
subsidy
costSIXE.est
.
sum of
society
'savoidit
.
UCX)is linear
,
U'
'
CXI=0
opposite
(
-
)direction asB
CVIEV isSly
→
inefficient
if$4>SIX
.
Risk
Loving
:
would take
an even
bet
,
like
-
Demand Elasticity
:
Ex
, ,
.
Marginal
Rate ofTime Preference
:
risk'swould
pay
for
a
gamble
,
ULX)is
-
Own Price Demand Elasticity
:E
x.
p
1.
The
rate at
which
a consumer
is
willing
to
concave
,
U'
'
LX)>O
Iflawof demand holds
,
Ex,pL0
substitute
current
consumption for future
.
Risk Premium
:
the amount Less than EV
IfIEx.pl
>I
→
elastic
,
<I
→
inelastic
,
=l→ consumption a consumer would
accept
in
exchange
unit elastic(where rev
.
Maximized )
2.MRS
x. ixz
When
X
,
is
con
.
today
and forthelottery
Cobb
-
Douglas
:
-
I Xz
is
con
.
tomorrow 2.the
' '
fee
"
paid
to
avoid risk
inherent
.
Cross Price
Elasticity
of Demand
:
Ex
;
,pj
Usually MRSX
.,xz
>I(impatient
)
tothe
lottery
Exi
,
pj
LO
→
complements
↳U=X9
'
XYZ Where
a
,
>Az 3.The value
,r
,
such that ULEV
-
r
)=EU
Exi
,
pj
>O
→
substitutes
*
Need Unitsof
money insametimeper
.
where EU isthe expected utilityofthe
-
Income Demand Elasticity
:E
x.
I
lntom
.
's$
,
budget
constraint
:
lottery
E
x. I
>O
→
normal
(Iti )IitIz= LIti)XitX2
.
To solvefor
risk
premium
:
Ex
,
ISO
→
inferior
'
Marginal
Rate
of Intertemporal Trans
:
I.solveforEv
MRT×
,
,×z=
Iti(
"
luz
=
Iti)
2.Solve forEU
.
Substitution Effect
:
the
Change
in
an
.
L=UL×
,
,×z)t×uHilI
,
+
Iz
-
Lltilx
,
-
Xz)
3.
plug
into
equation
,
ULEV
-
r)=EU
.
E
individual'S
consumption Of
a
good
due
.
Human capital production Function
: a
solvefor
r
tothefactthe relative
prices
have
Changed
math functiondescribing
how
consumption
U
,
Uz
)
U
,
s
-
s
-
-
=
-
good
I
pm
,
)
¥22
Purchase
more
today
affects future
income
.
1. Find optimal bundle before
.z Draw new
budget
line
p
,
pz
becomes of
good
1
price
change
cheaper -
Intertemporal Utility
Maximization
with
"
-
"
-
.
Income Effect
:
change
in consumption
-
-
human
capital development 's
access
to
s
-
s
-
Ofa
good
due to
change
in
budget
set
,
n n
controlling
for substitution effect
financial markets
:
go, go,
-1€
,
-
Compensated budget
line
:
shows all
1.Maximize Lifetime Income subject to
,
:
y
,.
,
:
y
↳
bundles an individual can affordat new
human
cap
.
constraint
. ,.
.
2.Max lifetime
Utilitysubject
to
making
. i . . i . . .orig
. .
. i . . i . .
loris
. .
I 2 3 4 S
I 2 3 4 S
pricesassumingthey
were compensated
SO
rig good, rig Good'
Max
amount
Of lifetime income
s
-
3. Find optimal bundle after s
- 4. To calc
.W
. shift new
they can afford
Orig
.
levelOfhappiness
Ex
:
constraint
:
zoo-2×12×22
,
i10%0=+1213×2113
-
price
change
-
budget
line until it is
Anychanges
inoptimal bundle must be
4
-
4
-
tangent
to
original
L
=
(1.1)X.
t
Xztx(300-2×12
-X
})
-
- indifference curve
due to
change
inprices
CSub
.
effect)
s
-
s
-
X.
=
7.52×2=13.67
N
N
.
GiffenGood
:
a
good
that
isinferior's
o
-
o
-
f-X
,
"3Xz"3tX( (1.174.523+13.67
-
I.IX
,
-
Xz
)
802!802
-\•
ewtiescincmmag
.EE#Es9Fwdo:tYumsan3nx.=issoxz=isi
.
.
Lottery
:
Bundleof
goods
(X
,
,Xz
,
...
,
Xn)
-
I
- •
-
Bhim
.
I I I I l
-
l l
toric
I I
, , , ,
I
, ,
I
, orig, ,
-
Compensating
Variation
:
amount
Of
w/
a
lottery
(
p
,,
pz
,
...
,
pm)
rig
' Z
gig
?
" s
n
.ge#ebcti3eIIgIEIew3
4 s
income someone would bewilling
to
give
s
-
s
- Good'
I
.
p
,
t
pzt
... t
pm
=/
- 5. Label intersection
.
4. To calc EV
, shift
Blorig
Up(need)after aprice
reduction(increase
,
z
.
pizo
4
-
Of
BLUEY
-axis
,
4
.
until
itistangenttolnew
.
"
Xznew
"
G
Blcompda
to maintain
Utility
before
change
y-axis as
"
xzcomp
"
-
3.
pi
istheprob
.
of
receiving
bundle Xi
,
-
6.
CV=p{
Xznew
-
Xzcomp)
3
-
new
price
,
Oldutility
Level
.
Degenerate lottery
:
all
prob
. on
I outcome
o
-
512-1.25=3.75
-
-
.
equivalent
variation
:
amount of
income
.
expected
value
:p ,×,+pz×z+
... +
pn×
,
I÷÷u¥•§↳;§o
,
.§,
a consumer would need (be
willing
to
give
.
Mixing
:
Given 2 lotteriesLp
,,
Pz
,
....
pm
)E
=
i
-
a
- •
I
Blcoymp
-
IBL
equiv
Inew
Up)beforeaprice
reduction (increase)to (t
,
,tz
,
..
.tn)and OLXLI
,
a
MIX
Of
. . . . . .
Kris
. .
, , .
Kori
. ,
iorig
.
?
rig
I
Zxcompxnew
} 4 S
I 2
=
3 4 S
give
the same levelof
utility
as afterthe these 2 lotteriesisthe
new
lottery
:
good,
rig
yoga
,
S
-
5. Label intersection of
>
rice
change
(
AP .tl/-X)ti,XPztll-X)t2
,
...
,
April
'
-
d)th)
n
-
Blom
.gg
y-axis
"
xzorig
"
's
Sub
.
Effect
:X sub
-
Xorig/
Old
prices
,
new
utility
.
Independence
:
If
lotteryPIlotteryq
E I
"
-
Bleauivday
-axis as
Income
Effect
:X new
-
Xsubs
or -
"
Xzequiv
''
CV=pz(Xznew
-
Xzcomp
)
both
are
Mixed with
lottery
titherlottery
xzeausi-6.eu-pzlxzeauiu-xzon.gl
s I
2178
p
is
stillpreferred
to
lotteryq
- Scs-23
.
-s
EV
=
Pz
(
Xzequiv
-
Xzorig
)
xzorig
-
Find CVEEV
mathematically
.
ExpectedUtility
Theorem
:
VNM Can be
2
,
;
¥
,
Yg
,
1.
Use
Lagrangian
tofindoptimal bundle interpreted
as
the cardinalUtility
received
.
Iaea
" s
>
i i ,
Phon
, ,
Iorio
, ,(
giffen
before
pricechange
→
X
orig
from
good
Isuch that(
p
,,
Pz
,
...
,
Pm
)I
rig
, z
Inns
4 s
I
ICO
2.Use
Lagrangian
tofind optimal bundle (
q
,
,qz
,
...
,
qn
)Iff
p
.
U
,
tpzuzt
.. .
tpnun
Good'
III
>
151
after
pricechange
→
Knew Iq
,
U
,
tqzuzt
.
. .
tqnvn