LECTURE-27-28-LINE INTEGRAL FOR ENGINEERING MATHEMATICS.ppt
wwwkaushikbiswal5
6 views
72 slides
Oct 28, 2025
Slide 1 of 72
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
About This Presentation
Engineering Maths Line Integral
Size: 1.34 MB
Language: en
Added: Oct 28, 2025
Slides: 72 pages
Slide Content
DEPARTMENT OF
MATHEMATICS
[YEAR OF ESTABLISHMENT – 1997]
DEPARTMENT OF MATHEMATICS, CVRCE
MATHEMATICS - I
FOR BTECH 1
st
SEMESTER COURSE [COMMON TO ALL BRANCHES OF
ENGINEERING]
DEPARTMENT OF MATHEMATICS, CVRCE
TEXT BOOK:
ADVANCED
ENGINEERING
MATHEMATICS
BY ERWIN
KREYSZIG
Line Integrals
[Chapters – 9.1,9.2]
10/28/25 LINE INTEGRAL CONTI..........
LECTURES – 27 & 28
10/28/25 LINE INTEGRAL CONTI..........
Content:
►
Introduction to Line Integral
►
Physical Application of Line Integrals
►
Definition and Examples
►
Properties
►
Examples
►
Test Knowledge
► Independent of Path
►
Problem Solved
►
Practice Problems
Let C be a curve with a parametric representation
A
C
B
A
B
C
The curve C is called path of integration , A: (a) its initial point
and B: (b) its terminal point of the path of integration C. The
direction from A to B in which t increases is called the positive
direction on C. We can indicate the direction by arrow. If the point
A and B coincide, then C is called a closed path.
INTRODUCTION TO LINE INTEGRAL
ˆˆ ˆ() [ (), (), ()] () () ()r t xt yt zt xti yt j zt k
r
r
10/28/25 LINE INTEGRAL CONTI..........
INTRODUCTION TO LINE INTEGRAL
The curve C is called a smooth curve , if C has a unique tangent at each
of its points whose direction varies continuously as we move along C.
Mathematically, C has representation
ˆˆ ˆ() [ (), (), ()] () () ()r t xt yt zt xti yt j zt k
Such that is differentiable and the derivative is continuous
and different from the zero vector at every point of C.
dr
dt
()r t
In physics, the line integrals are used, in particular, for
computations of
•mass of a wire;
• center of mass and moments of inertia of a wire;
• work done by a force on an object moving in a vector
field;
• magnetic field around a conductor (Ampere’s Law);
• voltage generated in a loop (Faraday’s Law of magnetic
induction).
10/28/25 LINE INTEGRAL CONTI..........
Physical Applications of Line
Integrals
Definition and Evaluation of line Integral:
A line integral of a vector function over a curve C is
defined by
F r
(1)
b
C a
dr
F r dr F r t dt
dt
1 2 3 1 2 3
Alsointermsof cartesianCoordinates with , ,
wehavefrom the above equation
( ) (2)
b
C C a
dr dx dy dz
dx dy dz
F r dr Fdx Fdy Fdz F F F dt
dt dt dt
10/28/25 LINE INTEGRAL CONTI..........
Definition and Evaluation of line Integral:
SOME QUICK REMARKS
C
C
If a path of integration is a closed curve, then
may also denote a line integral as instead of .
C
Line integral arises naturally in mechanics in computation
of work done by a fource in a displace along a given path.As
such a line integral is also called a int.work egral
Definition and Evaluation of line Integral:
Line integral (2) is a definite integral of a function of
taken over the interval on the in the
This definite integral exists if i
directi s
and
on.
is
t at a t b
positive F
continuous C piecewise
xis
, because this
makes .
smooth
dr
F piecewisecontinous
dt
Line integral (2) with given and is
.
F C independentof
of thechoiceof representationof C
Line integral (2) with given and given and is different along
different paths joing to . That is the line integral (2) dependson .
F a b
a b C
1. ( ). ( ) where isaconstant
C C
kF r dr k F r dr k
10/28/25 LINE INTEGRAL CONTI..........
General Properties of Line Integral:
1 2 3
1 2 3
1 1 2 2 3 3
1 1 2 2
2. For vector functions , , , , whose line integral
of the form (1) exists and , , , arbitrary constatns
( ) ( ) ( ) ( ) •
( )• ( )
n
n
n n
C
C
G G G G
a a a a
aG r aG r aG r aG r dr
a G r dr a G r
3 3
• ( )• ( )•
n n
C C C
dr a G r dr a G r dr
10/28/25 LINE INTEGRAL CONTI..........
General Properties of Line Integral:
1
2
1 2 3
3. ( ). ( ). ( ). ( ).
where isthesumofthecurve , , , .
n
C C C C
n
F r dr F r dr F r dr F r dr
C C C C C
4. (). ().
b a
a b
Frdr Frdr
Other Forms of Line Integrals:
1 1 1
ˆIf we set and , so that ,
(2) gives another form of line integral given by
(3)
b
C a
f dx
F Fi F f F
dx dt
dt
f r dt f r t dt
10/28/25 LINE INTEGRAL CONTI..........
Evaluationofintegral ( ) withArclengthasparameter:
C
f r ds
2 2 2
( ) (), (), ()
4
Where
C C
C
ds
f rds f xt yt zt dt
dt
dr dr
f r t dt
dt dt
ds dx dy dz dr dr
dt dt dt dt dt dt
( ) (), (), ()
b
C a
dr dr
f r ds f xt yt zt dt
dt dt
If limits of t along C are a and b, then
2 2
Calculate , where ,
and is the straight line segment from 0,0 to 1,4 .
C
F r dr F y x
C
PROBLEM - 1
SOLUTION:
Equation of the straight line segment from 0,0 to 1,4 is 4 .y x
Let 4.x t y t
ˆ ˆ ˆ ˆHere 4r t xi yj ti tj
d
ˆ ˆ ˆ ˆ 4 4
r d
ti tj i j
dt dt
2
2 2 2
4 , 16 , .F r t t t t t
2 2
Given that , .F y x
At 0,0 , 0 and at 1,4 , 1.t t
2 2ˆ ˆ ˆ ˆ16 4
dr
F r t t i t j i j
dt
2 2 2
16 4 12t t t
1
0C
dr
F r dr F r t dt
dt
Therefore, the required line integral is
1 1
2 2
0 0
12 12tdt tdt
1
3
0
12
3
t
1
12 0 4.
3
2 3
Calculate , where cosh , sinh ,
and : , , from 0,0,0 to 2,4,8 .
z
C
F r dr F x y e
C r t t t
PROBLEM - 2
SOLUTION:
2 3ˆ ˆˆ ˆ ˆ ˆHere r t xi yj zk ti t j tk
2 3 2d
ˆ ˆˆ ˆ ˆ ˆ 2 3
r d
ti t j tk i tj tk
dt dt
2 3
At 0,0,0 , , , (0,0,0) 0 tt t t
2 3
At 2,4,8 , , , 2,4,8 2.tt t t
3
2
cosh, sinh ,
t
F r t t t e
Given that cosh , sinh , .
z
F x y e
3
2 2 ˆ ˆˆ ˆ ˆ ˆcosh sinh 2 3
tdr
F r t ti t j e k i tj t k
dt
3
2 2
cosh 2sinh 3
t
t t t te
2
0C
dr
F r dr F r t dt
dt
Therefore, the required line integral is
3
2
2 2
0
cosh 2sinh 3
t
t t t te dt
3
2
2
0
sinh cosh
t
t t e
8
sinh2 cosh4 0 1 1e
8
sinh2 cosh4 2e
2 2
Calculate , where , and is the
quarter - circle from 2,0 to 0,2 with center at 0,0 .
C
F r dr F xy x y C
PROBLEM - 3
SOLUTION:
y
x-axis
t=0
t=/2
The radius of the circle
with center at (0,0)
with points (2,0) and
(0,2) on it is 2 .
(0,0)
PATH OF
INTEGRATION
(0,2)
t
y-axis
(2,0)
d
ˆ ˆ ˆ ˆ 2cos 2sin 2sin 2cos
r d
ti tj ti tj
dt dt
Parametric representation of the quarter -circle from
(2,0) to (0,2) with center at 0,0 and radius 2 is
ˆ ˆ =2cos 2sin ,0 .
2
r t ti tj t
2 2
4sin cos, 16sin cosF r t t t t t
2 2
Given that , .F xy x y
2 2ˆ ˆ ˆ ˆ4sin cos 16sin cos 2sin 2cos
dr
F r t t ti t tj ti tj
dt
2 2 3
8sin cos 32sin cost t t t
2
0C
dr
F r dr F r t dt
dt
Therefore, the required line integral is
2
2 2 3
0
8sin cos 32sin cost t t tdt
2 2
2 2 3
0 0
8 sin cos 32 sin cost tdt t tdt
3 2
2
2 2
00
sin
8 32 sin (1 sin )cos
3
t
t t tdt
3 5
2 2
0 0
8 sin sin
32 32
3 3 5
t t
2 2
2 4
0 0
1
8 0 32 sin cos 32 sin cos
3
t tdt t tdt
2
0
8 1 1 8 32 32 32 8
32 0 32 0 8
3 3 5 3 3 5 5 5
2 2
1. [( ),( )] : 1,1 4Q F x y y x C xy x
TEST YOUR KNOWLEDGE
.2 [ , . ], : ( ) [2cos , ,2sin ] (2,0,0) (2,2 ,0)Q F x y y zz x C r t t t t from to
2 2
3 3
3
2
.3: [ , ], :
y x
Q F e e C y x
10/28/25 LINE INTEGRAL CONTI..........
2 2
Evaluate the integral , where
and : 3 from (0,0) to (2,6).
C
f r ds f x y
C y x
PROBLEM - 4
Solution:
Given path is the line : 3 from (0,0) to (2,6).C y x
Let . So, 3 3.x t y x t
Therefore, the parametric representation of the
ˆ ˆ ˆ ˆgiven straight line is 3 .r t xi yj ti tj
d
ˆ ˆ ˆ ˆ 3 3
r d
ti tj i j
dt dt
ˆ ˆ ˆ ˆ 3 3 1 9 10
dr dr
i j i j
dt dt
At 0,0, 0 and at 2,6, 2.t t
2 2
Given that .f x y
2 2
2
3 10 .f r t t t t
10/28/25 LINE INTEGRAL CONTI..........
2
2
0
10 10t dt
Therefore, the required line integral is
2
0
( )
C C
dr dr dr dr
f r ds f r t dt f r t dt
dt dt dt dt
2
2
0
10 10t dt
2
3
0
10 10
3
t
3
2
10 10 0
3
8 80 10
10 10 .
3 3
2 2 2
Evaluate the integral , where
and : cos , sin , 2 , 0 4 .
C
f r ds f x y z
C r t t t t
PROBLEM - 5
Solution:
The parametric representation of the
given path is cos , sin , 2 .C r t t t t
d
ˆ ˆˆ ˆ ˆ ˆ cos sin 2 sin cos 2 .
r d
ti tj tk ti tj k
dt dt
2 2
ˆ ˆˆ ˆ ˆ ˆ sin cos 2 sin cos 2
sin cos 4 5
dr dr
ti tj k ti tj k
dt dt
t t
2 2 2
Given that .f x y z
2 2 2
2 2 2 2
cos sin 2
cos sin 4 4 1.
f r t t t t
t t t t
4
2
0
4 1 5t dt
Therefore, the required line integral is
4
0
( )
C C
dr dr dr dr
f r ds f r t dt f r t dt
dt dt dt dt
4
2
0
5 4 1t dt
4
3
0
4
5
3
t t
34
5 4 4 0
3
3256
5 4 5
3
10/28/25 LINE INTEGRAL CONTI..........
1
2
3
3 3
Evaluate the integral , where
and is the hypocycloid cos , sin ,0 .
C
f r ds f x xy
C r t t t
PROBLEM - 6
Solution:
3 3
The parametric representation of the
given path is cos , sin .C r t t
3 3 2 2d
ˆ ˆ ˆ ˆ cos sin 3cos sin 3sin cos .
r d
ti tj t ti t tj
dt dt
10/28/25 LINE INTEGRAL CONTI..........
2 2 2 2
ˆ ˆ ˆ ˆ3cos sin 3sin cos 3cos sin 3sin cos
dr dr
dt dt
t ti t tj t ti t tj
1
2
3Given that .f x xy
1
2
3 3 3
3
cos cos sinf r t t t t
2 2
2 2
3cos sin 3sin cost t t t
4 2 4 2
9cos sin 9sin cost t t t
2 2
9cos sint t
6
cos cossint t t
6
0
cos cos sin 3cos sint t t t tdt
Therefore, the required line integral is
0
( )
C C
dr dr dr dr
f r ds f r t dt f r t dt
dt dt dt dt
7 2 2
0 0
3 cos sin 3 cos sint tdt t tdt
10/28/25 LINE INTEGRAL CONTI..........
6.Evaluate the integral ,
C
f rds
where
8)10(8
4
cos
32
2
0
4
t
ANS
10/28/25 LINE INTEGRAL CONTI..........
TEST YOUR KNOWLEDGE
( )f rdswithArclengthasparameter
3
1. , : [2cos ,2sin ].0
2
Q f x y C r t t t
2 2
2. 16 81 , : ( ) [3cos ,2sin ],0Q f x y C r t t t t
2
.3 1 sinh , : [,cosh ],0 2Q f xC r t t t
10/28/25 LINE INTEGRAL CONTI..........
LINE INTEGRAL INDEPENDENT OF
PATH
A line integral of the type
is said to be independent of path in a domain D
in space if for every pair of end points A and B
in D, in the above integral has the same value
for all paths in D the begin at A and end at B.
10/28/25 LINE INTEGRAL CONTI..........
1 2 3 1 2 3
( )
B
C C A
dx dy dz
F r dr Fdx Fdy Fdz F F F dt
dt dt dt
LINE INTEGRAL INDEPENDENT OF
PATH
1 2 3 1 2 3
( )
B
C C A
F r dr Fdx Fdy Fdz Fdx Fdy Fdz
A line integral of the type
with continuous F
1, F
2, F
3 in a domain D in space is
independent of path in D if and only if
is the gradient of some function f in D. Moreover,
1 2 3
, ,F F F F
THEOREM - 1
1 2 3 1 2 3
( )
B
C C A
F r dr Fdx Fdy Fdz Fdx Fdy Fdz f B f A
LINE INTEGRAL INDEPENDENT OF PATH
EXAMPLE – 1:
2 2
Show that the integral • 3 2 is
independent of path in any domain in space and find its value
if has the initial point : (0,1,2) and the terminal point :(1, 1,7).
C C
F dr x dx yzdy y dz
C A B
Let us see whether there exists a scalar function f such that
SOLUTION:
2 2 ˆˆ ˆGiven that 3 2F xi yzj yk
F gradf
LINE INTEGRAL INDEPENDENT OF PATH
2 2 ˆ ˆˆ ˆ ˆ ˆ3 2
f f f
xi yzj yk i j k
x y z
2
2
3 (1)
2 (2)
(3)
f
x
x
f
yz
y
f
y
z
3
Integrating 1 w.r.t. , we get ( , , ) ( , ) (4)
( , ) is a function of and .
x f x y z x k y z
k y z y z
LINE INTEGRAL INDEPENDENT OF PATH
(5)
f k
y y
2
Integrating 6 w.r.t. y, we get ( , ) (7)
where is a function of .
k y z y z z
z z
3
Differentiating 4 w.r.t. , we get ( , )
f
y x k y z
y y
From (2) and (5), we have 2 (6)
k
yz
y
3 2
So from 4 we have ( , , ) (8)f x y z x y z z
LINE INTEGRAL INDEPENDENT OF PATH
3 2
Differentiating 8 w.r.t. , we get
f
z x y z z
z z
2
(9)
f d
y
z dz
2 2
From (3) and (9), we have
d
y y
dz
0
d
dz
On integration w.r.t. , we get sayz z Aconstant c
3 2
So from 8 we have ( , , ) (10)f x y z x y z c
3 2
So we find that there exists a function
( , , ) such that .f x y z x y z c F gradf
LINE INTEGRAL INDEPENDENT OF PATH
2 2
2 2
Therefore, the integral • 3 2 is
independent of path and its value is given by
• 3 2 1, 1,7 0,1,2 .
C C
C C
F dr x dx yzdy y dz
F dr x dx yzdy y dz f f
3 2 3 2
at 1, 1,7 at 0,1,2
-x y z c x y z c
3 2 3 2
1 1 7 - 0 1 2 8 2 6.c c
LINE INTEGRAL INDEPENDENT OF
PATH
1 2 3 1 2 3
( )
B
C C A
F r dr Fdx Fdy Fdz Fdx Fdy Fdz
A line integral of the type
is independent of path in a domain D if and only if
its value around every closed path in D is zero.
THEOREM - 2
LINE INTEGRAL INDEPENDENT OF PATH
1 2 3
1 2 3
Let ( , , ), ( , , ), ( , , )becontinuousfunctionshaving
continuousfirstpartialderivativesinadomain inspace.
is called in if it is the differential
of a
exact
F x y z F x y z F x y z
D
Fdx Fdy Fdz D
f f f
df dx dy dz
x y z
1 2 3
differentiable function , , everywhere in , i.e., if we have
.
f x y z D
Fdx Fdy Fdz df
1 2 3
1 2 3 1 2 3
From
ˆˆ ˆwe have , , , . . .
f f f
Fdx Fdy Fdz df dx dy dz
x y z
f f f
F F F ie F Fi F j Fk gradf
x y z
LINE INTEGRAL INDEPENDENT OF PATH
A domain D is called a simply connected domain if
every closed curve in D can be continuously shrunk
to any point in D without leaving D.
SIMPLY CONNECTED DOMAINS
NOT SIMPLY CONNECTED DOMAINS
LINE INTEGRAL INDEPENDENT OF
PATH
1 2 3
1 2 3
1 2 3
Let ( , , ), ( , , ), ( , , )becontinuousfunctionhaving
continuousfirstpartialderivativesinadomain inspace.If theline
integral isindependentof pathin ,
Then is exact then i
C
F x y z F x y z F x y z
D
Fdx Fdy Fdz D
Fdx Fdy Fdz
1 2 3
3 3 2 1 2 1
n
ˆˆ ˆ 0
. . , ,
D
curl F curl Fi F j Fk
F FF F F F
ie
y z z x x y
THEOREM – 3:
LINE INTEGRAL INDEPENDENT OF PATH
1 2 3
1 2 3
1 2 3
Let ( , , ), ( , , ), ( , , )becontinuousfunction
havingcontinuousfirstpartialderivativesinadomain in
ˆˆ ˆspace.If 0
and is simply connected then the integral
C
F x y z F x y z F x y z
D
curlF curl Fi F j Fk
D
Fdx Fdy Fdz
isindependentofpathin .D
THEOREM – 4:
LINE INTEGRAL INDEPENDENT OF PATH
Example – 1:
Show that the form under integral sign is exact in
the plane and evaluate the integral.
3π
2,
2
x
0,π
e cosydx-sinydy
Solution:
1 2 3
1 2 3
We know that a differential form
ˆˆ ˆis exact if 0.
Fdx Fdy Fdz
CurlF Curl Fi F j Fk
1 2 3
ˆ ˆˆ ˆ ˆ ˆSet cos sin 0
x x
F Fi F j Fk e yi e yj k
10/28/25 LINE INTEGRAL CONTI..........
^ ^ ^ ^ ^ ^
1 2 3
ˆˆ ˆcos sin 0
cos sin 0
x x
x x
curl F
curl e yi e yj k
i j k i j k
x y z x y z
F F F e y e y
LINE INTEGRAL INDEPENDENT OF PATH
ˆ ˆ0 sin cos 0
ˆ ˆˆ ˆsin cos 0 0 0 0
x x
x x
e y i e y j
y z z z
e y e y k i j k
x z
10/28/25 LINE INTEGRAL CONTI..........
LINE INTEGRAL INDEPENDENT OF PATH
1 2 3
So the given differential form
cos -sin is exact.
x
Fdx Fdy Fdz e ydx ydy
1 2 3
So there exists function, say , , such that
cos -sin .
.. cos -sin
x
x
f x y z
df Fdx Fdy Fdz e ydx ydy
f f f
ie dx dy dz e ydx ydy
x y z
10/28/25 LINE INTEGRAL CONTI..........
cos 1
sin 2
0 3
x
x
f
e y
x
f
e y
y
f
z
On comparing the coefficients of dx, dy and dz we get
LINE INTEGRAL INDEPENDENT OF PATH
10/28/25 LINE INTEGRAL CONTI..........
LINE INTEGRAL INDEPENDENT OF PATH
On integrating (1) partially w. r. t. x we get
cos , cos , (4)
( , ) is a function of and .
x x
f e ydx y z e y k y z
k y z y z
Differentiating (4) partially w.r.t. y we get
cos , sin (5)
x xf k
e y k y z e y
y y y
From (2) and (5), we get
sin sin 0
.. is a function of z alone, say , ( )
x x k
e y e y
y
ie k k y z c z
LINE INTEGRAL INDEPENDENT OF PATH
From (4) we have
cos (6).
x
f e y c z
Differentiating (6) partially w. r. t. z we get
cos (7)
xf dc
e y c z
z z dz
From (3) and (7), we get
0 A constant = say
dc
c z C
dz
From (6) we have
cos (8)
x
f e y C
Hence the exact differential is
cos sin cos
x x x
e ydx e ydy df d e y c
3 3 3
2, 2, 2,
2 2 2
0, 0, 0,
cos sin cos
x x
e ydx ydy df d e y c
LINE INTEGRAL INDEPENDENT OF PATH
3
(2, )
2
(0, )
2 0
cos
3
cos cos
2
0 1 1
x
e y c
e c e c
c c
ANS
10/28/25 LINE INTEGRAL CONTI..........
LINE INTEGRAL INDEPENDENT OF PATH
^ ^ ^ ^ ^ ^
1 2 3
ˆˆ ˆ3 3 2
3 3 2
i j k i j k
curl F
x y z x y zcurl yi xj zk
F F F y x z
EXAMPLE – 2:
Here
ˆ ˆ ˆ
F=3yi+3xj+2zk
ˆˆ ˆ2 3 3 2 3 3z x i y z j x y k
y z z x x y
To find the exact differential
Suppose that there a function f(x,y,z) in space such
that 3ydx+3xdy+2zdz=df.
10/28/25 LINE INTEGRAL CONTI..........
ˆˆ ˆ0 0 0 0 3 3 0i j k
LINE INTEGRAL INDEPENDENT OF PATH
10/28/25
LINE INTEGRAL CONTI..........
3 1
3 2
2 3
f
y
x
f
x
y
f
z
z
LINE INTEGRAL INDEPENDENT OF PATH
Integrating 1 w.r.t. , we get ( , , ) 3 ( , ) (4)
( , ) is a function of and .
x f x y z xy k y z
k y z y z
3 (5)
f k
x
y y
k
Since ( , ) 0 and =0, integrating w.r.t. ,
y
we get ( , ) function of z-alone = z say
k y z y
k y z A
Differentiating 4 w.r.t. , we get 3 ( , )
f
y xy k y z
y y
From (2) and (5), we have 3 3 0
k k
x x
y y
So from 4 we have ( , , ) 3 z (6)f x y z xy
LINE INTEGRAL INDEPENDENT OF PATH
Differentiating 6 w.r.t. , we get 3 .
f
z xy z
z z
(7)
f d
z dz
From (3) and (7), we have 2
d
z
dz
2
d
z
dz
2
On integration w.r.t. , we get ,
where c is an arbitrary constant.
z z z c
LINE INTEGRAL INDEPENDENT OF PATH
2
So from 6 we have ( , , ) 3 .f x y z xy z c
4,1,2 4,1,2 4,1,2
2
0,0,0 0,0,0 0,0,0
3 3 2 3ydx xdy zdz df d xy z c
4,1,2
2
0,0,0
3xy z c
2 2
3 4 1 2 3 0 0 0c c
= 16
ANS
2 2
4,1,2 0,0,0
3 3
At At
xy z c xy z c
LINE INTEGRAL INDEPENDENT OF PATH
^ ^ ^ ^ ^ ^
2 2
1 2 3
So
2 2 1
i j k i j k
curl F
x y z x y z
F F F xy x ydy
EXAMPLE – 3:
Here ˆ ˆ ˆ
2 2
F=2xy i+2x yj+k
2 2
2 2
ˆ ˆ1 2 2 1
ˆ
2 2
x y i xy j
y z z x
x y xy k
x y
So the given differential form s exact.(path independent)
10/28/25 LINE INTEGRAL CONTI..........
ˆ ˆˆ ˆ ˆ ˆ0 0 0 0 4 4 0 0 0 0i j xy xy k i j k
LINE INTEGRAL INDEPENDENT OF PATH
10/28/25 LINE INTEGRAL CONTI..........
2
2
2 1
2 2
1 3
f
xy
x
f
xy
y
f
z
LINE INTEGRAL INDEPENDENT OF PATH
10/28/25 LINE INTEGRAL CONTI..........
2 2
Integrating 1 w.r.t. , we get ( , , ) ( , ) (4)
( , ) is a function of and .
x f x y z x y k y z
k y z y z
2
2 (5)
f k
x y
y y
k
Since ( , ) 0 and =0, integrating w.r.t. ,
y
we get ( , ) function of z-alone = z say
k y z y
k y z A
2 2
Differentiating 4 w.r.t. , we get ( , )
f
y x y k y z
y y
2 2
From (2) and (5), we have 2 2 0
k k
x y x y
y y
2 2
So from 4 we have ( , , ) z (6)f x y z x y
LINE INTEGRAL INDEPENDENT OF PATH
2 2
Differentiating 6 w.r.t. , we get .
f
z x y z
z z
(7)
f d
z dz
From (3) and (7), we have 1
d
dz
1
d
dz
On integration w.r.t. , we get ,
where K is an arbitrary constant.
z z z K
LINE INTEGRAL INDEPENDENT OF PATH
10/28/25
2 2
So from 6 we have ( , , ) .f x y z x y z K
, , , , , ,
2 2
0,0,0 0,0,0 0,0,0
3 3 2
a b c a b c a b c
ydx xdy zdz df d x y z K
, ,
2 2
0,0,0
abc
xy z K
2 2 2 2
0 0 0a b c K K
= a
2
b
2
+c
ANS
LINE INTEGRAL INDEPENDENT OF PATH
^ ^ ^
1 2 3
i j k
curlF
x y z
F F F
EXAMPLE – 4:
Here ˆ ˆ ˆ
y zx zF= i j+ k
LINE INTEGRAL INDEPENDENT OF PATH
^ ^ ^
ˆ ˆ
ˆ
i j k
z zx i y z j
y z z x
x y z
zx y k
y zx z x y
So the given differential form s exact.(path dependent)
ANS
10/28/25 LINE INTEGRAL CONTI..........
ˆˆ ˆ0 0 0 1x i j z k 0
LINE INTEGRAL INDEPENDENT OF PATH