LECTURE-27-28-LINE INTEGRAL FOR ENGINEERING MATHEMATICS.ppt

wwwkaushikbiswal5 6 views 72 slides Oct 28, 2025
Slide 1
Slide 1 of 72
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72

About This Presentation

Engineering Maths Line Integral


Slide Content

DEPARTMENT OF
MATHEMATICS
[YEAR OF ESTABLISHMENT – 1997]
DEPARTMENT OF MATHEMATICS, CVRCE

MATHEMATICS - I
FOR BTECH 1
st
SEMESTER COURSE [COMMON TO ALL BRANCHES OF
ENGINEERING]
DEPARTMENT OF MATHEMATICS, CVRCE
TEXT BOOK:
ADVANCED
ENGINEERING
MATHEMATICS
BY ERWIN
KREYSZIG

Line Integrals
[Chapters – 9.1,9.2]
10/28/25 LINE INTEGRAL CONTI..........
LECTURES – 27 & 28

10/28/25 LINE INTEGRAL CONTI..........
Content:


Introduction to Line Integral


Physical Application of Line Integrals


Definition and Examples


Properties


Examples


Test Knowledge
► Independent of Path


Problem Solved


Practice Problems

Let C be a curve with a parametric representation

A
C
B
A
B
C
The curve C is called path of integration , A: (a) its initial point
and B: (b) its terminal point of the path of integration C. The
direction from A to B in which t increases is called the positive
direction on C. We can indicate the direction by arrow. If the point
A and B coincide, then C is called a closed path.
INTRODUCTION TO LINE INTEGRAL
ˆˆ ˆ() [ (), (), ()] () () ()r t xt yt zt xti yt j zt k   

r

r

10/28/25 LINE INTEGRAL CONTI..........
INTRODUCTION TO LINE INTEGRAL
The curve C is called a smooth curve , if C has a unique tangent at each
of its points whose direction varies continuously as we move along C.
Mathematically, C has representation

ˆˆ ˆ() [ (), (), ()] () () ()r t xt yt zt xti yt j zt k   

Such that is differentiable and the derivative is continuous
and different from the zero vector at every point of C.

dr
dt

()r t

In physics, the line integrals are used, in particular, for
computations of
•mass of a wire;
• center of mass and moments of inertia of a wire;
• work done by a force on an object moving in a vector
field;
• magnetic field around a conductor (Ampere’s Law);
• voltage generated in a loop (Faraday’s Law of magnetic
induction).
10/28/25 LINE INTEGRAL CONTI..........
Physical Applications of Line
Integrals

Definition and Evaluation of line Integral:
A line integral of a vector function over a curve C is
defined by
F r

  (1)
b
C a
dr
F r dr F r t dt
dt
    

   
 
 
1 2 3 1 2 3
Alsointermsof cartesianCoordinates with , ,
wehavefrom the above equation
( ) (2)
b
C C a
dr dx dy dz
dx dy dz
F r dr Fdx Fdy Fdz F F F dt
dt dt dt

 
       
 
 
  

 

10/28/25 LINE INTEGRAL CONTI..........
Definition and Evaluation of line Integral:
SOME QUICK REMARKS
 
C
C
If a path of integration is a closed curve, then
may also denote a line integral as instead of .
C
 
Line integral arises naturally in mechanics in computation
of work done by a fource in a displace along a given path.As
such a line integral is also called a int.work egral

Definition and Evaluation of line Integral:
Line integral (2) is a definite integral of a function of
taken over the interval on the in the
This definite integral exists if i

directi s
and
on.
is
t at a t b
positive F
continuous C piecewise
xis 



, because this
makes .
smooth
dr
F piecewisecontinous
dt



Line integral (2) with given and is
.
F C independentof
of thechoiceof representationof C


Line integral (2) with given and given and is different along
different paths joing to . That is the line integral (2) dependson .


F a b
a b C

1. ( ). ( ) where isaconstant
C C
kF r dr k F r dr k 
    
10/28/25 LINE INTEGRAL CONTI..........
General Properties of Line Integral:
 
1 2 3
1 2 3
1 1 2 2 3 3
1 1 2 2
2. For vector functions , , , , whose line integral
of the form (1) exists and , , , arbitrary constatns
( ) ( ) ( ) ( ) •
( )• ( )
n
n
n n
C
C
G G G G
a a a a
aG r aG r aG r aG r dr
a G r dr a G r
   
 


   


       

   
3 3
• ( )• ( )•
n n
C C C
dr a G r dr a G r dr    
     

10/28/25 LINE INTEGRAL CONTI..........
General Properties of Line Integral:
1
2
1 2 3
3. ( ). ( ). ( ). ( ).
where isthesumofthecurve , , , .
n
C C C C
n
F r dr F r dr F r dr F r dr
C C C C C
      
          


4. (). ().
b a
a b
Frdr Frdr 
    

Other Forms of Line Integrals:
 
1 1 1
ˆIf we set and , so that ,
(2) gives another form of line integral given by
(3)
b
C a
f dx
F Fi F f F
dx dt
dt
f r dt f r t dt
 
  
 
   
 
 
  

 

10/28/25 LINE INTEGRAL CONTI..........
Evaluationofintegral ( ) withArclengthasparameter:
C
f r ds

 
 
2 2 2
( ) (), (), ()
4
Where
C C
C
ds
f rds f xt yt zt dt
dt
dr dr
f r t dt
dt dt
ds dx dy dz dr dr
dt dt dt dt dt dt
 

 
 
  
     
    
     
     
 


 

 
 ( ) (), (), ()
b
C a
dr dr
f r ds f xt yt zt dt
dt dt
 
   
 
 
 
 

If limits of t along C are a and b, then



2 2
Calculate , where ,
and is the straight line segment from 0,0 to 1,4 .
C
F r dr F y x
C
   
 
  
PROBLEM - 1
SOLUTION:
Equation of the straight line segment from 0,0 to 1,4 is 4 .y x
Let 4.x t y t  

ˆ ˆ ˆ ˆHere 4r t xi yj ti tj   

 
d
ˆ ˆ ˆ ˆ 4 4
r d
ti tj i j
dt dt
   


2
2 2 2
4 , 16 , .F r t t t t t       
  

2 2
Given that , .F y x  
 

 At 0,0 , 0 and at 1,4 , 1.t t 
   
2 2ˆ ˆ ˆ ˆ16 4
dr
F r t t i t j i j
dt
    


2 2 2
16 4 12t t t  

 
1
0C
dr
F r dr F r t dt
dt
   

   
Therefore, the required line integral is
1 1
2 2
0 0
12 12tdt tdt  
1
3
0
12
3
t 

 
 
1
12 0 4.
3
 
  
 
 


 
2 3
Calculate , where cosh , sinh ,
and : , , from 0,0,0 to 2,4,8 .
z
C
F r dr F x y e
C r t t t
  
 
 
 

  

PROBLEM - 2
SOLUTION: 
2 3ˆ ˆˆ ˆ ˆ ˆHere r t xi yj zk ti t j tk     

 
2 3 2d
ˆ ˆˆ ˆ ˆ ˆ 2 3
r d
ti t j tk i tj tk
dt dt
      

  
2 3
At 0,0,0 , , , (0,0,0) 0 tt t t  
 
2 3
At 2,4,8 , , , 2,4,8 2.tt t t  


3
2
cosh, sinh ,
t
F r t t t e  
 

Given that cosh , sinh , .
z
F x y e 
 

   
3
2 2 ˆ ˆˆ ˆ ˆ ˆcosh sinh 2 3
tdr
F r t ti t j e k i tj t k
dt
      


3
2 2
cosh 2sinh 3
t
t t t te  

 
2
0C
dr
F r dr F r t dt
dt
   

   
Therefore, the required line integral is
 
3
2
2 2
0
cosh 2sinh 3
t
t t t te dt  
3
2
2
0
sinh cosh
t
t t e   
 
  
8
sinh2 cosh4 0 1 1e      
 
8
sinh2 cosh4 2e   


 
2 2
Calculate , where , and is the
quarter - circle from 2,0 to 0,2 with center at 0,0 .
C
F r dr F xy x y C  
 
  
PROBLEM - 3
SOLUTION:
y
x-axis
t=0
t=/2
The radius of the circle
with center at (0,0)
with points (2,0) and
(0,2) on it is 2 .
(0,0)
PATH OF
INTEGRATION
(0,2)
t
y-axis
(2,0)

 
d
ˆ ˆ ˆ ˆ 2cos 2sin 2sin 2cos
r d
ti tj ti tj
dt dt
    



Parametric representation of the quarter -circle from
(2,0) to (0,2) with center at 0,0 and radius 2 is
ˆ ˆ =2cos 2sin ,0 .
2
r t ti tj t

  


2 2
4sin cos, 16sin cosF r t t t t t  
 

2 2
Given that , .F xy x y 
 

   
2 2ˆ ˆ ˆ ˆ4sin cos 16sin cos 2sin 2cos
dr
F r t t ti t tj ti tj
dt
      


2 2 3
8sin cos 32sin cost t t t 
 
2
0C
dr
F r dr F r t dt
dt
   

   
Therefore, the required line integral is
 
2
2 2 3
0
8sin cos 32sin cost t t tdt

  
2 2
2 2 3
0 0
8 sin cos 32 sin cost tdt t tdt
 
  

3 2
2
2 2
00
sin
8 32 sin (1 sin )cos
3
t
t t tdt


 
  
 
 

3 5
2 2
0 0
8 sin sin
32 32
3 3 5
t t
 
   
  
   
   
2 2
2 4
0 0
1
8 0 32 sin cos 32 sin cos
3
t tdt t tdt
 
 
   
 
 
 
2
0
8 1 1 8 32 32 32 8
32 0 32 0 8
3 3 5 3 3 5 5 5

   
          
   
   

2 2
1. [( ),( )] : 1,1 4Q F x y y x C xy x     
TEST YOUR KNOWLEDGE
.2 [ , . ], : ( ) [2cos , ,2sin ] (2,0,0) (2,2 ,0)Q F x y y zz x C r t t t t from to     
2 2
3 3
3
2
.3: [ , ], :
y x
Q F e e C y x 
10/28/25 LINE INTEGRAL CONTI..........


2 2
Evaluate the integral , where
and : 3 from (0,0) to (2,6).
C
f r ds f x y
C y x
 



PROBLEM - 4
Solution:
Given path is the line : 3 from (0,0) to (2,6).C y x
Let . So, 3 3.x t y x t  

Therefore, the parametric representation of the
ˆ ˆ ˆ ˆgiven straight line is 3 .r t xi yj ti tj   

 
d
ˆ ˆ ˆ ˆ 3 3
r d
ti tj i j
dt dt
   

  
ˆ ˆ ˆ ˆ 3 3 1 9 10
dr dr
i j i j
dt dt
       
 
 At 0,0, 0 and at 2,6, 2.t t 
2 2
Given that .f x y 

2 2
2
3 10 .f r t t t t   

10/28/25 LINE INTEGRAL CONTI..........

2
2
0
10 10t dt
Therefore, the required line integral is
 
2
0
( )
C C
dr dr dr dr
f r ds f r t dt f r t dt
dt dt dt dt
     
   
  
2
2
0
10 10t dt
2
3
0
10 10
3
t 

 
 

3
2
10 10 0
3
 
  
 
 
8 80 10
10 10 .
3 3
 
 
 
 


 
2 2 2
Evaluate the integral , where
and : cos , sin , 2 , 0 4 .
C
f r ds f x y z
C r t t t t 
  
  



PROBLEM - 5
Solution:
 
The parametric representation of the
given path is cos , sin , 2 .C r t t t t

 
d
ˆ ˆˆ ˆ ˆ ˆ cos sin 2 sin cos 2 .
r d
ti tj tk ti tj k
dt dt
      

  
2 2
ˆ ˆˆ ˆ ˆ ˆ sin cos 2 sin cos 2
sin cos 4 5
dr dr
ti tj k ti tj k
dt dt
t t
        
   
 
2 2 2
Given that .f x y z  

2 2 2
2 2 2 2
cos sin 2
cos sin 4 4 1.
f r t t t t
t t t t
   
    

 
4
2
0
4 1 5t dt

 
Therefore, the required line integral is
 
4
0
( )
C C
dr dr dr dr
f r ds f r t dt f r t dt
dt dt dt dt

     
   
  
 
4
2
0
5 4 1t dt

 
4
3
0
4
5
3
t t

 
 
 
 

34
5 4 4 0
3
 
 
  
 
 
3256
5 4 5
3
  

10/28/25 LINE INTEGRAL CONTI..........
 
1
2
3
3 3
Evaluate the integral , where
and is the hypocycloid cos , sin ,0 .
C
f r ds f x xy
C r t t t 
 
   
 



PROBLEM - 6
Solution:
3 3
The parametric representation of the
given path is cos , sin .C r t t 
 

 
3 3 2 2d
ˆ ˆ ˆ ˆ cos sin 3cos sin 3sin cos .
r d
ti tj t ti t tj
dt dt
    

10/28/25 LINE INTEGRAL CONTI..........
  
2 2 2 2

ˆ ˆ ˆ ˆ3cos sin 3sin cos 3cos sin 3sin cos
dr dr
dt dt
t ti t tj t ti t tj

     
 

1
2
3Given that .f x xy 
 
1
2
3 3 3
3
cos cos sinf r t t t t  

  
2 2
2 2
3cos sin 3sin cost t t t  
4 2 4 2
9cos sin 9sin cost t t t 
2 2
9cos sint t

6
cos cossint t t 
 
6
0
cos cos sin 3cos sint t t t tdt

 
Therefore, the required line integral is
 
0
( )
C C
dr dr dr dr
f r ds f r t dt f r t dt
dt dt dt dt

     
   
  
7 2 2
0 0
3 cos sin 3 cos sint tdt t tdt
 
  

 
8
2
00
cos 3
3 2cos sin
8 4
t
t t dt


 
  
 
 

2
0
1 1 3
3 sin 2
8 8 4
tdt

    
    
    
    

0
3 1 cos4
0
4 2
t
dt

 
 
 
 

0
3 1
sin4
8 4
t t

 
 
 
 
 
3 1 1
0 0 0
8 4 4

    
   
    
    
3
8


10/28/25 LINE INTEGRAL CONTI..........
6.Evaluate the integral ,
C
f rds

where

8)10(8
4
cos
32
2
0
4









t
ANS
10/28/25 LINE INTEGRAL CONTI..........

TEST YOUR KNOWLEDGE
( )f rdswithArclengthasparameter
3
1. , : [2cos ,2sin ].0
2
Q f x y C r t t t

   
2 2
2. 16 81 , : ( ) [3cos ,2sin ],0Q f x y C r t t t t     
2
.3 1 sinh , : [,cosh ],0 2Q f xC r t t t    
10/28/25 LINE INTEGRAL CONTI..........

LINE INTEGRAL INDEPENDENT OF
PATH
A line integral of the type
is said to be independent of path in a domain D
in space if for every pair of end points A and B
in D, in the above integral has the same value
for all paths in D the begin at A and end at B.
10/28/25 LINE INTEGRAL CONTI..........
 
1 2 3 1 2 3
( )
B
C C A
dx dy dz
F r dr Fdx Fdy Fdz F F F dt
dt dt dt
 
      
 
 
  
 

LINE INTEGRAL INDEPENDENT OF
PATH
  
1 2 3 1 2 3
( )
B
C C A
F r dr Fdx Fdy Fdz Fdx Fdy Fdz        
 
A line integral of the type
with continuous F
1, F
2, F
3 in a domain D in space is
independent of path in D if and only if
is the gradient of some function f in D. Moreover,
 
1 2 3
, ,F F F F

THEOREM - 1
  
1 2 3 1 2 3
( )
B
C C A
F r dr Fdx Fdy Fdz Fdx Fdy Fdz f B f A          
 

LINE INTEGRAL INDEPENDENT OF PATH
EXAMPLE – 1:
 
2 2
Show that the integral • 3 2 is
independent of path in any domain in space and find its value
if has the initial point : (0,1,2) and the terminal point :(1, 1,7).
C C
F dr x dx yzdy y dz
C A B
  

 

Let us see whether there exists a scalar function f such that
SOLUTION:
2 2 ˆˆ ˆGiven that 3 2F xi yzj yk  

F gradf

LINE INTEGRAL INDEPENDENT OF PATH
2 2 ˆ ˆˆ ˆ ˆ ˆ3 2
f f f
xi yzj yk i j k
x y z
  
     
  
2
2
3 (1)
2 (2)
(3)
f
x
x
f
yz
y
f
y
z

 


  


 


3
Integrating 1 w.r.t. , we get ( , , ) ( , ) (4)
( , ) is a function of and .
x f x y z x k y z
k y z y z
    

LINE INTEGRAL INDEPENDENT OF PATH
(5)
f k
y y
 
   
 
 

2
Integrating 6 w.r.t. y, we get ( , ) (7)
where is a function of .
k y z y z z
z z


    
  
3
Differentiating 4 w.r.t. , we get ( , )
f
y x k y z
y y
 
 
 
From (2) and (5), we have 2 (6)
k
yz
y

   

 
3 2
So from 4 we have ( , , ) (8)f x y z x y z z     

LINE INTEGRAL INDEPENDENT OF PATH
  
3 2
Differentiating 8 w.r.t. , we get
f
z x y z z
z z

 
  
 
2
(9)
f d
y
z dz

   

2 2
From (3) and (9), we have
d
y y
dz

  0
d
dz

 
 On integration w.r.t. , we get sayz z Aconstant c 

3 2
So from 8 we have ( , , ) (10)f x y z x y z c     

3 2
So we find that there exists a function
( , , ) such that .f x y z x y z c F gradf   

LINE INTEGRAL INDEPENDENT OF PATH
 
  
2 2
2 2
Therefore, the integral • 3 2 is
independent of path and its value is given by
• 3 2 1, 1,7 0,1,2 .
C C
C C
F dr x dx yzdy y dz
F dr x dx yzdy y dz f f
  
     
 
 


  
3 2 3 2
at 1, 1,7 at 0,1,2
-x y z c x y z c

       
   
 
3 2 3 2
1 1 7 - 0 1 2 8 2 6.c c
   
        
      

LINE INTEGRAL INDEPENDENT OF
PATH
  
1 2 3 1 2 3
( )
B
C C A
F r dr Fdx Fdy Fdz Fdx Fdy Fdz        
 
A line integral of the type
is independent of path in a domain D if and only if
its value around every closed path in D is zero.
THEOREM - 2

LINE INTEGRAL INDEPENDENT OF PATH
1 2 3
1 2 3
Let ( , , ), ( , , ), ( , , )becontinuousfunctionshaving
continuousfirstpartialderivativesinadomain inspace.
is called in if it is the differential
of a
exact
F x y z F x y z F x y z
D
Fdx Fdy Fdz D
f f f
df dx dy dz
x y z
 
  
  
  
 
1 2 3
differentiable function , , everywhere in , i.e., if we have
.
f x y z D
Fdx Fdy Fdz df  
1 2 3
1 2 3 1 2 3
From
ˆˆ ˆwe have , , , . . .
f f f
Fdx Fdy Fdz df dx dy dz
x y z
f f f
F F F ie F Fi F j Fk gradf
x y z
  
     
  
  
      
  

LINE INTEGRAL INDEPENDENT OF PATH
A domain D is called a simply connected domain if
every closed curve in D can be continuously shrunk
to any point in D without leaving D.
SIMPLY CONNECTED DOMAINS
NOT SIMPLY CONNECTED DOMAINS

LINE INTEGRAL INDEPENDENT OF
PATH
 
1 2 3
1 2 3
1 2 3
Let ( , , ), ( , , ), ( , , )becontinuousfunctionhaving
continuousfirstpartialderivativesinadomain inspace.If theline
integral isindependentof pathin ,
Then is exact then i
C
F x y z F x y z F x y z
D
Fdx Fdy Fdz D
Fdx Fdy Fdz
 
 

 1 2 3
3 3 2 1 2 1
n
ˆˆ ˆ 0
. . , ,
D
curl F curl Fi F j Fk
F FF F F F
ie
y z z x x y
   
    
  
     

THEOREM – 3:

LINE INTEGRAL INDEPENDENT OF PATH
 
 
1 2 3
1 2 3
1 2 3
Let ( , , ), ( , , ), ( , , )becontinuousfunction
havingcontinuousfirstpartialderivativesinadomain in
ˆˆ ˆspace.If 0
and is simply connected then the integral
C
F x y z F x y z F x y z
D
curlF curl Fi F j Fk
D
Fdx Fdy Fdz
   
 

isindependentofpathin .D
THEOREM – 4:

LINE INTEGRAL INDEPENDENT OF PATH
Example – 1:
Show that the form under integral sign is exact in
the plane and evaluate the integral.

 
 
 
 


2,
2
x
0,π
e cosydx-sinydy
Solution:
 
1 2 3
1 2 3
We know that a differential form
ˆˆ ˆis exact if 0.
Fdx Fdy Fdz
CurlF Curl Fi F j Fk
 
   

1 2 3
ˆ ˆˆ ˆ ˆ ˆSet cos sin 0
x x
F Fi F j Fk e yi e yj k     

10/28/25 LINE INTEGRAL CONTI..........

 
^ ^ ^ ^ ^ ^
1 2 3
ˆˆ ˆcos sin 0
cos sin 0
x x
x x
curl F
curl e yi e yj k
i j k i j k
x y z x y z
F F F e y e y

  
     
 
     


LINE INTEGRAL INDEPENDENT OF PATH
   
  
ˆ ˆ0 sin cos 0
ˆ ˆˆ ˆsin cos 0 0 0 0
x x
x x
e y i e y j
y z z z
e y e y k i j k
x z
      
    
   
      
  
      
 
  

10/28/25 LINE INTEGRAL CONTI..........
LINE INTEGRAL INDEPENDENT OF PATH
 
1 2 3
So the given differential form
cos -sin is exact.
x
Fdx Fdy Fdz e ydx ydy  
 
 
 
1 2 3
So there exists function, say , , such that
cos -sin .
.. cos -sin
x
x
f x y z
df Fdx Fdy Fdz e ydx ydy
f f f
ie dx dy dz e ydx ydy
x y z
   
  
  
  

10/28/25 LINE INTEGRAL CONTI..........



cos 1
sin 2
0 3
x
x
f
e y
x
f
e y
y
f
z

 


 


 

On comparing the coefficients of dx, dy and dz we get
LINE INTEGRAL INDEPENDENT OF PATH

10/28/25 LINE INTEGRAL CONTI..........
LINE INTEGRAL INDEPENDENT OF PATH
On integrating (1) partially w. r. t. x we get
 cos , cos , (4)
( , ) is a function of and .
x x
f e ydx y z e y k y z
k y z y z
    
Differentiating (4) partially w.r.t. y we get
 cos , sin (5)
x xf k
e y k y z e y
y y y
  
     
  
From (2) and (5), we get

sin sin 0
.. is a function of z alone, say , ( )
x x k
e y e y
y
ie k k y z c z

   

LINE INTEGRAL INDEPENDENT OF PATH
From (4) we have
cos (6).
x
f e y c z  
Differentiating (6) partially w. r. t. z we get
 cos (7)
xf dc
e y c z
z z dz
 
   
 
From (3) and (7), we get
 0 A constant = say
dc
c z C
dz
  
From (6) we have
cos (8)
x
f e y C  

Hence the exact differential is
 cos sin cos
x x x
e ydx e ydy df d e y c   

   

3 3 3
2, 2, 2,
2 2 2
0, 0, 0,
cos sin cos
x x
e ydx ydy df d e y c
  
  
     
     
     
      
LINE INTEGRAL INDEPENDENT OF PATH

 

3
(2, )
2
(0, )
2 0
cos
3
cos cos
2
0 1 1
x
e y c
e c e c
c c




  
 
 
   
 
 
    
ANS
10/28/25 LINE INTEGRAL CONTI..........
LINE INTEGRAL INDEPENDENT OF PATH


 
^ ^ ^ ^ ^ ^
1 2 3
ˆˆ ˆ3 3 2
3 3 2
i j k i j k
curl F
x y z x y zcurl yi xj zk
F F F y x z

     
 
       

EXAMPLE – 2:
Here
ˆ ˆ ˆ
F=3yi+3xj+2zk

  
ˆˆ ˆ2 3 3 2 3 3z x i y z j x y k
y z z x x y
          
     
     
          
To find the exact differential
Suppose that there a function f(x,y,z) in space such
that 3ydx+3xdy+2zdz=df.
10/28/25 LINE INTEGRAL CONTI..........

ˆˆ ˆ0 0 0 0 3 3 0i j k      

LINE INTEGRAL INDEPENDENT OF PATH

10/28/25
LINE INTEGRAL CONTI..........



3 1
3 2
2 3
f
y
x
f
x
y
f
z
z

 


 


 

LINE INTEGRAL INDEPENDENT OF PATH

Integrating 1 w.r.t. , we get ( , , ) 3 ( , ) (4)
( , ) is a function of and .
x f x y z xy k y z
k y z y z
    
3 (5)
f k
x
y y
 
    
 

k
Since ( , ) 0 and =0, integrating w.r.t. ,
y
we get ( , ) function of z-alone = z say
k y z y
k y z A 




  Differentiating 4 w.r.t. , we get 3 ( , )
f
y xy k y z
y y
 
 
 
From (2) and (5), we have 3 3 0
k k
x x
y y
 
   
 
 So from 4 we have ( , , ) 3 z (6)f x y z xy    
LINE INTEGRAL INDEPENDENT OF PATH

  Differentiating 6 w.r.t. , we get 3 .
f
z xy z
z z

 
 
 
(7)
f d
z dz

  

From (3) and (7), we have 2
d
z
dz


2
d
z
dz

 

2
On integration w.r.t. , we get ,
where c is an arbitrary constant.
z z z c 
LINE INTEGRAL INDEPENDENT OF PATH


2
So from 6 we have ( , , ) 3 .f x y z xy z c  
 




 

4,1,2 4,1,2 4,1,2
2
0,0,0 0,0,0 0,0,0
3 3 2 3ydx xdy zdz df d xy z c        

4,1,2
2
0,0,0
3xy z c   
 
  
2 2
3 4 1 2 3 0 0 0c c
 
     
 
= 16
ANS
 
2 2
4,1,2 0,0,0
3 3
At At
xy z c xy z c        
   
LINE INTEGRAL INDEPENDENT OF PATH


^ ^ ^ ^ ^ ^
2 2
1 2 3
So
2 2 1
i j k i j k
curl F
x y z x y z
F F F xy x ydy
     
 
     

EXAMPLE – 3:
Here ˆ ˆ ˆ
2 2
F=2xy i+2x yj+k

 

2 2
2 2
ˆ ˆ1 2 2 1
ˆ
2 2
x y i xy j
y z z x
x y xy k
x y
      
   
   
      
  
 
 
  
So the given differential form s exact.(path independent)
10/28/25 LINE INTEGRAL CONTI..........
 
ˆ ˆˆ ˆ ˆ ˆ0 0 0 0 4 4 0 0 0 0i j xy xy k i j k         

LINE INTEGRAL INDEPENDENT OF PATH

10/28/25 LINE INTEGRAL CONTI..........



2
2
2 1
2 2
1 3
f
xy
x
f
xy
y
f
z

 


 


 

LINE INTEGRAL INDEPENDENT OF PATH

10/28/25 LINE INTEGRAL CONTI..........

2 2
Integrating 1 w.r.t. , we get ( , , ) ( , ) (4)
( , ) is a function of and .
x f x y z x y k y z
k y z y z
    
2
2 (5)
f k
x y
y y
 
    
 

k
Since ( , ) 0 and =0, integrating w.r.t. ,
y
we get ( , ) function of z-alone = z say
k y z y
k y z A 




  
2 2
Differentiating 4 w.r.t. , we get ( , )
f
y x y k y z
y y
 
 
 
2 2
From (2) and (5), we have 2 2 0
k k
x y x y
y y
 
   
 
 
2 2
So from 4 we have ( , , ) z (6)f x y z x y    
LINE INTEGRAL INDEPENDENT OF PATH

  
2 2
Differentiating 6 w.r.t. , we get .
f
z x y z
z z

 
 
 
(7)
f d
z dz

  

From (3) and (7), we have 1
d
dz


1
d
dz

 
On integration w.r.t. , we get ,
where K is an arbitrary constant.
z z z K 
LINE INTEGRAL INDEPENDENT OF PATH

10/28/25

2 2
So from 6 we have ( , , ) .f x y z x y z K  
 




 

, , , , , ,
2 2
0,0,0 0,0,0 0,0,0
3 3 2
a b c a b c a b c
ydx xdy zdz df d x y z K        

, ,
2 2
0,0,0
abc
xy z K   
 
  
2 2 2 2
0 0 0a b c K K
 
     
 
= a
2
b
2
+c
ANS
LINE INTEGRAL INDEPENDENT OF PATH


^ ^ ^
1 2 3
i j k
curlF
x y z
F F F
  

  

EXAMPLE – 4:
Here ˆ ˆ ˆ
y zx zF= i j+ k

LINE INTEGRAL INDEPENDENT OF PATH

 

^ ^ ^
ˆ ˆ
ˆ
i j k
z zx i y z j
y z z x
x y z
zx y k
y zx z x y
      
   
   
         
 
     
  
 
   
So the given differential form s exact.(path dependent)
ANS
10/28/25 LINE INTEGRAL CONTI..........
 
ˆˆ ˆ0 0 0 1x i j z k       0

LINE INTEGRAL INDEPENDENT OF PATH
Tags