LECTURE-29-DOUBLE INTEGRAL FOR ENGINEERING MATHEMATICS.ppt

wwwkaushikbiswal5 5 views 49 slides Oct 28, 2025
Slide 1
Slide 1 of 49
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49

About This Presentation

Engineering Maths Double Integral


Slide Content

DEPARTMENT OF
MATHEMATICS
[YEAR OF ESTABLISHMENT – 1997]
DEPARTMENT OF MATHEMATICS, CGU

MATHEMATICS - I
FOR BTECH 1
st
SEMESTER COURSE [COMMON TO ALL BRANCHES OF
ENGINEERING]
DEPARTMENT OF MATHEMATICS, CVRCE
TEXT BOOK:
ADVANCED
ENGINEERING
MATHEMATICS
BY ERWIN
KREYSZIG
Double Integrals
[Chapter – 9.3]
LECTURES –29

10/28/25 LINE INTEGRAL CONTI..........
Content:


Introduction to Double Integral


Definition and Properties


Computation of Double Integral


Applications of Double Integrals


Examples


Change of Variables


Examples


Practice Problems

DOUBLE INTEGRAL
Let f(x, y) be any function. Let R be a region in a plane. Let us
subdivide the region in to a large number of small
rectangular subregions. Let the k
th
region has the
dimensions say x
k
and y
k .
Let (x
k,y
k ) be any arbitrary point on
the k
th
subregion and  A
k = x
k y
k
be the area of the k
th
rectangular
subregion. Next consider the
sequence of real numbers (J
1
,
J
2
, . . . , ), where
1
( , )
n
n k k k
k
J f x y A

 
x
k
y
k  A
k
= x
k
y
k
x
y
(0,0)

Assuming that f(x, y) is continuous in R and R is
bounded by finitely many smooth curves. It can
be shown that the sequence (J
1, J
2, . . . , )
converges to a limit that is independent of the
choice of subdivisions and corresponding points
(x
k,y
k). This limit is called the double integral of
f(x, y) over the region R and is denoted by
(, ) or (, )
R R
f xydxdy f xydA 
DOUBLE INTEGRAL

10/28/25 LINE INTEGRAL CONTI..........

•area of the region: finding area using double integral,
volume of an elliptic paraboloid.
• average value of a function: calculating avarage
strom rainfall, of a wire;
• Surface integral;
• double and volume integral.
Applications of Double Integrals

1. [ ( , ) ( , )] ( , ) ( , )
A A A
f x y g x y dA f x ydA g x ydA    
2. (,) (,)
A A
cfxydA c fxydA 


AA
dAyxgdAyxf ),(),(
1.Properties Linearity
If f(x,y) ≥ g(x,y) for all (x,y) in R, then2.Comparison
S
ome Properties of Double Integral

10/28/25 LINE INTEGRAL CONTI..........



2121
),(),(),(
AAAA
dAyxfdAyxfdAyxf
3.Additively
If A
1
and A
2
are non-overlapping regions then
A
1
A
2
10/28/25 LINE INTEGRAL CONTI..........
S
ome Properties of Double Integral

•If f (x,y) is continuous on rectangle R=[a,b]×[c,d]
then double integral is equal to iterated integral
a b
x
y
c
d
x
y


b
a
d
c
d
c
b
aR
dydxyxfdxdyyxfdAyxf ),(),(),(
fixed fixed
10/28/25 LINE INTEGRAL CONTI..........
c
omputation of Double Integral

•If f (x,y) is continuous on
A={(x,y) | x in [a,b] and h (x) ≤ y ≤ g (x)} then
double integral is equal to iterated integral
a b
x
y
h(x)
g(x)
x


b
a
xg
xhA
dydxyxfdAyxf
)(
)(
),(),(
A
10/28/25 LINE INTEGRAL CONTI..........
c
omputation of Double Integral

•If f (x,y) is continuous on
A={(x,y) | y in [c,d] and h (y) ≤ x ≤ g (y)} then
double integral is equal to iterated integral
d
x
y


d
c
yg
yhR
dxdyyxfdAyxf
)(
)(
),(),(
c
h(y) g(y)
y
A
10/28/25 LINE INTEGRAL CONTI..........
c
omputation of Double Integral

If f (x, y) = φ (x) ψ(y) is continuous on rectangle
R=[a,b]×[c,d] then double integral is equal to
iterated integral












 
d
c
b
a
d
c
b
aR
dyydxxdxdyyxdAyxf )()()()(),( 
10/28/25 LINE INTEGRAL CONTI..........
c
omputation of Double Integral

S
ome applications of double integral
2. Volume V beneath the surface z = f(x,y) (>0) and above
the region R in the xy-plane is given by
,
R
V f xy dxdy
1.Area A of a plane region R is given by
R
A dA

3. Total Mass M of a mass distribution of the density f(x,y)
(= mass per unit area) enclosing a region R in the xy-plane
is given
S
ome applications of double integral
,
R
M fxydxdy
4. Let be the coordinates of the center of gravity of a plane
region R enclosed in xy-plane with mass M of a mass distribution of
the density f(x,y) (= mass per unit area). Then we have.
 
1 1
, and y ,
R R
x xf x y dxdy yf x y dxdy
M M
  
x,y

5. Moments of inertia I
x
and I
y
about x and y axes,
respectively, of a mass with a mass distribution of the density
f(x,y) (= mass per unit area) in a region R in xy-plane are given
as follows.
S
ome applications of double integral
 
2 2
, and ,
x y
R R
I y f x y dxdy I x f x y dxdy  
Polar Moment of inertia I
0
about the origin of a mass with a
mass distribution of the density f(x,y) (= mass per unit area)
in a region R in xy-plane is given as follows.
 
2 2
0
,
x y
R
I I I x y f x ydxdy   

1.Evaluate the following double integral:
2 4
2 2
0 0
( )x y dxdy
2 4
2 2
0 0
( )x y dxdy
4
2 3
2
0 0
3
x
xy dy
 
 
 
 

128 32 160
3 3 3
  
ANS
S
ome problems involving double integral
Solution:
2 4
2 2
0 0
( )x y dxdy
 
  
 

2
3
0
64 4
3 3
y y 
 
 
 
2
2
0
64
4
3
y dy
 
 
 
 

4 2
2 2
0 0
( )x y dxdy
4
2
0
8
2
3
x dx
 
 
 
 

32 128 160
3 3 3
  
ANS
S
ome problems involving double integral
2.Evaluate the following double integral:
Solution:
2 4
2 2
0 0
( ) byorderreversed.x y dxdy
4 2
2 2
0 0
( )x y dy dx
 
  
 

2
4 3
2
0 0
3
y
yx dx
 
 
 
 

4
3
0
8 2
3 3
x x 
 
 
 

 
3
2 2
0
y
y
x y dxdy


3
3 3 4
0 0
8 8 8 81
54
3 3 4 3 4
y y
dy

   


ANS
3.Evaluate the following double integral: 
3
2 2
0
y
y
x y dxdy


Solution:  
3
2 2
0
y
y
x y dx dy

 
  
  

33
2
0
3
y
y
x
xy dy

 
3 3 3
3 3
0
3 3
y y
y y dy
     
       
     

S
ome problems involving double integral

 
3
2 2
0
4.Findthevalue of byorderreversed.
y
y
x y dxdy


Solution:
-3,3 0,3 3,3
0,0
x=-y
x=y
Y=3A
O
CB
10/28/25 LINE INTEGRAL CONTI..........
S
ome problems involving double integral
Y-axis
X-axis

For changing the order of integration, we
divide the region of integration into vertical
strips . The region of integration is divided
into two parts OAB and OBC
For the region OAB, y varies from (-x)
to 3 and x varies from (-3) to 0. for the
region OBC, y varies from x to 3 and x
varies from 0 to 3
S
ome problems involving double integral
Given that the region of integration is bounded by x = - y , x
= y, y = 0 and y = 3, i.e. the region of integration is portion
OAC in the Figure.

     
3
2 2 2 2 2 2
0

y
y OAB region OBC region
x y dxdy x y dydx x y dydx
  
       
3 3
0 3 3 3
2 2
3 0
3 3
x
x x x x
y y
x y dx x y dx

  
    
   
0 3 3 3
2 3 2 3
3 0
3 9 3 9
3 3
x
x x
x x
x x dx x x dx

 
         
              
         
 
10/28/25 LINE INTEGRAL CONTI..........
S
ome problems involving double integral
   
30 3 3
2 2 2 2
3 0
yx
x y x x y x
x y dy dx x y dy dx

   
   
      
      
  

3
0
4
3
0
3
3
4
3
99
3
x
xxxx
x


542727)272727()272727(0 
ANS
10/28/25 LINE INTEGRAL CONTI..........
S
ome problems involving double integral

C
hange of variables in double
i
ntegrals: jacobian
The formula for a change of variables in double
integrals from x,y to u,v is
That is, the integrand is expressed in terms of u and v,
and dxdy is replaced by dudv times the absolute value
of the Jacobian “J” which is defined as follows.
  , , , ,
R R
f x y dxdy f x uv y uv Jdudv

 

C
hange of variables in double
i
ntegrals: jacobian


,
,
x x
xy x y x yu v
J
y yuv u v v u
u v
 
     
    
     
 
Here we assume that the functions x = x(u,v) and y = y(u,v)

C
hange of variables in double
i
ntegrals: jacobian
and

P
roblems involving Change of
v
ariables in double integrals:
j
acobian

2
5. Evaluate , where is region
bounded by the parallelogram 0, 2,
3 2 0,3 2 3.
R
x y dxdy R
x y x y
x y x y

   
   

By changing the variables x,y to the new variables u, v, by the
substitution (transformation) x + y = u, 3x - 2y = v, the given
parallelogram R reduces to a rectangle R* as shown in Figure
given below.
Solution: 
2
Let , =f x y x y

x
y
0(0,0)
R
R*
u
v
u=2
v=3
P
roblems involving Change of variables in
d
ouble integrals: jacobian
Transformed region
R* : 0 ≤ u ≤ 2, 0 ≤ v ≤ 3
Given region
R : 0 ≤ x+y ≤ 2, 0 ≤ 3x-2y ≤ 3
0(0,0)
u=0
v=0
(2,0)
(2,3)(0,3)

P
roblems involving Change of variables in
d
ouble integrals: jacobian
   
   
1 2 1 1
2 , 2 ,
5 5 5 5
1 3 1 1
3 , 3 .
5 5 5 5
x x
u v u v
u u v v
y y
u v u v
u u v v
      
      
   
      
      
     
   
      
   
Solving and 3 -2 for and we get
1 1
2 and 3 .
5 5
.x y u x y v x y
x u v y u v
  
   



2 1
, 5 5
3 1,
5 5
2 3 5 1
25 25 25 5
x x
xy u v
J
y yuv
u v
 
  
   
 

 
   
1 1
5 5
J  
P
roblems involving Change of variables in
d
ouble integrals: jacobian

10/28/25 LINE INTEGRAL CONTI..........
P
roblems involving Change of variables in
d
ouble integrals: jacobian
Since we have u = x + y = 0 and u = x + y =2, u
varies from 0 to 2. Since we have v = 3x - 2y = 0 and
v = 3x - 2y =3, v varies from 0 to 3. Thus the given
integral in terms of the new variables u,v is given by

 
2
Also we have , , , =f x uv y uv u
 
2
,
R R
x y dxdy f x y dxdy  

 , , ,
R
f x uv y uv Jdudv


P
roblems involving Change of variables in
d
ouble integrals: jacobian
3 2
2
0 0
1
5
u dudv
 

 
 

3 2
2
0 0
1
5
ududv
3 2
2
0 0
1
5
udu dv
 
 
 

2
3 3
0 0
1
5 3
u
dv
 

 
 

3 3
0
1 2
0
5 3
dv
 
 
 
 

3
0
8
15
dv

3
0
8 24 8
.
15 15 5
v  

P
roblems involving Change of
v
ariables in double integrals:
j
acobian
 
2 2
6. Evaluate , where is region
0 , 0 using ploar substitution.
x y
R
e dxdy R
x y
 
   

Let us change the variables x,y to the new variables u, v, by
the polar substitution (transformation) x = rcos, y = rsin.
Solution: 
 
2 2
Let , =
x y
f xy e
 

P
roblems involving Change of variables
i
n double integrals: jacobian
The region of double integration R is R: 0 < x < , 0 < y < ,
i.e. the first quadrant as shown in the figure given below. By
changing the variables x,y to the new variables r, , by the
polar substitution (transformation) x = rcos, y = rsin, the
transformed region of integration R* is R * : 0 < r < , 0 < 
< /2.
X
(0,0)
Y

P
roblems involving Change of variables
i
n double integrals: jacobian
   
   
cos cos , cos sin ,
sin sin , sin cos .
x x
r r r
r r
y y
r r r
r r
   
 
   
 
   
    
   
   
   
   


2 2
Therefore, the Jacobian of transformation is given by
cos sin,
sin cos,
cos sin
x x
rx y r
J
y y rr
r
r r r
 
 

 
 
  
  
 
 
  

10/28/25 LINE INTEGRAL CONTI..........
J r r  
P
roblems involving Change of variables
i
n double integrals: jacobian
 
 
2 2 2 2
2cos sin
Also we have
, , , = .
r r
r
f x r y r e e
 
 
 


Thus the given integral in terms of the polar variables r, is
given by.
 

2 2
= ,
x y
R R
e dxdy f x ydxdy
 
 

 
*
= , , ,
R
f x r y r Jdrd  
P
roblems involving Change of variables
i
n double integrals: jacobian
2
2
0 0
r
e rdrd





2
2
0 0
r
e rdrd




 
 
 

2
2
00
1
2
r
e d



 
 
 
 

10/28/25 LINE INTEGRAL CONTI..........

2 2
2
0
00 0
1 1 1
0 .
2 2 2 4
d d
 


  

 
    
 
 
 
P
roblems involving Change of variables
i
n double integrals: jacobian

APPLICATION OF DOUBLE
INTEGRATION
1. VOLUME OF A
REGION
SOLUTION: We know that the volume V beneath
the surface z=f(x,y) (>0) and above the region R in
the XY plane is given by ( , )
R
V f x y dxdy
10/28/25 LINE INTEGRAL CONTI..........

( , )
R
V f x y dxdy

 










2
0
3
0
2
32
0
3
0
22
9
3
4
)94(
yy x
dyxy
x
dydxyx
 


2
0
2
0
3
2
1447272
3
27
362736
y
y
ydyy
ANS
10/28/25 LINE INTEGRAL CONTI..........
APPLICATION OF DOUBLE INTEGRATION

2. Center of Gravity
Find the coordinates of the center of gravity of a
mass of density f(x ,y)=1 in a region R. where R is the
triangle with the vertices (0,0), (b,0), (b, h)
SOLUTION: We know that if f(x,y) be the density
of a distribution of mass in the in the XY plane.
Then the total mass M in a region R is given by
(, ) .
R
M f xydxdy
yx,
APPLICATION OF DOUBLE
INTEGRATION

Given that f(x,y)=1 in the given region R in xy
plane x varies from 0 to b and y varies from 0 to



0 0 0 0
So 1.
hx hx
y y
b bb b
x y x y
M dydx dx dy
 
   
   
0,0
(b,h)
0,b
hx
b
10/28/25 LINE INTEGRAL CONTI..........
APPLICATION
OF DOUBLE
INTEGRATION

2 2
0 0
2 2 2
b
b
x
hx hx hb hb
M dx
b b b

   
Let the coordinates of the center of gravity of the
mass in R
1 1
( , ) and ( , )
R R
x xf x y dxdy y yf x y dxdy
M M
  
10/28/25 LINE INTEGRAL CONTI..........
APPLICATION OF DOUBLE INTEGRATION

0
0 0 0 0 0
2 2 2
hx hx
b b bb b hx
bx xdydx xdy dx xy dx
hb hb hb
 
 
   
 
 
 
  

ANS
10/28/25 LINE INTEGRAL CONTI..........
APPLICATION OF DOUBLE INTEGRATION
2 3 3
2
2 2
0 0 0
2 2 2 2 2
3 3 3
b
b b
hx h x b b
dx x dx
hb b hb b b b
    
    
     
     
 
2
0 0 0 0 0 0
2 2 2
2
hx hx
hx
b b bb b
b
y
y ydydx ydy dx dx
hb hb hb
 
  
   
  
  
 
  
2 2 2 3 3
2
2 2 3 3
0 0 0
2 2
2 2 3 3 3
b
b b
h x h h x h b h
dx x dx
hb b hb b b b
     
          
     
 

APPLICATION DOUBLE
INTEGRATION
3. Moment of Inertia
Find the moment of inertia and polar moment of inertia
of a mass of density f(x ,y)=1 in a region R.
where R is the triangle with the vertices (0,0), (b,0), (b, h).
SOLUTION: We know that if f( x, y) be the
density of a distribution of mass in the in
the XY plane. Then moment of inertia in a
region R in x axis and y axis is given by

2 2
0
( , ) , ( , ) and
x y x y
R R
I y f x y dxdy I x f x y dxdy I I I    
0
, ,
x y
I I I

Given that f(x,y)=1 in the given region R in
XY- plane y varies from 0 to and
x varies from 0 to b

So
So

3
2 2
0 0 0 0 0 0
.
3
hx hx
hx
y y
b b bb b
b
x
x y y
y
I y dydx ydy dx dx
 
  
 
  
  
  
  
 
  
0,0
b,h
0,b
hx
b
APPLICATION
OF
DOUBLEINTE
GRATION

2 2 2 3
0
0 0 0 0
hx
b b bb hx
b
y
R
h
I x dxdy x dy dx x y dx xdx
b
 
 
   
 
 
 
    
4 4 3
0
4 4 4
b
hx bh bh
b b
  
10/28/25 LINE INTEGRAL CONTI..........
APPLICATION OF DOUBLE INTEGRATION
3 3 3 3 4 4 3 3
3
3 3 3 3
0 0 0
3 3 3 4 12 12
b
b b
hx h h x bh bh
dx xdx
b b b b
 
    
 
 
 

 
3 3 3 3
2 2 2
3
0 0 0 0
0
3 3
hx
hx
b
b b bb
y hx h x
x y dy dx x y dx dx
b b
 
  
        
 
 
 
  
4 3 4 4 3 4 3 3
3 3
0
4 12 4 12 4 12
b
hx hx hb hb bh hb
b b b b
 
       
 
ANS10/28/25 LINE INTEGRAL CONTI..........
APPLICATION OF DOUBLE INTEGRATION
 
0
2 2
0
Thepolarmomentof inertiaI aboutoriginof themassin is
( , )
x y
R
R
I I I x y f x y dxdy   
 
2 2
(
R
x y dxdy 

TEST YOUR KNOWLEDGE
 
2
4
0 0
5
1 0
int
sin
.1:
.2: 1 2
y
x
x y
Evaluatethefollowingdouble egral
y
Q dxdy
y
Q x e dydx





10/28/25 LINE INTEGRAL CONTI..........

2 2
.3: .
tan
1 , 1 .
Q Findthevolumeof the followingregionsinspace
The firstoc tregionboundedbythecoordinate planesand surfaces
y x z x   
2 2 2
.4:
( , ) 1 .
.
Q Findthecenterof theGravityof amassof density
f x y inaregionR whereRistheregion
x y a inthe firstquadrant

 
10/28/25 LINE INTEGRAL CONTI..........
Tags