Matrices & Determinants

IshantJain20 174 views 31 slides May 08, 2021
Slide 1
Slide 1 of 31
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31

About This Presentation

This document contains every topic of Matrices and Determinants which is helpful for both college and school students:
Matrices
Types of Matrices
Operations of Matrices
Determinants
Minor of Matrix
Co-factor
Ad joint
Transpose
Inverse of matrix
Linear Equation Matrix Solution
Cramer's Rule
Gauss...


Slide Content

ISHANT JAIN, MALHAR SHAH,MEET DOSHI

23−5
124
650
MEANING: -
m x n real numbers arranged in m rows and ncolumns and enclosed by a pair of
brackets is called m x n matrix.

TYPES OF MATRIX
Row Matrix
Column Matrix
Null Matrix/ Zero Matrix
Square Matrix
Diagonal Matrix
Scalar Matrix
Identity Matrix or Unit Matrix
Equal Matrix
Negative Matrix
Upper Triangular Matrix
Lower Triangular Matrix
Symmetric Matrix
Skew Symmetric Matrix

Sr.
No.
Typeof Matrix Meaning Example
1. Row Matrix A matrix consisting of asingle row.
Also called as row vector.
123
2. Column Matrix A matrix consisting of a single column.
Also called as column vector.
1
2
3
3. Null Matrix All the elements are zero.
Also known as zero matrix.
Denotedby “O”.
00
00
4. Square Matrix Matrix having same number of rowsand columns.
It can also be written as A
n.
23
45
213
162
524
5. DiagonalMatrix All elements are zero except main or principal diagonal.
20
05
300
040
001
6. Scalar Matrix All the diagonal elements are same.
30
03
200
020
002
7. UnitMatrix Ascalar matrix in which each diagonal element is 1.
Also called “Identity matrix”.
Denoted by I
n.
Every unit matrix is a diagonal matrix and also a scalar matrix.
10
01
100
010
001

Sr.
No.
Typeof Matrix Meaning Example
8. Equal Matrix Two matriceshaving the same order.
Each element of A= Corresponding to the element of B
A=
23
10
B=

4
2 9
2−10
9. Negative Matrix Replacing all the elements with its additive inverse.
A=
3−1
−24
5−3
B=
−31
2−4
−53
10. Upper Triangular
Matrix
Asquare matrix in which all elements below the principal
diagonal are zero.
137
028
007
11. LowerTriangular
Matrix
Asquare matrix in which all elements above the principal
diagonal are zero.
100
360
257
12. Symmetric Matrix
A square matrixhaving a
ij=a
ji
213
162
324
13. Skew Symmetric Matrix
A square matrixhaving a
ij= -a
ji
213
−162
−3−24
a
12=a
21
a
13=a
31
a
23=a
32
a
12=-a
21
a
13=-a
31
a
23=-a
32

1.Matrix Addition
2.Matrix Subtraction
3.Scalar Multiplication
4.Matrix Multiplication

46
02
32
85
78
87

97
58
53
02
44
56

43
69
1209
1827

25
71
75
-30
-110
4635

Determinant is a scalar value that is calculated from a matrix.
It can only be calculated for a square matrix.
It is denoted by ∆(Delta).
Calculation For 2X2 Matrix
13
56
(1 x 6) –
(3 x 5) -9

030502
040001
−20610
3{(0 X 10) –(1 X 6)} –
5{(4 X 10) –(-2 X 1)} +
2{(4 X 6) –(-2 X 0)}
-180

MEANING: -
The minor of a element in a matrix is the determinant obtained by deleting the row
and the column in which that element appears.
Minor of a particular element in a matrix
824
607
359
Step1:-Ignoretherowandcolumninwhichthe
elementa
11i.e.8is
Step 2: -Write the remaining elements in determinant
form
07
59
07
59
Minor of particular element is
(-35)

824
607
359
07
59
67
39
60
35
24
59
84
39
82
35
24
07
84
67
82
60
Minor of a Matrix
−353330
−26034
1432−12
Minor
Matrix

In some cases, minor and
co-factor remains same but
it may be different or there
may be difference of minus.
C
ij=(-1)
i+j
M
ij
C
ij= co-factor of a
ij
M
ij= minor of a
ij
a
11a
12a
13
b
21b
22b
23
c
31c
32c
33
C
11= (-1)
1+1
M
11
C
11 =(-1)
2
M
11
C
11= M
11
a
11a
12a
13
b
21b
22b
23
c
31c
32c
33
C
12= (-1)
1+2
M
12
C
12 =(-1)
3
M
12
C
12= -M
12

MEANING: -
The Adjointof A is the transposed matrix of cofactors of A.
Adjointof a Square Matrix of order 2 x 2
Step1:-Changethepositionofprincipalelementi.e.
2&3.
Step2:-Changethesignofremainingtwoelements
i.e.-1&-5.
25
13
3
2
3−5
−12

Adjointof a Square Matrix of order
3 x 3
−124
102
31−1
Step1:-Findouttheminormatrixofgiven
matrix. 02
1−1
12
3−1
10
31
24
1−1
−14
3−1
−12
31
24
02
−14
12
−12
10
Step2:-FindouttheCofactormatrixof
Obtainedmatrixi.e.
+−+
−+−
+−+
−2−71
−6−11−7
4−6−2
−27 1
6−117
4 6−2
Step3:-FindouttheTransposeofObtained
matrix.
−��??????
�−���
��−�








135
742
3
2AA 2x3










17
34
52
3
2
T
T
AA T
jiijaa
For all iand j
Interchange rows and columns
Then transpose of A, denoted A
T
.
The dimensions of A
T
are the reverse
of the dimensions of A

MEANING: -
Consider a scalar k. The inverse is the reciprocal or division of 1 by the scalar.
Example: k=7the inverse of k or k
-1
= 1/k = 1/7

A
-1
=
??????????????????(??????)
??????
A =
312
2−3−1
121
= 8 ≠�
??????= 3 (-3 x 1 –2 x -1)
1 (2 x 1 –1 x -1)
2 (2 x2 –1 x -3)
??????
−13 7
−31 5
5−7−11
MINOR
Adj (A)
−13 5
−31 7
7−5−11
COFACTOR & TRANSPOSE
A
-1
=
1
8
−13 5
−31 7
7−5−11

MEANING: -
It is Solution by the method of inversion of the coefficient matrix.
3x + y + 2z = 3
2x +3y –z = -3
x + 2y + z = 4
Step1:-LetA=CoefficientMatrix. A =
312
2−3−1
121
Step2:-LetX=UnknownMatrix. X =
�
�
�
Step3:-LetB=ConstantMatrix. B =
3
−3
4
X = A
-1
B Required Solution

A
-1
=
??????????????????(??????)
??????
−13 7
−31 5
5−7−11
MINOR
A =
312
2−3−1
121
= 8 ≠�
Adj (A)
??????= 3 (-3 x 1 –2 x -1)
1 (2 x 1 –1 x -1)
2 (2 x2 –1 x -3)
??????
−13 5
−31 7
7−5−11
COFACTOR & TRANSPOSE
A =
312
2−3−1
121A
-1
=
1
8
−13 5
−31 7
7−5−11
�
�
�
=
1
8
−13 5
−31 7
7−5−11
X
3
−3
4
As, X = A
-1
B
�
�
�
=
1
2
−1
X = 1
Y = 2 Ans.
Z = -1

x -3y = 5
2x + y = 4
=


x
1
=


y
2
SOLUTIONS ARE: -
∆=
01−3
0201
= 7

1=
05−3
0401
= 17

2=
0105
0204
= -6
x=
17
7
y=
−6
7

x+2y+3z =1
x+3y+5z =2
2x+5y+9z =3
Step1:-LetA=CoefficientMatrix. A =
123
135
259
Step2:-LetX=UnknownMatrix. X =
�
�
�
Step3:-LetB=ConstantMatrix. B =
1
2
3
Step4:-Convertcoefficientmatrixintouppertriangularmatrix.

A =
123
135
259
�
�
�
=
1
2
3
~
123
012
013
X=
1
1
1
R
2–R
1
R
3-2R
1
R
3–R
2 ~
123
012
001
X =
1
1
0
Step5:-Convertmatrixformintoequationagain.
1x+2y+3z=1 …….(1)
0x+1y+2z=1 …….(2)
0x+0y+1z=0 …….(3)
From 3
rd
Eq
n
From 2
nd
Eq
n
y+2z=1
y=1
z=0
x+2y+3z=1
x+2+0=1
x= -1
From 1
st
Eq
n
X = -1
Y = 1 Ans.
Z = 0

1.
•If |A|≠0���−�??????����??????��??????��??????��ℎ��??????
−1
��??????���
2.
•Let A = I
n∙??????;�ℎ���I
n=??????����??????���??????��??????��������′�′
3.
•Convert A=I
n∙A into I
n=BA
4.
•Convert B=??????
−1

A =
10−1
2−13
1−10
|A|=1
−13
−10
-0
23
10
+(-1)
2−1
1−1
= 1(3)-0(3)+(-1)(-1)
|A| = 4 ≠0
??????
10−1
2−13
1−10
=
100
010
001
A
A=I
n∙A
~
10−1
0−15
0−11
=
100
−210
−101
A
??????
2−2??????
1
??????
3−??????
1
~
10−1
0−15
00−4
=
100
−210
1−11
A??????
3−??????
2

10−1
0−15
001
=
1 0 0
−21 0

−1
4
1
4
−1
4
A
−??????
3
4
10−1
01−5
001
=
1 0 0
2−10

−1
4
1
4
−1
4
A
−R
2
??????
−1
=

3
4
1
4
−1
4

3
4
1
4

−5
4

−1
4
1
4
−1
4
100
010
001
=

3
4
1
4
−1
4

3
4
1
4

−5
4

−1
4
1
4
−1
4
A
R
1+R
3
R2 + 5R3
I
n=BA
B=??????
−1