282 CHAPTER 6. GEOMETRY AND TOPOLOGY
Proof.That (ii) implies (i) follows directly from the definition of the sec-
tional curvature in (6.4.1) by takingv1=v4=uandv2=v3=vin (6.4.4).
Conversely, assume (i) and define the multi-linear mapQ:TpM
4
→Rby
Q(v1, v2, v3, v4) :=⟨Rp(v1, v2)v3, v4⟩ −k
ı
⟨v1, v4⟩⟨v2, v3⟩ − ⟨v1, v3⟩⟨v2, v4⟩
ȷ
.
Then, for allu, v, v1, v2, v3, v4∈TpM, the mapQsatisfies the equations
Q(v1, v2, v3, v4) +Q(v2, v1, v3, v4) = 0, (6.4.5)
Q(v1, v2, v3, v4) +Q(v2, v3, v1, v4) +Q(v3, v1, v2, v4) = 0, (6.4.6)
Q(v1, v2, v3, v4)−Q(v3, v4, v1, v2) = 0, (6.4.7)
Q(u, v, u, v) = 0. (6.4.8)
Here the first three equations follow from Theorem 5.2.14 and the last follows
from the definition ofQand the hypothesis that the sectional curvature
isK(p, E) =kfor every 2-dimensional linear subspaceE⊂TpM.
We must prove thatQvanishes. Using (6.4.7) and (6.4.8) we find
0 =Q(u, v1+v2, u, v1+v2)
=Q(u, v1, u, v2) +Q(u, v2, u, v1)
= 2Q(u, v1, u, v2)
for allu, v1, v2∈TpM. This implies
0 =Q(u1+u2, v1, u1+u2, v2)
=Q(u1, v1, u2, v2) +Q(u2, v1, u1, v2)
for allu1, u2, v1, v2∈TpM. Hence
Q(v1, v2, v3, v4) =−Q(v3, v2, v1, v4)
=Q(v2, v3, v1, v4)
=−Q(v3, v1, v2, v4)−Q(v1, v2, v3, v4).
Here the second equation follows from (6.4.5) and the last from (6.4.6). Thus
Q(v1, v2, v3, v4) =−
1
2
Q(v3, v1, v2, v4) =
1
2
Q(v1, v3, v2, v4)
for allv1, v2, v3, v4∈TpMand, repeating this argument,
Q(v1, v2, v3, v4) =
1
4
Q(v1, v2, v3, v4).
HenceQ≡0 as claimed. This proves Theorem 6.4.8.