26 G. Caristi and E. Mitidieri
[13] A.M. Hinz, H. Kalf,Subsolution estimates and Harnack inequality for Schr¨odinger
operators,J.ReineAngew.Math.,404(1990), 118–134.
[14] H. Mˆaagli, F. Toumi, & M. Zribi,Existence of positive solutions for some polyhar-
monic nonlinear boundary-value problems, Electronic Journal of Differential Equa-
tions, Vol. 2003(2003), No.58, pp. 1–19.
[15] F. Mandras,Diseguaglianza di Harnack per i sistemi ellittici debolmente accoppiati,
Bollettino U.M.I.,514-A (1977), 313–321.
[16] E. Mitidieri,Nonexistence of positive solutions of semilinear elliptic systems inR
N
,
Differential and Integral Equations, Vol.9, N. 3, (1996), 465–479.
[17] E. Mitidieri, S.I. Pohozaev,A priori estimates and nonexistence of solutions to non-
linear partial differential equations and inequalities, Tr. Math.Inst. Steklova, Ross.
Akad. Nauk, vol. 234, 2001.
[18] M. Nicolescu,Les Fonctions Polyharmoniques, Hermann and Cie Editeurs, Paris
1936.
[19] M. Schechter,Spectra of partial differential operators, North-Holland, 1986.
[20] J. Serrin,Isolated Singularities of Solutions of Quasi-Linear Equations,ActaMath.,
113(1965), 219–240.
[21] J. Serrin,Local behavior of Solutions of Quasi-Linear Equations,ActaMath.,111
(1964), 247–302.
[22] J. Serrin, H. Zou,Cauchy-Liouville and universal boundedness theorems for quasi-
linear elliptic equations and inequalities,ActaMath.,189(2002), 79–142.
[23] Ch.G. Simader,An elementary proof of Harnack’s inequality for Schr¨odinger opera-
tors and related topics,Math.Z.203(1990), 129–152.
[24] Ch.G. Simader,Mean value formula, Weyl’s lemma and Liouville theorems for∆
2
and Stoke’s System, Results Math.22(1992), 761–780.
[25] R. Soranzo,Isolated Singularities of Positive Solutions of a Superlinear Biharmonic
Equation, Potential Analysis,6(1997), 57–85.
[26] G. Stampacchia,Le probl`eme de Dirichlet pour les ´equations elliptiques du second
ordre `a coefficients discontinus, Ann. Inst. Fourier (Grenoble),15(1965), 189–258.
[27] N.S. Trudinger,On Harnack type inequalities and their application to quasilinear
elliptic partial differential equations, Comm. Pure Appl. Math.,20(1967), 721–747.
[28] Z. Zhao,Conditional gauge with unbounded potential, Z. Wahrsch. Verw. Gebiete,65
(1983), 13–18.
[29] Z. Zhao,Green function for Schr¨odinger operator and conditioned Feynman-Kac
gauge, J. Math. Anal. Appl.,116(1986), 309–334.
[30] Z. Zhao,Uniform boundedness of conditional gauge and Schr¨odinger equations,Com-
mun. Math. Phys.,93(1984), 19–31.
Gabriella Caristi and Enzo Mitidieri
Dipartimento di Matematica e Informatica
Universit`adiTrieste
I-34127 Trieste, Italy
e-mail:
[email protected]
e-mail:
[email protected]