The slide has Physics lab manual of KPR Institute of technology
Size: 1.26 MB
Language: en
Added: Apr 14, 2023
Slides: 25 pages
Slide Content
2
5. DETERMINATION OF COEFFICIENT OF VISCOSITY OF THE GIVEN
LIQUID OF USING POISEUILLE’S FLOW METHOD
AIM
To determine the coefficient of viscosity of the given liquid by Poiseuille’sflow method
APPARATUS REQUIRED:
Burette
Burette stand
Capillary tube
Beaker
Stop clock
Travelling microscope
Liquid
Rubber tube
3
DETERMINATION OF COEFFICIENT OF VISCOSITY OF THE GIVEN LIQUID OF
USING POISEUILLE’S FLOW METHOD
FORMULA
DESCRIPTION OF FORMULA: 4
2
The coefficient of viscosity of
ga ht
Ns
the liqu
v
id
m
8
2
2
2
2
densityof the liquid used.
g acceleration due to gravity.(ms )
a radius of capillary tube.( 10 m)
h mean press
t time taken for 5 cc flow of water.(seco
ure head
nd)
length of
.( 1
the capillary tube
0 m)
( 10 m).
6
v volume of the liquid flow ( 10 m)
4
MEASUREMENT OF TIME OF LIQUID FLOW
Height of Capillary tube from Table h
0
S.No Water
level in the
Burette
(cc)
Time
(t)
(second)
Range
(cc)
Time for
flow of 10
cc liquid
(second)
Height of
initial water
level from
table (h
1) x
10
-2
m
Height of
initial water
level from
table (h
2) x
10
-2
m
Pressurehead
htx10
-2
m
1 0 0 0-5 13 76.2 71.2 64.7 841.1
2 5 13 5-10 13 71.2 66.2 59.7 716.1
3 10 26 10-15 16 66.2 61.2 54.7 875.2
4 15 42 15-20 20 61.2 56.1 49.7 994
5 20 62 20-25 23 56.2 51.2 44.7 1028.1
6 25 85 25-30 25 51.2 46.2 39.7 992.5
7 30 110 30-35 32 46.2 41.2 34.7 1110.4
8 35 142 35-40 46 41.2 36.2 29.7 1366.2
9 40 188 40-45
990.5X10
-2
m
OBSERVATION:12
3
2
hh
hh
5
DETERMINATION OF COEFFICIENT OF VISCOSITY OF THE
GIVEN LIQUID OF USING POISEUILLE’S FLOW METHOD
CALCULATION:
RESULT
The Coefficient of viscosity of the liquid ( )= 0.0022 Nsm
-2
22
26
3 14 2
4
2
4
13
8
2
6
5
2
3.14 x 1000 x9.8x 0.05x10 x 990.5 x 10
8x21.4x10 x5x10
3.14 x 10 x9
ga ht
Nsm
8v
( ( )
( (6 )
190497 10
222.54 10
85
.8x .25x10 x 990.95 x 10
8x21.
6 10
0.00
4x10 x5x10
22 Nsm
2
6
4. DETERMINATION OF THERMAL CONDUCTIVITY OF A BAD
CONDUCTOR USING LEE’S DISC METHOD
AIM
To determine the thermal conductivity of a bad conductor using Lee’s disc method
APPARATUS REQUIRED
Lee’s disc apparatus
Steam boiler
Thermometers
Bad conductor
Screw gauge
Stop clock
7
DETERMINATION OF THERMAL CONDUCTIVITY OF A BAD CONDUCTOR
USING LEE’S DISC METHOD11
2
12
MSRd(r 2h)
K Wm K
r ( )(2r 2h)
3
11
2
M Mass of metallic brass disc 10 kg
S Specific heat capacity of the metallic disc J Kg K
d
R Rate of cooling at stady state temperature second calculated from graph .
dt
d
()
()
()
Change in tempera
o
3
2
o
1
2
ture C
dt Change in time second
d Thickness of the bad conductor disc 10 m
r Radius of the metallic disc 10 m
Steady state temperature of the stream chamber C
Stea
()
()
dy s
()
(
tate temperatur
)
()
e
o
3
of the metallic disc C
h Thickness of the metallic disc 10
)
()m
(
8
Tofindthethicknessofthebrassdisc(h)usingscrewgauge
DETERMINATION OF THERMAL CONDUCTIVITY OF A BAD CONDUCTOR
USING LEE’S DISC METHOD
ZE=-2division
LC = 0.01 mm ZC = 0.02 mm
S.No PSR
mm
HSC
division
1. 10 89 10.89 10.91
2. 10 92 10.92 10.94
3. 10 88 10.88 10.90
4. 10 90 10.90 10.92
5. 10 91 10.91 10.93
Mean 10.92X10
-3
m
9
Tofindthethicknessofthecardboard(h)usingscrewgauge
DETERMINATION OF THERMAL CONDUCTIVITY OF A BAD CONDUCTOR
USING LEE’S DISC METHOD
ZE=-2division
LC = 0.01 mm ZC = +0.02 mm
S.No PSR
mm
HSC
division
1. 1 53 1.53 1.55
2. 1 54 1.54 1.56
3. 1 55 1.55 1.57
4. 1 54 1.54 1.56
5. 1 53 1.53 1.55
Mean1.558X10
-3
m
10
DETERMINATION OF THERMAL CONDUCTIVITY OF A BAD CONDUCTOR USING
LEE’S DISC METHOD
Temperature
(
o
C)
Time
(Second)
67 27
66 74
65 113
64 148
63 193
62 242
61 292
60 332
59 383
58 434
OBSERVATION:
12
d
To find the rate of cooling R
dt
98 C 63 C
64 63 1
Slope 0.02
193 148 45
11
DETERMINATION OF THERMAL CONDUCTIVITY OF A BAD CONDUCTOR
USING LEE’S DISC METHOD3
3
3
2
Mass of the brass disc M) 810 10 Kg
Thickness of the brass disc (h) 1 0.92 10m
Thickness of the bad conductor disc (d) 1.558 10 m
Radius of the bad conductor disc (r) 5.510 m
Specific heat capaci
11
o
1
o
2
ty of the material of the brass disc ( S) 372 J Kg K
Steady state temperature of the steam chamber ( ) 98 C
Steady state temperature of the brass disc( ) 63
Rate of cooling at the steady state temp
o
erature R 0.021 C / Sec
12
CALCULATION:
RESULT
DETERMINATION OF THERMAL CONDUCTIVITY OF A BAD CONDUCTOR USING LEE’S DISC
METHOD
ThermalconductivityofbadconductorusingLee'sdiscmethod
3 3 2 3
2 2 3
3 3 3 3
2
2
2
810x 10 x 0.021x 372 x1.558x10 x 5.5 x10 21.84x10
K
3.14 x 5.5x10 98 63 x 11 x10 21.84x 10
810x 10 x 0.021x 372 x1.558x10 x 55 x10 2 1.84x10
K
3.14 x 5.5x10 9
(
(
8 63 x 1
33
9
7
2 1 1
10 x10 21.84x 10
810x0.021x 372 x1.558 x76 .84x10
K
3.14 x 30.25 35x131 .84x10
K 1.728 x 10 W m K
2 1 1
K 1.728 x 10 W K
m
13
3. ULTRASONIC INTERFEROMETER –VELOCITY OF ULTRASONIC WAVES IN
A LIQUID AND COMPRESSIBILITY OF THE LIQUID
AIM:
(i)To determine the velocity of Ultrasonic waves in the given liquid by using
ultrasonic Interferometer.
(ii)To determine the compressibility of the liquid.
APPARATUS REQUIRED:
Ultrasonic Interferometer
Measuring cell
Frequency generator
Liquid
14
3.ULTRASONIC INTERFEROMETER –VELOCITY OF ULTRASONIC WAVES IN
A LIQUID AND COMPRESSIBILITY OF THE LIQUID
15
FORMULA:
DESCRIPTION OF FORMULA:
ULTRASONIC INTERFEROMETER –VELOCITY OF ULTRASONIC
WAVES IN A LIQUID AND COMPRESSIBILITY OF THE LIQUID
21
2
mVelocity of Ultrasonic waves in the liquid (v) n
s
2d
where, Wavelength of ultrasonic wave ( m)
x
1
Compressibility of the given liquid K m N
v
3
n Frequency of the generator Hertz
Wavelength of the ultrasonic wave metre
Density of the liquid (kg m )
d Distance moved by the micrometer screw metre
x Number of oscillatio
(
ns No un t
)
)
i
(
1611
22
S.No.
No. of
Oscillations
(x)
(No Unit)
Readings for "x" Oscillations
Distance
Wavelength
Velocity
Initial Reading
PSR
x 10
-3
m
HSC
Div
TR
x 10
-3
m
1 n 21 0 21
2 n+5 19 47 19.47 1.53 0.612 1.22
3 n+10 17 27 17.27 2.2 0.88 1.76
4 n+15 15 25 15.35 1.92 0.768 1.536
5 n+20 13.5 46 13.96 1.39 0.556 1.12
6 n+25 11.5 6 11.56 2.4 0.96 1.92
Mean1.51X10
3
m/s
ULTRASONIC INTERFEROMETER –VELOCITY OF ULTRASONIC
WAVES IN A LIQUID AND COMPRESSIBILITY OF THE LIQUID
OBSERVATION:3
2d
x
10 m
3
vn
m10
s
12
3
dd
10 m
17
CALCULATION:
RESULT
The velocity of Ultrasonic waves in the liquid =
Compressibility of the liquid =
ULTRASONIC INTERFEROMETER –VELOCITY OF ULTRASONIC
WAVES IN A LIQUID AND COMPRESSIBILITY OF THE LIQUID
1
6 3 3 1
21
2
2
10 2 1
9
3
Velocity of Ultrasonic waves in the liquid (v) n ms
v n 2 x 10 x 0.612 x 10 1.224x10 ms
1
Compressibility of the given liquid K m N
v
11
K 4.385x10 m N
2.28 10
1.51x10 x 1000 31
1.51x10 ms 10 2 1
4.385x10 m N
AIM:
To determine the wavelength of the given laser source using diffraction grating.
APPARATUS REQUIRED
Laser Source
Scale
Diffraction grating
Screen
1. DETERMINATION OF LASER PARAMETERS –WAVELENGTH
19
FORMULA:
DESCRIPTION OF FORMULA:
DETERMINATION OF LASER PARAMETERS –WAVELENGTH1
sin
Wavelength of the laser m
Nm
d
tan
D
d
tan Degree
D
th
th th
N number of lines per meter on the grating lines / m
m order of diffraction No unit
angle ofm ^ thorder spectrum from zero order degrees
d distance of m order spectrum from zero order.
D distance be
()
2
tween grating and the screen. )10 m(
21
CALCULATION:
DETERMINATION OF LASER PARAMETERS –WAVELENGTH
RESULT
The wavelength of the laser source = 6881x 10
-10
m
1
1
10
sin
Wavelength of the laser m
Nm
d
tan
D
d
tan
D
1.3
tan 4.130 Degree
18
sin 4.130
7318 10 m
1 98425
AIM:
To determine
(i)Theacceptanceangleoftheopticalfibre.
(ii)Thenumericalaperture.
APPARATUS REQUIRED
Semiconductor laser
optical fibre
NA jig
2. DETERMINATION OF ACCEPTANCE ANGLE OF
AN OPTICAL FIBRE AND NUMERICAL APERTURE
23
FORMULA:
DESCRIPTION OF FORMULA:
DETERMINATION OF ACCEPTANCE ANGLE OF AN
OPTICAL FIBRE AND NUMERICAL APERTURE
1r
i Acceptance angle of optical fibre tan degree
d
( ii Numerical Aperture NA sin No u) nit
()
2
2
r radius of the circular opening in NA jig 10 m
d Distance between the tip of the optical fibre and aperture of the j
()
(ig 10 m)
24 '
DETERMINATION OF ACCEPTANCE ANGLE OF AN OPTICAL
FIBRE AND NUMERICAL APERTURE
OBSERVATION:
S.No
1. 0.4 0.2 26°56’
2. 0.8 0.5 32°00’
3. 1.1 0.6 29°01’
4. 1.6 1.1 34°50’
5. 2 1.3 33°02’
Mean 31°09’
25
CALCULATION:
DETERMINATION OF ACCEPTANCE ANGLE OF AN OPTICAL
FIBRE AND NUMERICAL APERTURE
RESULT
(i)Theacceptanceangleoftheopticalfibre=31°09’
(ii)NumericalAperture=0.51(Nounit)1
1
'
'
r
tan degree
d
NA Sin no unit
0.3
tan degree
0.5
31 36
NA sin No unit)
NA sin31 36
NA 0.52 no unit
(