[44]M. Novotny, Microcolumns in liquid chromatography, Anal. Chem. 53 (12) (1981) 1294A–1297A.
[45]A. Wickers, D. Decker, R. Majors, The art and science of GC capillary column production, LCGC N. Am. 25 (7) (2007) 616–631.
[46]C.A. Cramers, J.A. Rijks, Micropacked columns in gas chromatography: an evaluation, in: J.C. Giddings, et al. (Eds.), Advances in Chroma-
tography, Marcel Dekker, New York, 1979, pp. 101–162.
[47]H. Zhao, et al., Characteristics of TGPGC on short micro packed capillary column, Anal. Sci. 18 (1) (2002) 93–95.
[48]P.Q. Tranchida, L. Mondello, Current-day employment of the micro-bore open-tubular capillary column in the gas chromatography field, J.
Chromatogr. A 1261 (2012) 23–36.
[49]R.L. Stevenson, Agilent’s GC wax column technology developments greatly advance performance of polar compound analyses, Am. Lab.
50 (8) (2018) 18–20.
[50] M.L. Duffy, Advantages and applications of wide-bore, thick-film capillary columns in GC, Am. Lab. 17 (10) (1985) 94.
[51]R.E. Majors, Anatomy of an LC column from the beginning to modern day, LCGC N. Am. 24 (8) (2006) 742–753.
[52]R.E. Majors, HPLC column technology—state of the art, LCGC N. Am. 24 (S4) (2006) 7–15.
[53]R. Majors, Historical developments in HPLC and UHPLC column technology: the past 25 years, LCGC N. Am. 33 (11) (2015) 818–840.
[54]R.E. Majors, Twenty-five years of HPLC column development: a commercial perspective, LCGC N. Am. 12 (7) (1994) 508–518.
[55]F. Gritti, G. Guiochon, The current revolution in column technology: how it began, where is it going? J. Chromatogr. A 1228 (2012) 2–19.
[56]F. Svec, Y. Lv, Advances and recent trends in the field of monolithic columns for chromatography, Anal. Chem. 87 (1) (2015) 250–273.
[57]Y. Wang, et al., Sub-2μm porous silica materials for enhanced separation performance in liquid chromatography, J. Chromatogr. A 1228 (2012)
99–109.
[58]D. Ishii, T. Takeuchi, Capillary columns in liquid chromatography, in: J.C. Giddings, et al. (Eds.), Advances in Chromatography, Marcel Dek-
ker, New York, 1983, pp. 131–164.
[59]Recent developments in LC column technology. (Special Supplement) (Column), LCGC Europe 27 (12) (2014) 620.
[60]Anatomy of an LC column: from the beginning to modern day, LCGC N. Am. 33 (2015) S33–S39.
[61]D. Bell, Recent developments in LC column technology: impact on a world of disciplines, LCGC N. Am. 34 (s4) (2016) 8.
[62]M. Dong, HPLC columns and trends, in HPLC and UHPLC for Practicing Scientists, John Wiley & Sons, 2019, pp. 45–79.
[63]F. Gritti, G. Guiochon, Perspectives on the evolution of the column efficiency in liquid chromatography, Anal. Chem. 85 (6) (2013)
3017–3035.
[64]C.E.D. Nazario, et al., Evolution in miniaturized column liquid chromatography instrumentation and applications: an overview, J. Chroma-
togr. A 1421 (2015) 18–37.
[65]T. Berger, B. Berger, A review of column developments for supercritical fluid chromatography, LCGC N. Am. 28 (5) (2010) 344–354. 356-357.
[66] M. Novotny, et al., Open-Tubular Supercritical Fluid Chromatography, 1984, Available from:https://patents.google.com/patent/
US4479380A/en.
[67]T.A. Berger, in: R.M. Smith (Ed.), Packed Column SFC. RSC Chromatography Monographs, The Royal Scoiety of Chemistry, Cambridge, 1995.
[68]
L.T. Taylor, Supercritical fluid chromatography for the 21st century, J. Supercrit. Fluids 47 (3) (2009) 566–573.
[69]R.D. Smith, B.W. Wright, C.R. Yonker, Supercritical fluid chromatography: current status and prognosis, Anal. Chem. 60 (1988) 1323A–1336A.
[70]C.F. Poole, Progress in packed column supercritical fluid chromatography: materials and methods, J. Biochem. Biophys. Methods 43 (2000)
3–23.
[71]C.F. Poole, Stationary phases for packed-column supercritical fluid chromatography, J. Chromatogr. A 1250 (2012) 157–171.
[72]F. Pacholec, C.F. Poole, Stationary phase properties of the organic molten salt ethylpyridinium bromide in gas chromatography, Chromato-
graphia 17 (7) (1983) 370–374.
[73]B.L. Karger, New developments in chemical selectivity in gas-liquid chromatography, Anal. Chem. 39 (8) (1967) 24A–50A.
[74]R.J. Laub, R.L. Pecsok, Study of charge transfer complexation by gas-liquid chromatography, J. Chromatogr. 113 (1975) 47–68.
[75]J.G. Dorsey, W.T. Cooper, Retention mechanisms of bonded-phase liquid chromatography, Anal. Chem. 66 (17) (1994) 857A–867A.
[76]S.C. Moldoveanu, V. David, Retention mechanisms in different HPLC Types, in: S.C. Moldoveanu, V. David (Eds.), Essentials in Modern
HPLC Separations, Elsevier, 2013, pp. 145–190.
[77]C.T. Santasania, D.S. Bell, Mechanisms of interaction responsible for alternative selectivity of fluorinated stationary phases (Column Watch),
LCGC Europe 29 (2) (2016) 86–92.
[78]L.R. Snyder, Principles of Adsorption Chromatography, Marcel Dekker, New York, 1968.
[79]L.R. Snyder, Mobile phase effects in liquid-solid chromatography: importance of adsorption-site geometry, adsorbate delocalization and
hydrogen bonding, J. Chromatogr. 255 (1983) 3–26.
[80]L.R. Snyder, H. Poppe, Mechanism of solute retention in liquid—solid chromatography and the role of the mobile phase in affecting separation:
competition versus“sorption”, J. Chromatogr. 184 (1980) 363–413.
[81]Y.I. Yashin, Selectivity in liquid adsorption chromatography, J. Chromatogr. 251 (1982) 269–279.
[82]S. Claesson, Arkiv foer Kemi, Mineral. Geol. 23A (1946) 1–133.
[83]C.S.G. Phillips, The chromatography of gases and vapours, Discuss. Faraday Soc. 7 (1949) 241–248.
[84]A.T. James, A.J.P. Martin, Gas-liquid partition chromatography: the separation and micro-estimation of volatile fatty acids from formic acid to
dodecanoic acid, Biochem. J. 50 (5) (1952) 679–690.
[85]A.P. Foucault, Countercurrent chromatography, Anal. Chem. 63 (10) (1991) 569A–579A.
[86]I.A. Sutherland, D. Heygood-Waddington, T.J. Peters, Toroidal coil countercurrent chromatography: a fast simple alternative to countercur-
rent distribution using aqueous two phase partition: principles, theory, and apparatus, J. Liq. Chromatogr. 7 (2) (1984) 363–384.
[87]I.A. Sutherland, D. Heygood-Waddington, T.J. Peters, Countercurrent chromatography using a toroidal coil planet-centrifuge: a comparative
study of the separation of organelles using aqueous two-phase partition, J. Liq. Chromatogr. 8 (12) (1985) 2315–2335.
[88]D.C. Locke, Selectivity in reversed-phase liquid chromatography using chemically bonded stationary phases, J. Chromatogr. Sci. 12 (1974)
433–437.
[89]C. Poole, N. Lenca, Reversed-phase liquid chromatography, in: S. Fanali, et al. (Eds.), Liquid Chromatography: Fundamentals and Instrumen-
tation, Elsevier, 2017, pp. 91–
123.
[90]P. Nikitas, A. Pappa-Louisi, Retention models for isocratic and gradient elution in reversed-phase liquid chromatography, J. Chromatogr.
A 1216 (10) (2009) 1737–1755.
37References