Principles of plant breeding Lecture note.pdf

1,829 views 235 slides Feb 14, 2024
Slide 1
Slide 1 of 402
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147
Slide 148
148
Slide 149
149
Slide 150
150
Slide 151
151
Slide 152
152
Slide 153
153
Slide 154
154
Slide 155
155
Slide 156
156
Slide 157
157
Slide 158
158
Slide 159
159
Slide 160
160
Slide 161
161
Slide 162
162
Slide 163
163
Slide 164
164
Slide 165
165
Slide 166
166
Slide 167
167
Slide 168
168
Slide 169
169
Slide 170
170
Slide 171
171
Slide 172
172
Slide 173
173
Slide 174
174
Slide 175
175
Slide 176
176
Slide 177
177
Slide 178
178
Slide 179
179
Slide 180
180
Slide 181
181
Slide 182
182
Slide 183
183
Slide 184
184
Slide 185
185
Slide 186
186
Slide 187
187
Slide 188
188
Slide 189
189
Slide 190
190
Slide 191
191
Slide 192
192
Slide 193
193
Slide 194
194
Slide 195
195
Slide 196
196
Slide 197
197
Slide 198
198
Slide 199
199
Slide 200
200
Slide 201
201
Slide 202
202
Slide 203
203
Slide 204
204
Slide 205
205
Slide 206
206
Slide 207
207
Slide 208
208
Slide 209
209
Slide 210
210
Slide 211
211
Slide 212
212
Slide 213
213
Slide 214
214
Slide 215
215
Slide 216
216
Slide 217
217
Slide 218
218
Slide 219
219
Slide 220
220
Slide 221
221
Slide 222
222
Slide 223
223
Slide 224
224
Slide 225
225
Slide 226
226
Slide 227
227
Slide 228
228
Slide 229
229
Slide 230
230
Slide 231
231
Slide 232
232
Slide 233
233
Slide 234
234
Slide 235
235
Slide 236
236
Slide 237
237
Slide 238
238
Slide 239
239
Slide 240
240
Slide 241
241
Slide 242
242
Slide 243
243
Slide 244
244
Slide 245
245
Slide 246
246
Slide 247
247
Slide 248
248
Slide 249
249
Slide 250
250
Slide 251
251
Slide 252
252
Slide 253
253
Slide 254
254
Slide 255
255
Slide 256
256
Slide 257
257
Slide 258
258
Slide 259
259
Slide 260
260
Slide 261
261
Slide 262
262
Slide 263
263
Slide 264
264
Slide 265
265
Slide 266
266
Slide 267
267
Slide 268
268
Slide 269
269
Slide 270
270
Slide 271
271
Slide 272
272
Slide 273
273
Slide 274
274
Slide 275
275
Slide 276
276
Slide 277
277
Slide 278
278
Slide 279
279
Slide 280
280
Slide 281
281
Slide 282
282
Slide 283
283
Slide 284
284
Slide 285
285
Slide 286
286
Slide 287
287
Slide 288
288
Slide 289
289
Slide 290
290
Slide 291
291
Slide 292
292
Slide 293
293
Slide 294
294
Slide 295
295
Slide 296
296
Slide 297
297
Slide 298
298
Slide 299
299
Slide 300
300
Slide 301
301
Slide 302
302
Slide 303
303
Slide 304
304
Slide 305
305
Slide 306
306
Slide 307
307
Slide 308
308
Slide 309
309
Slide 310
310
Slide 311
311
Slide 312
312
Slide 313
313
Slide 314
314
Slide 315
315
Slide 316
316
Slide 317
317
Slide 318
318
Slide 319
319
Slide 320
320
Slide 321
321
Slide 322
322
Slide 323
323
Slide 324
324
Slide 325
325
Slide 326
326
Slide 327
327
Slide 328
328
Slide 329
329
Slide 330
330
Slide 331
331
Slide 332
332
Slide 333
333
Slide 334
334
Slide 335
335
Slide 336
336
Slide 337
337
Slide 338
338
Slide 339
339
Slide 340
340
Slide 341
341
Slide 342
342
Slide 343
343
Slide 344
344
Slide 345
345
Slide 346
346
Slide 347
347
Slide 348
348
Slide 349
349
Slide 350
350
Slide 351
351
Slide 352
352
Slide 353
353
Slide 354
354
Slide 355
355
Slide 356
356
Slide 357
357
Slide 358
358
Slide 359
359
Slide 360
360
Slide 361
361
Slide 362
362
Slide 363
363
Slide 364
364
Slide 365
365
Slide 366
366
Slide 367
367
Slide 368
368
Slide 369
369
Slide 370
370
Slide 371
371
Slide 372
372
Slide 373
373
Slide 374
374
Slide 375
375
Slide 376
376
Slide 377
377
Slide 378
378
Slide 379
379
Slide 380
380
Slide 381
381
Slide 382
382
Slide 383
383
Slide 384
384
Slide 385
385
Slide 386
386
Slide 387
387
Slide 388
388
Slide 389
389
Slide 390
390
Slide 391
391
Slide 392
392
Slide 393
393
Slide 394
394
Slide 395
395
Slide 396
396
Slide 397
397
Slide 398
398
Slide 399
399
Slide 400
400
Slide 401
401
Slide 402
402

About This Presentation

lecture note


Slide Content

1Dr. Zekeria Yusuf (PhD)
Principles of Plant Breeding
(Biol 3092)

Introduction
•Plantbreedingisasciencebasedonprinciplesof
geneticsandcytogenetics.Itaimsatimprovingthe
geneticmakeupofthecropplants.
•Improvedvarietiesaredevelopedthroughplant
breeding.
•Itsobjectivesaretoimproveyield,quality,disease-
resistance,droughtandfrost-toleranceandimportant
characteristicsofthecrops.
•Plantbreedinghasbeencrucialinincreasing
productionofcropstomeettheeverincreasing
demandforfood.Somewellknownachievementsare
developmentofsemi-dwarfwheatandricevarieties,
noblizationofcanes(sugarcanes),andproductionof
hybridandcompositevarietiesofmaize…..
2Dr. Zekeria Yusuf (PhD)

Introduction….
•Cropimprovementmeanscombiningdesirable
characteristicsinoneplantandthenmultiplyingit.The
jobofaplantbreederistoselectplantswithdesired
characters,crossthemandthenidentifytheoffspring
thatcombinetheattributesofbothparents.Then
multiplytheprogenytosupplytofarmers,growersor
planters.
•Themodernageofplantbreedingbeganintheearly
partofthe20thC,afterMendel’sworkwas
rediscovered.Today
•plantbreedingisaspecializedtechnologybasedon
genetics.Itisnowclearlyunderstoodthatwithina
givenenvironment,cropimprovementhastobe
achievedthroughsuperiorheredity.
3Dr. Zekeria Yusuf (PhD)

Introduction….
•Plant breeding is the art, science and technology of changing the
heredity of plants for human welfare.
Nature of Plant Breeding:
1. Art
•Inearlierdaysmandependsonhisskillsandjudgementinselecting
betterplants.Heknewnothingabouttheinheritanceof
characters,roleofenvironmentinproducingthemandthebasis
ofvariationinvariousplantcharacters.Hismethodofselection
wasdesignedwithouttheunderstandingofprinciplesof
inheritance.
•Thereforeduringprimitivetimeplantbreedingwaslargelyanart
andverylesssciencewasinvolvedinthat.
Eventodaysuccessofselectiondependsuponabilityoftheperson
involvedintheselection.
4Dr. Zekeria Yusuf (PhD)

Introduction….
2.Science
••Plantbreedingisconsideredasthecurrentphaseofcropevolution.
Astheknowledgeofgeneticsandotherrelatedscienceprogresses
plantbreedingbecomelessartandmorescience.
•Especially,discoveryofMendel̕sworkin1900addedalottothe
knowledgeofscience.
•Selectionofdesirableplanteventodayisanartitdependsontheskill
ofaperson.Butaloneskillisnotenough,modernplantbreedingisa
combinedeffortofartandunderstandinganduseofgenetic
principles.
3.Technology
•Productofallplantbreedingactivities,whetherdependentonthe
artorscience,isimprovedvariety,hybrids,syntheticsand
composites.Thisproductisutilizedbyfarmersforcommercial
cultivation.
•Therefore,plantbreedingcanberightlyviewedasatechnology
sinceitgeneratesausefulproduct.
5Dr. Zekeria Yusuf (PhD)

Role of Plant Breeding:
Humanbeingsaredependentontheplantsfor:
1.Food:-Breedingoffieldcropsprovidesusfoodeitherdirectly(foodgrains)
orindirectly(meatandmilk).
2.Shelter:-Inadditiontofoodbyproduceofagriculturefarmsareusedin
makingshelterbyfarmersofruralareas.
3.Clothing:-Breedingforfibrecropslikecottonprovidesclothesforthehuman
population.
4.Fuels:-CropslikeEuphorbiaandJatrophaareusedforBiofuelproduction.
Breedingofsuchcropstacklestheproblemsofenergyproductionforrapidly
increasinghumanpopulation.Nowadays,Maizeisalsousedasanimportant
sourceofEthanolproduction.
5.Drugs:-Breedingofmedicinalplantsplaysanimportantroleinproductionof
manyimportantdrugs.Thesedrugsareusedfortreatmentofvarioushuman
andanimaldiseases.
6.Entertainment:-Flowersplayanessentialroleinpeoplescelebrationsand
everydayliveslikeweddings,Christmasetc.mostofthemedicinalplantsare
seasonalinnature.Shiftingtheseasonaltimingofreproductionisamajor
goalofplantbreedingeffortstoproducenovelvarietiesthatarebetter
adaptedtolocalenvironmentsandchangingclimaticconditions.
6Dr. Zekeria Yusuf (PhD)

➢Plant breeding is the process by which humans change certain aspects of
plants over time in order to introduce desired characteristics
PlantBreedingConcept
Increasecropproductivity

Plant Domestication
•Domestication:The process by which people try to
control the reproductive rates of animals and plants.
Without knowledge on the transmission of traits from
parents to their offspring.
•Plant Breeding: The application of genetic analysis to
development of plant lines better suited for human
purposes.
–Plant Breeding and Selection Methods to meet the food,
feed, fuel, and fiber needs of the world
–Genetic Engineering to increase the effectiveness and
efficiency of plant breeding.
8Dr. Zekeria Yusuf (PhD)

9Dr. Zekeria Yusuf (PhD)

10Dr. Zekeria Yusuf (PhD)

Domestication
➢Plant Breeding activities began at least 10.000 years ago in the Fertile Crescent
with plant domestication
Challenges: transition from nomadic
to asedentarylifestyle
Increaseplantyield
Increasenumberofedibleplants
(reducetoxicity)

12Dr. Zekeria Yusuf (PhD)

Geography of crop domestication
•Vavilov’seightcentersoforiginwherecropswere
firsttamed.
•Turnsoutthatcentersofdiversitydonotcoincide
withVavilov’scentersoforigin.
•Areaswithlotsofwildrelativesandprimitive
versionsofmoderncropscanbeinvaluable
sourcesofgenesforplantbreedersand
geneticists.
13Dr. Zekeria Yusuf (PhD)

• Concept first devised by Vavilov in 1919
• Archaeological evidence suggests that hunter-gatherers independently
began cultivating food plants in 24 regions,….” (Purugannan and Fuller,
2009)
Centres of Plant Domestication
14Dr. Zekeria Yusuf (PhD)

15Dr. Zekeria Yusuf (PhD)

16Dr. Zekeria Yusuf (PhD)

17Dr. Zekeria Yusuf (PhD)

What is a domestication syndrome?
A domestication syndrome describes the properties that
distinguish a certain crop from it’s wild progenitor.
Typically such characteristics are:
• larger fruits or grains
• more robust plants
• more determinate growth / increased apical
dominance
• loss of natural seed disperal
• fewer fruits or grains
• decrease in bitter substances in edible structures
• changes in photoperiod sensitivity
• synchronized flowering
18Dr. Zekeria Yusuf (PhD)

Tomato - Fewer and Larger Fruits
19Dr. Zekeria Yusuf (PhD)

Sunflowers - reduced branching, larger seeds,
increased seed set per head
20Dr. Zekeria Yusuf (PhD)

Wheat - reduced seed shattering, increased seed size
21Dr. Zekeria Yusuf (PhD)

Squash – larger, fleshier fruits
22Dr. Zekeria Yusuf (PhD)

Corn – reduced fruitcase, softer glume, more kernels per cob, no
dispersal, reduced branching, apical dominance
23Dr. Zekeria Yusuf (PhD)

Lettuce – leaf size/shape, fewer secondary compounds
24Dr. Zekeria Yusuf (PhD)

Rice –no shattering,
larger grains
25Dr. Zekeria Yusuf (PhD)

Crop consequences of domestication:
•More‘yield’ofdesirablepart.
•Non-shattering-seedareeasiertoharvest.
•Bigseeds-domesticatedbeanseedare5-8timesaslargeas
theirwildrelatives.
•Improvedquality-removeorlowertoxicsubstances.
•Increasedprotein,oil,sugarconcentration,whichmeans
improvedflavor,storageability.
26Dr. Zekeria Yusuf (PhD)

27Dr. Zekeria Yusuf (PhD)

28Dr. Zekeria Yusuf (PhD)

Methods for identifying domestication genes
1.BiparentalQTLmapping
2.AssociationMappingUsingUnrelatedIndividuals
3.QTLMappingUsingAdvancedIntercross
Populations
4.Genomicscans
5.GenomeResequencingandScreeningforSelection
29Dr. Zekeria Yusuf (PhD)

Classical Examples…
Teosintebranched 1 (tb1) QTLof maize controls the difference in apical
dominance in maize and teosinte
tb1, it acts as transcriptional regulators, a class of genes involved in the
transcriptional regulation of cell cycle
Teosinteglumearchitecture1(tga1) was identified as a QTLcontrolling the
formation of the casing that surrounds the kernels of the maize ancestor,
teosinte
tga1is a member of the squamosa-promoter binding protein (SBP) family of
transcriptional regulators
Fruitweight2.2(fw2.2) was identified as a large effect QTLcontrolling 30%
of the difference in fruit mass between wild and cultivated tomato
fw2.2acts as a negative regulator of cell division in the fruit, perhaps via
some role in cell-to cell communication
Q is a major gene involved in wheat domestication that affects a suite of
traits, including
The tendency of the spike (ear) to shatter,
The tenacity of the chaff surrounding the grain, &
The spike is elongated as in wild wheat or compact like the cultivated forms
30Dr. Zekeria Yusuf (PhD)

•shattering4(sh4)isamajorQTLcontrollingwhethertheseedfalloffthe
plant(shatter)asinwildriceoradheretotheplantasincultivatedrice
•sh4encodesagenewithhomologytoMyb3transcriptionfactors.
•AsingleaminoacidchangeinthepredictedDNAbindingdomainconverts
plantsfromshatteringtonon-shattering
•Rcisadomestication-relatedgenerequiredforredpericarpinrice
•TwoindependentgeneticstocksofRcrevealedthatthedominantredallele
differedfromtherecessivewhiteallelebya14-bpdeletionwithinexon6-
originatedinjaponicacultivarandspreadintoindicacultivars.
31Dr. Zekeria Yusuf (PhD)

Super-domestication
•Theprocessesthatleadtoadomesticatewith
dramaticallyincreasedyieldthatcouldnotbeselected
innaturalenvironmentswithoutnewtechnologies.
•Thearrayofgenomemanipulationsenablebarriersto
geneexchangetobeovercomeandhaveleadtosuper-
domesticateswith
–dramaticallyincreasedyields,
–resistancestobioticandabioticstresses,andwith
–newcharactersforthemarketplace.
•Hybridricecanbeconsideredasuper-domesticate
•ConversionofacropfromC3toC4photosynthesis
wouldcertainlybeasuper-domesticate.
Plantbreeders+GenomicScientists⇨Superdomestication
32Dr. Zekeria Yusuf (PhD)

Domestication
‘Domestication is the process by which humans actively
interfere with and direct crop evolution.’
• It involves a genetic bottleneck:
• Often only few genes are actively selected and account
for large shifts in phenotype.
• Crops exhibit various levels of domestication.
33Dr. Zekeria Yusuf (PhD)

34Dr. Zekeria Yusuf (PhD)

35Dr. Zekeria Yusuf (PhD)

36Dr. Zekeria Yusuf (PhD)

selective sweep
•Aselectivesweepisthereductionoreliminationof
variationamongthenucleotidesinneighboring
DNAofamutationastheresultofrecentand
strongpositivenaturalselection
•Astrongselectivesweepresultsinaregionofthe
genomewherethepositivelyselectedhaplotype
(themutatedalleleanditsneighbours)is
essentiallytheonlyonethatexistsinthe
population,resultinginalargereductionofthe
totalgeneticvariationinthatchromosomeregion.
37Dr. Zekeria Yusuf (PhD)

selective sweep
38Dr. Zekeria Yusuf (PhD)

39Dr. Zekeria Yusuf (PhD)

40Dr. Zekeria Yusuf (PhD)

Domestication is a process
• The distinction ‘domesticated’ or ‘not domesticated’ is an over-
simplification
• Some crops have moved further along this process further than
others.
• We can recognize different levels of domestication
• How can we decide which level?
41Dr. Zekeria Yusuf (PhD)

• Different domestication traits were selected for
progressively
•Distinction between selection under domestication vs. crop
diversification → more targeted, ‘conscious’ selection during
diversification
• ‘Slow’ rate of evolution of different domestication traits
despite faster rates suggested by models
• Artificial selection can be “similar across different taxa,
geographical origins and time periods”
42Dr. Zekeria Yusuf (PhD)

• Parallel evolution for “sticky glutinous varieties” in rice and
foxtail millets, all through selection at the waxy locus
• Most QTL studies suggest that many domestication traits are
controlled by a few genes of large effect – not though in
sunflower
• Population genomic studies in maize suggest 2 – 4% of genes
show evidence of artificial selection
43Dr. Zekeria Yusuf (PhD)

Domestication of Maize
44Dr. Zekeria Yusuf (PhD)

The evolution of non-shattering
in the archaeological record
45Dr. Zekeria Yusuf (PhD)

The genetic basis of the evolution of non-shattering
Non-shattering is often regarded as the hallmark of
domestication in most seed crops because it renders a plant
species primarily dependent on humans for survival and
propagation:
•rice gene sh4 (similar to the genes encoding MYB-like
transcription factors in maize)
•rice quantitative trait locus (QTL) qSH1, which encodes a
homeobox-containing protein
•the wheat gene Q, which is similar to genes of the AP2
family in other plants
•In sunflower likely controlled by multiple genes
46Dr. Zekeria Yusuf (PhD)

Domestication genes in plants
•Maize and rice domestication seem to suggest few loci of large effect
are important
•Sunflower domestication seems to suggest many loci of small to
intermediate effect are important
•9 domestication genes in plants so far, as well as 26 other loci known
to underlie crop diversity
•Of the 9 domestication loci, 8 encode transcriptional activators.
• More than half of crop diversification genes encode enzymes.
→ Domestication seems to be associated with changes in transcriptional
regulatory networks, whereas crop diversification involves a larger
proportion of enzyme-encoding loci (lots of them loss-of-function
alleles).
47Dr. Zekeria Yusuf (PhD)

The role of polyploidy in domestication
48Dr. Zekeria Yusuf (PhD)

Towards resolving the genetic basis of
domestication in the Compositae
Artificial selection
through domestication
but HOW ?
49Dr. Zekeria Yusuf (PhD)

Some fundamental questions in domestication genetics
→ Which genes show strong signs of selection in different crops?
→Can we see common patterns in taxa that have been domesticated
for similar purposes?
→ Can we see dissimilar categories of genes under selection in
different crop types despite their close phylogenetic relationship (e.g.
sunflower and jerusalem artichoke)?
50Dr. Zekeria Yusuf (PhD)

Bioinformatics pipeline:
Methodological ‘bottom-up’ approach
1.) Input: EST libraries of crop, progenitor and
outgroup
2.) Genes that are orthologous in all taxa are
identified
3.) These genes are scanned for signs of
strong positive selection
4.) Such genes are compared to all known
proteins in Arabidopsis
5.) Functional characteristics of best fits in Arabidopsis genomic database
(TAIR) are annotated
51Dr. Zekeria Yusuf (PhD)

Some preliminary results
Preliminary results from candidate domestication gene search in
Compositae crops:
• Several stress response genes are under selection in leaf and oil
seed crops
• Other interesting candidate domestication genes:
→ safflower: fatty acid metabolism
→ sunflower: nitrate assimilation
→ Jerusalem artichoke: lateral root formation
52Dr. Zekeria Yusuf (PhD)

What to do with candidate genes?
Confirm their role underlying traits
-functional analysis (introgression/transgenes)
-expression
-population genetic work
confirm associations with fitness
association mapping with traits of interest
53Dr. Zekeria Yusuf (PhD)

What to do with candidate genes?
Applications:
breeding / improvement
conservation of genetic diversity
identification of taxon boundaries
understanding adaptation/domestication
comparative analysis –other taxa
54Dr. Zekeria Yusuf (PhD)

Crop improvement
•Phenotype –based selection
–Slow, ineficient but can be effective
•Using genetics to inform breeding
–Marker-assisted selection
–Marker-assisted introgression
•Transformation
–Efficient (if you have the gene) but controversial
55Dr. Zekeria Yusuf (PhD)

Transgenics controversy
•Advantages:
–Targeted to specific gene
–Any gene can be changed / introduced from any species
–Fast and efficient
•Disadvantages:
–Safety issues
–Regulations / legal issues
–Requires expertise and technology
56Dr. Zekeria Yusuf (PhD)

Transgenics controversy
•Advantages:
–Huge improvements in phenotype of interest possible
–Yield improvements
–Health / nutrition benefits
–Reduce herbicide / pesticide / fertilizer use
–New products –pharmaceuticals, chemicals, etc.
•Disadvantages:
–Little regulation for health/environmental safety
–Loss of genetic diversity
–Reliance on big seed companies
57Dr. Zekeria Yusuf (PhD)

Types of crops:
•Graincrops-wheat,rice,corn,sorghum,barley,oats.
•Oilcrops-olive,linseed,sesame,sunflower,soybean,
coconut,palm,corn,peanut,canola.
•Fibercrops-cotton,flax,hemp,jute,kenaf,sisal.
•Foragecrops-alfalfa,clovers,otherlegumes,many
grasses,includingtallfescue.
•Spice/drugcrops-tobacco,blackpepper,cinnamon.
•Fruitcrops,vegetablecrops,ornamentals,forest
trees,etc.
58Dr. Zekeria Yusuf (PhD)

9000 BC First evidence of plant domestication in the hills above the
Tigris river
1694 Camerarius first to demonstrate sex in (monoecious) plants and suggested
crossing as a method to obtain new plant types
1714 Mather observed natural crossing in maize
1761-1766 Kohlreuter demonstrated that hybrid offspring
received traits from both parents and were intermediate in
most traits, first scientific hybrid in tobacco
1866 Mendel: Experiments in plant hybridization
1900 Mendel’s laws of heredity rediscovered
1944 Avery, MacLeod, McCarty discovered DNA is hereditary
material
1953 Watson, Crick, Wilkins proposed a model for DNA
structure
1970 Borlaug received Nobel Prize for the Green Revolution
Berg, Cohen, and Boyer introduced the recombinant DNA
technology
1994 ‘FlavrSavr’ tomato developed as first GMO
1995 Bt-corn developed
Selected milestones in plant breeding
59Dr. Zekeria Yusuf (PhD)

Landmarksin PlantBreeding
1694 1866 1953
Camerarius
crossing as a method
to obtain new plant
types
Mendel
Empirical evidence
on heredity
Watson, Crick,
Wilkins &
Rosalind Franklin
model for DNA
structure
1923
Wallace
Firstcommercial
hybridcorn

“TheGreen Revolution” (1960)
Norman Borlaug
Challenge: improve wheat and
maize to meet the production
needs of developing countries
High yielding semi-dwarf, lodging
resistant wheat varieties

62Dr. Zekeria Yusuf (PhD)

Future Challenges
Challenge: Increaseofhuman
populationby60-80%, requiringto
nearlydoubletheglobal food
production
MultidisciplinaryField
Biometry/
Statistics
Pathology

Challenges before Plant Breeder :
1.Increasingpopulation:atpresent,theworldpopulation
standat6.3billionandwillreachat10-12billionduring
thenext50-70years.
Themainproblemfrombreedingrespectisthatthe
populationisgrowingfasterthanincreasesinfood
productivity,toreducetheuseofharmfulagrochemicals
andtoproducenutritiousandhealthfulfoodisgreater
today.
2.Squeezingarableland:Day-by-daythetotalarableland
foragricultureisdecreasingduetourbanizationand
industrialdevelopment.
Breedershavetotacklethisproblembyreleasing
improvedvarietiesofmajorcropswhichgivesbetter
productionperunitarea.
64Dr. Zekeria Yusuf (PhD)

Challenges before Plant Breeder…
3.Erraticrainfall:espintropicsrainfalliserratic,
unpredictableandunevenlydistributed.Over80%ofthe
annualrainfallisreceivedinthefourrainymonthsofJuneto
September.Therefore,varietieswhichcantoleratedryspells
andperformbetteratlowwateravailabilityareneededtobe
developbyIndianBreeders.
4.Mechanization:-Thevarietydevelopedbyplantbreeders
shouldgiveresponsetoapplicationoffertilizers,manures,
irrigationandshouldbesuitableformechanicalcultivation.
65Dr. Zekeria Yusuf (PhD)

Research Institutes, Universities, Governmental
Services, Private Companies, Non-Governmetal
Organizations, Breeders, Farmers…
….are working hard to breed plants for a
better agriculture with less environmental
impacts
Take-HomeMessage

Scientific disciplines and technologies
of plant breeding
•Genetics
•Botany
•Plant physiology
•Agronomy
•Pathology and entomology
•Statistics
•Biochemistry
67Dr. Zekeria Yusuf (PhD)

Importance of Plant breeding
•Plantbreedingallowedcivilizationtoformand
itscontinualsuccessiscriticaltomaintaining
ourwayoflife
•Problem:Feeding9billion(+)peoplewiththe
same(orfewer)inputs
Sameorlessacreage
Sameorlessfertilizer,pesticides,water
Adaptingtoclimateandenvironmental
change
68Dr. Zekeria Yusuf (PhD)

Goals of Plant breeding
•Plantbreedingaimstoimprovethecharacteristicsofplantssothat
theybecomemoredesirableagronomicallyandeconomically.The
specificobjectivesmayvarygreatlydependingonthecropunder
consideration.
Increasethefrequencyoffavorablealleleswithinaline(favoring
additiveeffects)
•Increasethefrequencyoffavorablegenotypeswithinaline(with
dominanceandinteractioneffects)
•Betteradaptcropstospecificenvironments
–Region-specificcultivars(highlocationGxE)
–Stabilityacrossyearswithinaregion(lowyearto-yearGxE)
Food(yieldandnutritionalvalue),feed,fibre,
pharmaceuticals(antibodies),landscape,industrialneed(eg.
Cropsarebeingproducedinregionstowhichtheyarenot
native).
69Dr. Zekeria Yusuf (PhD)

Objectives of Plant Breeding
•Developmentofpure(i.e.highlyinbred)lineswithhigh
perseperformance,
•Developmentofpurelineswithhighhybridperformance
(eitherwitheachotherorwithatestcross),
•Lessemphasisondevelopingoutbred(random-mating)
populationswithimprovedperformance
•DevelopmentoflineswithhighregionalGxE,lowyearG
xE.
Note:Detailsamongplantspeciesvarybecauseof
origin,modeofreproduction,ploidylevels,and
traitsofgreaterimportanceandadjustments
weremadetoadapttospecificsituations.
70Dr. Zekeria Yusuf (PhD)

Objectives of Plant Breeding...
•Theprimeobjectiveofplantbreedingistodevelopsuperiorplants
overtheexistingonesinrelationtotheireconomicuse.The
objectivesofplantbreedingdifferfromcroptocrop.Abriefaccount
ofsomeimportantobjectivesare:
1.Higherproductivity/yield-Increasedyieldhasbeentheultimate
aimofmostplantbreeders.Thiscanbeachievedbydeveloping
moreefficientgenotypeshavinggreaterphysiologicalefficiency.
2.Improvedquality-Improvedqualityofagriculturalproductshas
contributedalottothehumanwell-being.Qualitycharactersvary
fromonecroptoanothercrop.Forexample,Grainsize,colour,
milling,andbakingqualitiesinwheat(Triticumaestivum).
3.DiseaseandInsectResistance-Resistancevarietiesofferthe
cheapestandmostconvenientmethodofdiseaseandinsect
management.Insomecases,theyofferonlyfeasiblemeansof
control.eg.RustinWheat.
71Dr. Zekeria Yusuf (PhD)

Objectives of Plant Breeding...
4.Varietiesfornewseasons-Thevarietiesfornewseasons
havebeendevelopedbyadjustingthegrowthcycleofthe
varietytosuitbettertotheavailablegrowingseason.
5.Modificationofagronomiccharacteristics-modificationof
agronomiccharacteristicssuchasplantheight,tillering,
branching,erectortrailinghabitetc.isoftendesirable.For
example,dwarfnessincerealsisgenerallyassociatedwith
lodgingresistanceandfertilizerresponsiveness.
6.Changeinmaturityduration-itpermitsnewcrop
rotationsandoftenextendsthecroparea.Developmentof
wheatvarietiessuitableforlateplantinghaspermittedrice-
wheatrotation.Thisobjectiveismoredesirableespeciallyin
thoseareaswheremultiplecroppingsystemhasbeen
followed.
72Dr. Zekeria Yusuf (PhD)

Objectives of Plant Breeding...
7.Photoandthermoinsensitivity-Developmentofphoto
andthermoinsensitivewheatandphotoinsensitiverice
varietieshaspermittedtheircultivationinnewareas.
8.Synchronousmaturity-Synchronousmaturityishighly
desirableincropswhereseveralpickingsarenecessary.Eg.
Mungbean,pigeonpea,cottonetc.
9.Non-shatteringcharacteristics-Itwouldbeofgreatvalue
incropslikemung,castor,soybeanetc.whereshatteringis
amajorproblemincaseofmanycommercialvarieties.
10.Determinategrowth-Developmentofvarietieswith
determinategrowthisdesirableincropslikemung,pigeon
pea,cotton,etc.
73Dr. Zekeria Yusuf (PhD)

Objectives of Plant Breeding...
11.Dormancy-Dormancyplaysbothbeneficialandharmful
roleaccordingtotheneedofgrower.
Forexample,ifwewantnextcropimmediateafterharvesting
ofpreviouscrop,insuchcasedormancyisnotrequired.But
ifwewanttostoretheseedforitsfuturepurpose,aperiod
ofdormancyisessential.
12.Eliminationoftoxicsubstances:somecropshavetoxic
substanceswhichmustbeeliminatedtomakethemsafefor
consumption.
Forexample,•Khesari(Lathyrusodoratus)seedshavea
neurotoxin,β-N-oxalyl-α-β-diaminopropionicacid(BOAA)
thatcausesparalysisinhumans.
•Similarly,eliminationofErusicacidfromBrassicaoiland
Gossypolfromseedcottonisnecessarytomakethemfitfor
consumption.
74Dr. Zekeria Yusuf (PhD)

Objectives of Plant Breeding...
13.MoistureStressandSaltTolerance:
developmentofvarietiesforarainfedareaand
salinesoilswouldhelptoincreasecrop
production.
14.WiderAdaptability:ithelpsinstabilizingthe
cropproductionoverregionandseasons.
15.UsefulforMechanicalCultivation:thevariety
developedshouldgiveresponsetoapplicationof
fertilizers,manuresandirrigation,suitablefor
mechanicalcultivationetc.
75Dr. Zekeria Yusuf (PhD)

Animal and tree breeding
•Similargoals,butsincemostlyoutcrossing,the
goalistocreatehigh-performingpopulations,
notinbredlines
•Generallyspeaking,inbreedingisbadin
animalsandmanytrees
•Focusonfindingthoseparentswiththebest
transmittingabilities(highestbreedingvalues)
•LessofaGxEfocuswithanimals,lessofa
focusonlineandhybridbreeding
76Dr. Zekeria Yusuf (PhD)

Special features exploited by plant breeders
•Selfingallowsforthecaptureofspecificgenotypes,
andhencethecaptureofinteractionsbetween
allelesandloci(dominanceandepistasis)
–Homozygousforselfedlines
–Heterozygousforcrossedlines
•Oftenhighreproductiveoutput(relativetoanimal
breeding)
•Seedsallowformultigenerationprogenytesting,
whereinindividualsarechosenonthe
performanceoftheirprogeny,oroftheirsibs
–AllowsforbettercontroloverGxEbytestingover
multiplesites/years
77Dr. Zekeria Yusuf (PhD)

Historical plant breeding
• Early origins
–Creation of new lines through species crosses
(allopolyploids)
–Visual selection
–Early domestication (selection for specific traits for
ease of harvesting)
• Biometrical school
–Usingcrossestopredictaverageperformance
underinbreedingorcrossingorresponseto
selection
–Better management of G x E
78Dr. Zekeria Yusuf (PhD)

ModernBreedingTools
Increaseofbreedingeffectivenessandefficiency
In vitro culture Genomictools Genomicengineering

Classic/ traditional tools
•Emasculation
•Hybidization
•Wide crossing
•Selection
•Chromosome counting
•Chromosome doubling
•Male sterility
•Triploidy
•Linkage analysis
•Statistical tools
Advanced tools
•Mutagenesis
•Tissue culture
•Haploidy
•In situ hybridization
•Molecular markers
•Marker-assisted selection
•DNA sequencing
•Plant genomic analysis
•Bioinformatics
•Microarray analysis
•Primer design
•Plant transformation
80Dr. Zekeria Yusuf (PhD)

PlantBreedingMethods
Conventionalbreeding
•Mutationorcrossingto introducevariability
•Selectionbasedonmorphologicalcharacteres
•Growthofselectedseeds
Challenge: reducethetime neededto complete a breedingprogram

Plant Breeding Methods
Conventional Methods:
1.Plantintroduction
2. Purelineselection
3. Mass selection
4. Pedigree method
5. Bulk method
6. Single Seed descent
method
7. Back cross method
8. Hetrosisbreeding
Modern Methods
1. Mutation breeding
2. Polyploidy breeding
3. Transgenic breeding
4. Molecular breeding
82Dr. Zekeria Yusuf (PhD)

Symbols for basic crosses
•F: The symbol F (for filial) denotes the
progeny of a cross between two parents.
•Ⓧ: The symbol is the notation for selfing.
•S: The S notation is also used with numeric
•subscripts. In one usage S0= F1; another
system indicates S0= F2.
83Dr. Zekeria Yusuf (PhD)

Modern tools Used in Plant Breeding
•Molecularmarkers:
–InitiallylowdensityforQTLmapping,introgressionofmajor
genesintoelitegermplasm
–Withhigh-densitymarkers,associationmappingand
MAS/genomicselection
•Newstatisticaltools:
–Mixedmodelmethods
–Bayesianapproachestohandlehigh-dimensionaldatasets
–NewmethodstodealwithGxE
•Othertechnologies:
–Betterstandardizationoffieldsites(laser-tilledfields,GPS,
bettermicro-andmacro-environmentalmeasurements)
–Highthroughputphenotypicscoring
–DH(doublehaploid)lines
84Dr. Zekeria Yusuf (PhD)

85Dr. Zekeria Yusuf (PhD)

Integrated Approaches
•Howdowebestcombinetherichhistoryof
quantitativegeneticsandclassicalplantbreeding
withthenewtoolsfromgenomicsandother
advances?
•Key:Quantitativegeneticshasallofthe
machineryneededtofullyincorporatethesenew
sourcesofinformation
86Dr. Zekeria Yusuf (PhD)

Basic steps in plant breeding
•Objective
•Germplasm
•Selection
•Evaluation
87Dr. Zekeria Yusuf (PhD)

Activities in plant breeding:
•1.Creationofvariation:variationmeansdifferences
amongindividualsofapopulationorspeciesforaspecific
character.
•Geneticvariationisthesourceofrawmaterialfor
selection.Theseareheritableandaretransmittedfrom
onegenerationtoother.Suchvariationisusefulin
selection.
•Successofabreedingprogramusuallydependsonthe
desiredgeneticvariation.Itcanbedoneinfollowingways
i.e.domestication,germplasmcollection,plant
introduction,hybridization,polyploidy,mutation,
somaclonalvariationandgeneticengineering.
88Dr. Zekeria Yusuf (PhD)

Activities in plant breeding….
2. Selection:
•Duringselection,theindividualplantorgroupofplants
havingthedesiredcharactersarepickedupfroma
populationeliminatingtheundesirableones.
•Thoseplantsareselectedwhicharelookingpromisingfor
thecharacterontheebasisofphenotype.
•Theselectedplantsarethenallowedtogrowforsetting
theirseeds.
•Seedsareselectedandagainanewcropisdeveloped.
•Thisprocessisrepeatedagainandagaintillthedesired
resultisachieved.
•Selectionactsonthegeneticvariationpresentina
populationandproducesanewpopulationwithimproved
characters.
89Dr. Zekeria Yusuf (PhD)

Activities in plant breeding….
3.Evaluation:
•Thenewlyselectedlines/strains/populationsaretested
foryieldandothertraitsandtheirperformanceis
comparedwithexistingbestvarietiescalledChecks.
Ifthenewlines/strain/populationshowssuperior
performancetothechecks,itisreleasedandnotifiedas
anewvariety.
4.Multiplication:
•Thisstepconcernswithlargescalecertifiedseed
productionofthereleasedandnotifiedvariety.
5.Distribution:
•Certifiedseedisultimatelysoldtothefarmerswhouseit
forcommercialcropcultivation.
90Dr. Zekeria Yusuf (PhD)

91Dr. Zekeria Yusuf (PhD)

Scope of plant breeding
•Fromtimesimmemorial,theplantbreedinghasbeenhelpingthemankind.
Withknowledgeofclassicalgenetics,numberofvarietieshavebeenevolvedin
differentcropplants.
•Sincethepopulationisincreasingatanalarmingrate,thereisneedto
strengthenedthefoodproductionwhichisseriouschallengetothosescientists
concernedwithagriculture.
•Advancesinmolecularbiologyhavesharpenedthetoolsofthebreeders,and
brightentheprospectsofconfidencetoservethehumanity.
•Theapplicationofbiotechnologytofieldcrophasalreadyledtothefield
testingofgeneticallymodifiedcropplants.Geneticallyengineeredrice,maize,
soybean,cotton,oilseedsrape,sugarbeetandalfalfacultivarsareexpectedto
becommercializedbeforethecloseof20thcentury.
•Genesfromvariedorganismsmaybeexpectedtoboosttheperformanceof
cropsespeciallywithregardtotheirresistancetobioticandabioticstresses.
•Inaddition,cropplantsarelikelytobecultivatedforrecoveryofvaluable
compoundslikepharmaceuticalsproducedbygenesintroducedintothem
throughgeneticengineering.ItmaybepointedoutthatinEuropehirudin,an
anti-thrombinproteinisalreadybeingproducedfromtransgenicBrassica
92Dr. Zekeria Yusuf (PhD)

What is Germplasm?
•Germplasmbroadlyrefertothehereditary
material(totalcontentofgene)transmittedtothe
offspringthroughgermcell.
•Itcanalsobedescribedasacollectionofgenetic
resourcesforanorganism.
•Forplants,thegermplasmmaybestoredasa
seed,stem,Callus,Wholeplantinnurseries.
•Incaseofanimals-Genes,Bodypartsstoredin
genebank/cryobank.
•Germplasmprovidetherawmaterial(genes)
whichthebreederusestodevelopcommercial
cropvarieties.
93Dr. Zekeria Yusuf (PhD)

Sources of germplasmfor plant breeding
•Germplasmmay be classified into five major types –
1.advanced (elite) germplasm,
2.improved germplasm(cultivars and varieties),
3.landraces,
4.wild or weedy relatives, and
5.Genetic stocks.
Themajorsourcesofvariabilityforplantbreedersmay
alsobecategorizedintothreebroadgroups–
I.domesticated plants,
II.undomesticated plants, and
III.other species or genera.
94Dr. Zekeria Yusuf (PhD)

1. Undomesticated plants
•Whendesiredgenesarenotfoundindomesticatedcultivars,plant
breedersmayseekthemfromwildpopulations.
•Whenwildplantsareusedincrosses,theymayintroducewildtraits
thathaveanadvantageforsurvivalinthewild(e.g.,hardseedcoat,
shattering,indeterminacy)
•butareundesirableinmoderncultivation.Theseundesirabletraits
havebeenselectedagainstthroughtheprocessofdomestication.
•Wildgermplasmshavebeenusedasdonorsofseveralimportant
disease-andinsectresistancegenesandgenesforadaptationto
stressfulenvironments.Thecultivatedtomatohasbenefitedfromsuch
introgressionbycrossingwithavarietyofwildLicopersiconspp.
•Otherspeciessuchaspotato,sunflower,andricehavebenefitedfrom
widecrosses.
•Inhorticulture,variouswildrelativesofcultivatedplantsmaybeused
asrootstockingrafting(e.g.,citrus,grape)toallowcultivationofthe
plantinvariousadversesoilandclimaticconditions.
95Dr. Zekeria Yusuf (PhD)

2. Domesticated plants
•Domesticatedplantsarethoseplantmaterialsthathavebeen
subjectedtosomeformofhumanselectionandaregrownforfoodor
otheruses.Therearevarioustypesofsuchmaterial:
1.Commercialcultivars:
•Therearetwoformsofthismaterial–currentcultivarsandretired
orobsoletecultivars.
•Theseareproductsofformalplantbreedingforspecificobjectives.It
isexpectedthatsuchgenotypeswouldhavesuperiorgene
combinations,beadaptedtoagrowingarea,andhaveagenerally
goodperformance.
•Theobsoletecultivarsweretakenoutofcommercialproduction
becausetheymayhavesufferedasetback(e.g.,susceptibleto
disease)orhigherperformingcultivarsweredevelopedtoreplace
them.
•Ifdesirableparentsarefoundincommercialcultivars,thebreederhas
aheadstartonbreedingsincemostofthegenecombinationswould
alreadybedesirableandadaptedtotheproductionenvironment.
96Dr. Zekeria Yusuf (PhD)

2. Breeding materials
•Ongoingormoreestablishedbreedingprogramsmaintain
variabilityfrompreviousprojects.
•Theseintermediatebreedingproductsareusuallygenetically
narrow-basedbecausetheyoriginatefromasmallnumberof
genotypesorpopulations.
•Forexample,abreedermayreleaseonegenotypeasa
commercialcultivarafteryieldtests.
•Manyofthegenotypesthatmadeittothefinalstageorhave
uniquetraitswillberetainedasbreedingmaterialstobe
consideredinfutureprojects.Similarly,genotypeswithunique
combinationsmayberetained.
97Dr. Zekeria Yusuf (PhD)

3. Landraces
•Landracesarefarmer-developedandmaintainedcultivars.Theyare
developedoververylongperiodsoftimeandhavecoadaptedgene
complexes.
•Theyareadaptedtothegrowingregionandareoftenhighlyheterogeneous.
•Landracesarerobust,havingdevelopedresistancetotheenvironmental
stressesintheirareasofadaptation.
•Theyareadaptedtounfavorableconditionsandproducelowbutrelatively
stableperformance.
•Landraces,hence,characterizesubsistenceagriculture.Theymaybeusedas
startingmaterialinmassselectionorpure-linebreedingprojects.
98Dr. Zekeria Yusuf (PhD)

4. Plant introductions
•Theplantbreedermayimportnew,unadapted
genotypesfromoutsidetheproductionregion,usually
fromanothercountry(calledplantintroductions).
•Thesenewmaterialsmaybeevaluatedandadapted
tonewproductionregionsasnewcultivars,orusedas
parentsforcrossinginbreedingprojects.
99Dr. Zekeria Yusuf (PhD)

Plant introductions…
Plantintroductionistheprocessofimportingnewplantsorcultivars
ofwell-establishedplantsfromtheareaoftheiradaptationto
anotherareawheretheirpotentialisevaluatedforsuitabilityfor
agriculturalorhorticulturaluse.
First,thegermplasmtobeintroducedisprocessedthroughaplant
quarantinestationattheentryport,toensurethatnopestand
diseasesareintroducedalongwiththedesiredmaterial.
Oncethisisaccomplished,thematerialisreleasedtotheresearcher
forevaluationinthefieldforadaptation.
Thefundamentalprocessofplantintroductionsasaplantbreeding
approachisacclimatization.
Theinherentgeneticvariationintheintroducedgermplasmservesas
therawmaterialforadaptationtothenewenvironment,enablingthe
breedertoselectsuperiorperformerstoformthenewcultivar.
100Dr. Zekeria Yusuf (PhD)

Plant introductions…
•Whentheplantintroductioniscommerciallyusableas
introducedwithoutanymodification,itiscalledaprimary
introduction.
•However,moreoftenthannot,thebreedermakes
selectionsfromthevariablepopulation,orusestheplant
introductionasaparentincrosses.Theproductsofsuch
effortsarecalledsecondaryintroductions.
•Someplantintroductionsmaynotbeusefulascultivars
inthenewenvironment.However,theymaybeusefulin
breedingprogramsforspecificgenestheycarry.
•Manydiseases,plantstature,compositionaltraits,and
genesforenvironmentalstresseshavebeenintroduced
byplantbreeders.
•Asaplantbreedingmethod,plantintroductionshavehad
asignificantimpactonworldfoodandagriculture.
101Dr. Zekeria Yusuf (PhD)

5. Genetic stock
Geneticstock:consistsofproductsofspecializedgenetic
manipulationsbyresearchers(e.g.,byusingmutagenesisto
generatevariouschromosomalandgenomicmutants).
6.Otherspeciesandgenera:
•Genetransferviacrossingrequiresthattheparentsbecross-
compatibleorcross-fertile.
•Crossinginvolvingparentsfromwithinaspeciesisusually
successfulandunproblematic.
•However,astheparentsbecomemoregeneticallydivergent,
crossing(widecrosses)islesssuccessful,oftenrequiringspecial
techniques(e.g.,embryorescue)forinterveningintheprocessin
ordertoobtainaviableplant.
•Sometimes,relatedspeciesmaybecrossedwithlittledifficulty.
102Dr. Zekeria Yusuf (PhD)

Germplasmenhancement
•Thereareoccasionswhenbreedersarecompelledtolookbeyondthe
advancedgermplasmpooltofinddesirablegenes.T
•Thedesiredgenesmayresideinunadaptedgenepools.
•Breedersarefrequentlyreluctanttousesuchmaterialsbecausethe
desiredgenesareoftenassociatedwithundesirableeffects(unadapted,
unreproductive,yieldreducingfactors).Hence,theseexoticmaterials
oftencannotbeuseddirectlyincultivardevelopment.
•Instead,thematerialsaregraduallyintroducedintothecultivar
developmentprogramthroughcrossingandselectingforintermediates
withnewtraits,whilemaintainingagreatamountoftheadaptedtraits.
•Tousewildgermplasm,theunadaptedmaterialisputthrougha
preliminarybreedingprogramtotransferthedesirablegenesinto
adaptedgeneticbackgrounds.
•Theprocessoftheinitialintrogressionofatraitfroman
undomesticatedsource(wild)oragronomicallyinferiorsource,toa
domesticatedoradaptedgenotypeiscalledprebreedingorgermplasm
enhancement.
103Dr. Zekeria Yusuf (PhD)

The major uses of germplasmenhancement may be summarized as follows:
1.Preventionsofgeneticuniformityandthe
consequencesofgeneticvulnerability.
2.Potentialcropyieldaugmentation.Historyteachesus
thatsomeofthedramaticyieldincreasesinmajor
worldfoodcrops,suchasrice,wheat,andsorghum,
wereaccomplishedthroughintrogressionof
unadaptedgenes(e.g.,dwarfgenes).
3.Introductionofnewqualitytraits(e.g.,starch,
protein).
4.Introductionofdisease-andinsect-resistancegenes.
5.Introductionofenvironment-resistancegenes(e.g.,
droughtresistance).
Prebreedingcanbeexpensivetoconductandtime
consumingaswell.
104Dr. Zekeria Yusuf (PhD)

Genetic vulnerability
•Geneticvulnerabilityisbroughtaboutlargelybythemannerinwhichbreedersgo
aboutdevelopingnewandimprovedcultivarsformodernsociety.
•Geneticvulnerabilityisatermusedtoindicatethegenetichomogeneityand
uniformityofagroupofplantsthatpredisposesittosusceptibilitytoapest,
pathogen,orenvironmentalhazardoflarge-scaleproportions.Acaseinpointisthe
1970epidemicofsouthernleafblight(Helminthosporiummaydis)intheUSAthat
devastatedthecornindustry.Thisgeneticvulnerabilityincornwasattributedto
uniformityinthegeneticbackgroundincornstemmingfromthewidespreaduseof
T-cytoplasmincornhybridseedproduction.
•Geneticuniformityperseisnotnecessarilytheculpritinvulnerabilityofcrops.In
fact,bothproducersandconsumerssometimesdesireandseekuniformityinsome
agronomictraits.Thekeyissueiscommonalityofgeneticfactors.
•Geneticallydissimilarcropscanshareatraitthatissimplyinheritedandthat
predisposesthemtosusceptibilitytoanadversebioticorabioticfactor.
•Acaseinpointisthechestnutblight(Cryphonectriaparasitica)epidemicthat
occurredintheUSAinwhichdifferentspeciesoftheplantwereaffected.
105Dr. Zekeria Yusuf (PhD)

Conservation of Plant Genetic Resources
Whyconserveplantgeneticresources?
•Thereareseveralreasonswhyplantgeneticresourcesshould
beconserved:
1.Plantgermplasmisexploitedforfood,fiber,feed,fuel,and
medicinesbyagriculture,industry,andforestry.
2.Asanaturalresource,germplasmisadepletableresource.
3.Withoutgeneticdiversity,plantbreedingcannotbe
conducted.
4.Geneticdiversitydeterminestheboundariesofcrop
productivityandsurvival.
5.Aspreviouslyindicated,variabilityisthelifebloodofplant
breeding.Associetyevolves,itsneedswillkeepchanging.
Similarly,newenvironmentalchallengesmightarise(e.g.,
newdiseases,abioticstresses)forwhichnewvariability
mightbeneededforplantimprovement.
106Dr. Zekeria Yusuf (PhD)

Conservation of Plant Genetic Resources…
•Whenagenotypeisunabletorespondfullytotheculturalenvironment,aswellasto
resistunfavorableconditionsthereof,cropproductivitydiminishes.
•Thenaturalpoolsofplantgeneticresourcesareunderattackfromtheactivitiesof
modernsociety–urbanization,indiscriminateburning,andtheclearingofvirginland
forfarming,tonameafew.
•Theseandotheractivitieserodegeneticdiversityinwildpopulations.Consequently,
Theactionsofplantbreedersalsocontributetogeneticerosionaspreviouslyindicated.
High-yielding,narrowgenetic-basedcultivarsarepenetratingcropproductionsystems
allovertheworld,displacingtheindigenoushigh-variabilitylandracecultivars.
Geneticerosion
•Geneticerosioncanbedefinedasthedeclineingeneticvariationincultivatedor
naturalpopulationslargelythroughtheactionofhumans.
•Lossofgeneticvariationmaybecausedbynaturalfactors,andbytheactionsofcrop
producers,plantbreeders,curatorsofgermplasmrepositories,andothersinsocietyat
large.
1.Naturalfactors:
•Geneticdiversitycanbelostthroughnaturaldisasterssuchaslarge-scalefloods,wild
fires,andsevereandprolongeddrought.Theseeventsarebeyondthecontrolof
humans.
107Dr. Zekeria Yusuf (PhD)

2. Action of farmers:
•Rightfromthebeginningsofagriculture,farmershaveengagedinactivities
thatpromotegeneticerosion.
•Theseincludeclearingofvirginlandin,especially,germplasm-richtropical
forests,andthechoiceofplantingmaterial(narrowgenetic-basedcultivars).
•Farmers,especiallyindevelopedeconomies,primarilygrowimprovedseed,
havingreplacedmostoralllandraceswiththesesuperiorcultivars.
•Also,monoculturetendstonarrowgeneticdiversityaslargetractsoflandare
plantedtouniformcultivars.
•Extendinggrazinglandsintowildhabitatsbylivestockfarmers,destroyswild
speciesandwildgermplasmresources.
3.Actionofbreeders:Farmersplantwhatbreedersdevelop.Somemethodsused
forbreeding(e.g.,purelines,singlecross,multilines)promoteuniformityanda
narrowergeneticbase.
Whenbreedersfindsuperiorgermplasm,thetendencyistouseitasmuchas
possibleincultivardevelopment.
Forexample:insoybean,mostofthemoderncultivarsintheUSAcanbetraced
backtoabouthalfadozenparents.Thispracticecausesseverereductionin
geneticdiversity.
108Dr. Zekeria Yusuf (PhD)

Problems with germplasmconservation
Inspiteofgoodeffortsbycuratorsofgermplasmrepositoriesto
collectandconservediversity,thereareseveralwaysinwhichdiversity
intheircustodymaybelost.
Themostobviouslossofdiversityisattributedtohumanerrorsinthe
maintenanceprocess(e.g.,improperstorageofmaterialsleadingto
lossofvariability).
Also,whengermplasmisplantedinthefield,naturalselection
pressuremayeliminatesomeunadaptedgenotypes.Also,therecould
bespontaneousmutationsthatcanalterthevariabilityinnatural
populations.
Hybridizationaswellasgeneticdriftincidencesinsmallpopulations
arealsoconsequencesofperiodicmultiplicationofthegermplasm
holdingsbycurators.
109Dr. Zekeria Yusuf (PhD)

Germplasmcollection
Plannedcollections(germplasmexplorationsorexpeditions)areconductedby
expertstoregionsofplantorigin.
Thesetripsareoftenmultidisciplinary,comprisingmemberswithexpertisein
botany,ecology,pathology,populationgenetics,andplantbreeding.
Familiaritywiththespeciesofinterestandthecultureoftheregionstobe
exploredareadvantageous.
Mostofthematerialscollectedareseeds,eventhoughwholeplantsand
vegetativeparts(e.g.,bulbs,tubers,cuttings,etc.)andevenpollenmaybe
collected.
Becauseonlyasmallamountofmaterialiscollected,samplingfor
representativenessofthepopulation’snaturalvariabilityiscriticalinthe
collectionprocess,inordertoobtainthemaximumpossibleamountofgenetic
diversity.
Forsomespecieswhoseseedispronetorapiddeterioration,orarebulkyto
transport,invitrotechniquesmaybeavailabletoextractsmallsamplesfrom
theparentsource.
Collectorsshouldbearinmindthatthevalueofthegermplasmmaynotbe
immediatelydiscernible.
Materialsshouldnotbeavoidedforlackofobviousagronomicallydesirable
properties.Ittakestimetodiscoverthefullpotentialofgermplasm.
110Dr. Zekeria Yusuf (PhD)

Germplasmcollection…
•Seedmaterialsvaryinviabilitycharacteristics.Thesehaveto
betakenintoaccountduringgermplasmcollection,
transportation,andmaintenanceinrepositories.
•Basedonviability,seedmaybeclassifiedintotwomaingroups
–orthodoxandrecalcitrantseed:
1.Orthodoxseeds:Theseareseedsthatcanprolongtheir
viabilityunderreducedmoisturecontentandlow
temperatureinstorage.Examplesincludecereals,pulses,and
oilseed.Ofthese,somehavesuperior(e.g.,okra)while
othershavepoor(e.g.,soybean)viabilityunderreduced
moisturecoldstorage.
2.Recalcitrantseeds:Lowtemperatureanddecreasedmoisture
contentareintolerabletotheseseeds(e.g.,coconut,coffee,
cocoa).Invitrotechniquesmightbebeneficialtothesespecies
forlong-termmaintenance.
111Dr. Zekeria Yusuf (PhD)

Germplasmcollection…
•Theconditionsofstoragedifferdependingonthemode
ofreproductionofthespecies:
1.Seedpropagatedspecies:theseseedsarefirstdriedto
about5%moisturecontentandthenusuallyplacedin
hermeticallysealedmoisture-proofcontainersbefore
storage.
2.Vegetativelypropagatedspecies:thesematerialsmay
bemaintainedasfullplantsforlongperiodsoftimein
fieldgenebanks,naturereserves,orbotanicalgardens.
Alternatively,cuttingsandothervegetativepartsmay
beconservedforashortperiodoftimeunder
moderatelylowtemperatureandhumidity.
•Forlong-termstorage,invitrotechnologyisused.
112Dr. Zekeria Yusuf (PhD)

Types of plant germplasmcollections
•Therearefourtypesofplantgeneticresourcesmaintainedbygermplasm
repositories–basecollections,backupcollections,activecollections,and
breeders’orworkingcollections.Thesecategorizationsareonlyapproximate
sinceonegroupcanfulfillmultiplefunctions.
1.Basecollections:
•Thesecollectionsarenotintendedfordistributiontoresearchers,butare
maintainedinlong-termstoragesystems.Theyarethemostcomprehensive
collectionsofthegeneticvariabilityofspecies.Entriesaremaintainedinthe
originalform.Storageconditionsarelowhumidityatsubfreezingtemperatures
(−10to−18°C)orcryogenic(−150to−196°C),dependingonthespecies.
Materialsmaybestoredformanydecadesunderproperconditions.
2.Backupcollections:
•Thepurposeofbackupcollectionsistosupplementthebaseselection.Incase
ofadisasteratacenterresponsibleforabasecollection,aduplicatecollection
isavailableasinsurance.IntheUSA,theNationalSeedStorageLaboratoryat
FortCollins,Colorado,isabackupcollectioncenterforportionsofthe
accessionsoftheCentroInternationaledeMejoramientodeMaizyTrigo
(CIMMYT)andtheInternationalRiceResearchInstitute(IRRI).
113Dr. Zekeria Yusuf (PhD)

3.Activecollections:
•Baseandbackupcollectionsofgermplasmaredesignedforlong-term
unperturbedstorage.Activecollectionsusuallycomprisethesame
materialsasinbasecollections,however,thematerialsinactive
collectionsareavailablefordistributiontoplantbreedersorother
patronsuponrequest.Theyarestoredat0°Candabout8%moisture
content,andremainviableforabout10–15years.Tomeetthis
obligation,curatorsofactivecollectionsatgermplasmbanksmust
increasetheamountofgermplasmavailabletofillrequests
expeditiously.Becausetheaccessionsaremorefrequentlyincreased
throughfieldmultiplication,thegeneticintegrityoftheaccessionmay
bejeopardized.
4.Workingorbreeders’collections:
•Breeders’collectionsareprimarilycomposedofelitegermplasmthatis
adapted.Theyalsoincludeenhancedbreedingstockswithunique
allelesforintrogressionintotheseadaptedmaterials.Inthesetimesof
geneticengineering,breeders’collectionsincludeproductsofrDNA
researchthatcanbeusedasparentsinbreedingprograms.
114Dr. Zekeria Yusuf (PhD)

Managing plant genetic resources
•Thekeyactivitiesofcuratorsofgermplasmbanks
include:
1.Regenerationofaccessions,
2.Characterization,
3.Evaluation,
4.Monitoringseedviabilityandgeneticintegrity
duringstorage,&
5.Maintainingredundancyamongcollections.
•Germplasmbanksreceivenewmaterialsona
regularbasis.Thesematerialsmustbeproperly
managedsoastoencourageandfacilitatetheir
usebyplantbreedersandotherresearchers.
115Dr. Zekeria Yusuf (PhD)

1. Periodic Regeneration
•Theregenerationofseeddependsonthelifecycleandbreedingsystemofthespecies
aswellascostoftheactivity.
•Tokeepcoststoaminimumandtoreducelossofgeneticintegrity,itisbesttokeep
regenerationandmultiplicationtoabareminimum.
•Itisagoodstrategytomakethefirstmultiplicationextensivesothatampleoriginal
seedisavailablefordepositinginthebaseandduplicateoractivecollections.
•Amajorthreattogeneticintegrityofaccessionsduringregenerationiscontamination
(fromoutcrossingoraccidentalmigration),whichcanchangethegeneticstructure.
Otherfactorsincludedifferentialsurvivalofallelesorgenotypeswithintheaccession,
andrandomdrift.Theisolationofaccessionsduringregenerationiscritical,especiallyin
cross-pollinatedspecies,tomaintaininggeneticintegrity.
•Thisisachievedthroughproperspacing,caging,coveringwithbags,handpollination,
andothertechniques.
•Regenerationofwildspeciesisproblematicbecauseofhighseeddormancy,seed
shattering,highvariabilityinfloweringtime,andlowseedproduction.
•Somespecieshavespecialenvironmentalrequirements(e.g.,photoperiod,
vernalization)andhenceitisbesttorejuvenateplantsunderconditionssimilartothose
intheplacesoftheirorigin,topreventselectioneffect,whichcaneliminatecertain
alleles.
Dr. Zekeria Yusuf (PhD) 116

2. Characterization:
•Curatorsofgermplasmbankscharacterizetheiraccessions,anactivity
thatentailsasystematicrecordingofselectedtraitsofanaccession.
•Traditionally,thesedataarelimitedtohighlyheritablemorphological
andagronomictraits.
•However,withtheavailabilityofmoleculartechniques,somegermplasm
bankshaveembarkeduponmolecularcharacterizationoftheirholdings.
Forexample,CIMMYThasusedthesimplesequencerepeat(SSR)
markersystemforcharacterizingthemaizegermplasmintheirholding.
•Passportdataareincludedingermplasmcharacterization.Thesedata
includeanaccessionnumber,scientificname,collectionsite(country,
village),source(wild,market),geographyofthelocation,andany
diseaseandinsectpests.
•Tofacilitatedataentryandretrieval,characterizationincludestheuseof
descriptors.Thesearespecificpiecesofinformationonplantor
geographicfactorsthatpertaintotheplantcollection.
•TheInternationalPlantGeneticResourcesInstitute(IPGRI)has
prescribedguidelinesforthecategoriesofthesedescriptors.Descriptors
havebeenstandardizedforsomespeciessuchasrice.
117Dr. Zekeria Yusuf (PhD)

3. Evaluation:
•Geneticdiversityisnotusablewithoutproperevaluation.
•Preliminaryevaluationconsistsofreadilyobservable
traits.Fullevaluationsaremoreinvolvedandmayinclude
obtainingdataoncytogenetics,evolution,physiology,and
agronomy.
•Moredetailedevaluationisoftendoneoutsideofthe
domainofthegermplasmbankbyvariousbreedersand
researchersusingthespecificplanttraitssuchasdisease
resistance,productivity,andqualityofproductare
importantpiecesofinformationforplantbreeders.
•Withoutsomebasicinformationofthevalueofthe
accession,userswillnotbeabletomakeproperrequests
andreceivethemostusefulmaterialsfortheirwork.
118Dr. Zekeria Yusuf (PhD)

4.Monitoringseedviabilityandgeneticintegrity:
•Duringstorage,vigortestsshouldbeconductedatappropriate
intervalstoensurethatseedviabilityremainshigh.During
thesetests,abnormalseedlingsmayindicatethepresenceof
mutations.
5.Exchange:
•Theultimategoalofgermplasmcollection,rejuvenation,
characterization,andevaluationistomakeavailableand
facilitatetheuseofgermplasm.Therearevariouscomputer-
basedgenetic-resourcedocumentationsystemsworldwide,
someofwhicharecrop-specific.
•Thesesystemsallowbreederstorapidlysearchandrequest
germplasminformation.Therearevariouslawsregarding,
especially,internationalexchangeofgermplasm.
•Apartfromquarantinelaws,variousinspectionsandtesting
facilitiesareneededatthecheckpointofgermplasm.
119Dr. Zekeria Yusuf (PhD)

6. Germplasmstorage technologies:
•Oncecollected,germplasmismaintainedinthemostappropriateform
bythegenebankwithstorageresponsibilitiesforthematerials.Plant
germplasmmaybestoredintheformofpollen,seed,orplanttissue.
•Woodyornamentalspeciesmaybemaintainedaslivingplants.Indoor
maintenanceisdoneundercoldstorageconditions,withtemperatures
rangingfrom−18to−196°C.
i.Seedstorage:
•Seedsaredriedtotheappropriatemoisturecontentbeforebeing
placinginseedenvelopes.Theseenvelopesarethenarrangedintrays
thatareplacedonshelvesinthestorageroom.
•Thestorageroomismaintainedat−18°C,atemperaturethatwillkeep
mostseedsviableforupto20yearsormore.
•Thecuratorofthelaboratoryandthestaffperiodicallysampleseedsof
eachaccessiontoconductagerminationtest.
•Whengerminationfallsbelowacertainpredeterminedlevel,the
accessionisregrowntoobtainfreshseed.
120Dr. Zekeria Yusuf (PhD)

ii.Fieldgrowing:
•Accessionsareregrowntoobtainfreshseedortoincreaseexisting
supplies(afterfillingordersbyscientistsandotherclients).Tokeep
thegeneticpurity,theaccessionsaregrowninisolation,eachplant
coveredwithacottonbagtokeepforeignsourcesofpollenoutand
alsotoensureself-pollination.
iii.Cryopreservation:
•Cryopreservationorfreeze-preservationisthestorageofmaterials
atextremelylowtemperaturesofbetween−150to−196°Cinliquid
nitrogen.Plantcells,tissue,orothervegetativematerialmaybestored
thiswayforalongtimewithoutloosingregenerativecapacity.
•Whereasseedmayalsobestoredbythismethod,cryopreservationis
reservedespeciallyforvegetativelypropagatedspeciesthatneedtobe
maintainedaslivingplants.
•Shoottipculturesareobtainedfromthematerialtobestoredand
protectedbydippinginacryoprotectant(e.g.,amixtureofsugarand
polyethyleneglycolplusdimethylsulfoxide).
121Dr. Zekeria Yusuf (PhD)

iv.Invitrostorage:
•Germplasmofvegetativelypropagatedcropsisnormallystoredanddistributedto
usersinvegetativeformssuchastubers,corms,rhizomes,andcuttings.However,it
islaboriousandexpensivetomaintainplantsintheseforms.
•Invitrogermplasmstorageusuallyinvolvestissueculture.Thereareseveraltypesof
tissueculturesystems(suspensioncells,callus,meristematictissues).
•Tousesuspensioncellsandcallusmaterials,theremustbeanestablishedsystemof
regenerationoffullplantsfromthesesystems,somethingthatisnotavailableforall
plantspeciesyet.Consequently,meristemculturesarefavoredforinvitrostorage
becausetheyaremorestable.
•Thetissueculturematerialmaybestoredusingthemethodofslowgrowth
(chemicalsareappliedtoretardtheculturetemperature)orcryopreservation.
v.Molecularconservation:
•TheadventofbiotechnologyhasmadeitpossibleforresearcherstosequenceDNA
oforganisms.Thesesequencescanbesearchedforgenesatthemolecularlevel.
Specificgenescanbeisolatedbycloningandusedindevelopingtransgenicproducts.
122Dr. Zekeria Yusuf (PhD)

What is germplasmconservation?
•Plantgermplasmisthegeneticsourcematerialusedby
theplantbreederstodevelopnewcultivars.
Theymayinclude:
•Seeds
Otherplantpropagulessuchas
•Leaf
•Stem
•Pollen
•Culturedcells
Whichcanbegrownintomatureplant?
•Germplasmprovidetherawmaterial(genes)whichthe
breederusedtodevelopcommercialcropvarieties.
123Dr. Zekeria Yusuf (PhD)

Need for Conservation of plant Germplasm
••StorageofEconomicallyimportant,endangered,rarespeciesand
makethemavailablewhenneeded.
•Theconventionalmethodsofstoragefailedtopreventlossescaused
duetovariousreasons.
•Humandependenceonplantspeciesforfoodandmanydifferent
uses.E.g.Basicfoodcrops,buildingmaterials,oils,lubricants,
rubber&otherlatexes,resins,waxes,perfumes,dyesfibresand
medicines.
•Speciesextinctionandmanyothersarethreatenedandendangered
–deforestation.
•Greatdiversityofplantsisneededtokeepthevariousnatural
ecosystemsfunctioningstably–interactionsbetweenspecies.
•Aestheticvalueofnaturalecosystemsandthediversityofplant
species.
124Dr. Zekeria Yusuf (PhD)

125Dr. Zekeria Yusuf (PhD)

126Dr. Zekeria Yusuf (PhD)

In-situ Preservation
Preservationofthegermplasmintheirnatural
habitat
Theconservationofdomesticatedandcultivated
speciesinthefarmorinthesurroundings.
However,thereisaheavylossordeclineof
species,populationsandecosystemcomposition,
whichcanleadtoalossofbiodiversity,dueto
habitatdestructionandthetransformationsof
thesenaturalenvironments;therefore,insitu
methodsaloneareinsufficientforsaving
endangeredspecies.
127Dr. Zekeria Yusuf (PhD)

128Dr. Zekeria Yusuf (PhD)

Ex-situ preservation
1.Tomaintainthebiologicalmaterialoutsidetheir
naturalhabitats.
2.Storageinseedbanks,fieldgenecollections,in
vitrocollectionsandbotanicalgardens
3.Exsituconservationisaviablewayforsaving
plantsfromextinction,andinsomecases,itisthe
onlypossiblestrategytoconservecertainspecies
4.Invitroconservationisespeciallyimportantfor
vegetativelypropagatedandfornon-orthodox
seedplantspecies
129Dr. Zekeria Yusuf (PhD)

130Dr. Zekeria Yusuf (PhD)

131Dr. Zekeria Yusuf (PhD)

Disadvantages of Ex-situ Conservation
• Some plants do not produce fertile seeds.
• Loss of seed viability
• Seed destruction by pests, etc.
• Poor germination rate.
• This is only useful for seed propagating plants.
• It’s a costly process.
132Dr. Zekeria Yusuf (PhD)

In vitro method for germplasmconservation
•Invitromethodemployingshoots,meristemsand
embryosareideallysuitedfortheconservationof
germplasm.Theplantwithrecalcitrantseedsand
geneticallyengineeredcanalsobepreservedbythisin
vitroapproach.
Thereareseveraladvantagesassociatedwithinvitro
germplasmconservation
Largequantitiesofmaterialcanbepreservedinsmall
space
Thegermplasmpreservedcanbemaintainedinan
environmentfreefrompathogens.
Itcanbeprotectedagainstthenature’shazards
Fromthegermplasmstocklargenumberofplantscanbe
obtainedwheneverneeded.
133Dr. Zekeria Yusuf (PhD)

134Dr. Zekeria Yusuf (PhD)

CRYOPRESERVATION
•Cryopreservation(Greek,krayos-frost)literallymeaninthefrozen
state.
•Theprincipalinvolvedincryopreservationtobringtheplantcellsand
tissueculturestoazerometabolismornondividingstatebyreducing
thetemperatureinthepresenceofcaryoprotectants.
•Cryopreservationbroadlymeansthestorageofgermplamatverylow
temperature.
1.Oversolidcarbondioxide(at79
o
C)
2.Lowtemperaturedeepfreezers(at-80
o
C)
3.Inliquidnitrogen(at-196
o
C)
•Amongthesethemostcommonlyusedcryopreservationisby
employingliquidnitrogen.Atthetemperatureofliquidnitrogen(-
196
o
C),thecellstayinacompletelyinactivestateandthuscanbe
conservedforlongerperiod.
Infactcryopreservationhasbeensuccessfullyappliedforgermplasm
conservation.Plantspeciese.g.rice,wheat,peanut,sugarcane
,coconut.
135Dr. Zekeria Yusuf (PhD)

Principle of Cryopreservation
Cryopreservationistheonlytechniquethatensuresthesafe
andcost-efficientlong-termconservationofvarious
categoriesofplants,includingnon-orthodoxseedspecies,
vegetativelypropagatedplants,rareandendangeredspecies
andbiotechnologyproducts.
StorageofBiomaterialatultralowtemperaturebymeansof
slowfreezing.
Inallcryopreservationprocesses,waterremovalplaysa
centralroleinpreventingfreezinginjuryandinmaintaining
post-thawviabilityofcryopreservedmaterial.
Therearetwotypesofcryopreservationprotocolsthat
basicallydifferintheirphysicalmechanisms:
1. Classical cryopreservation
2. Vitrification
136Dr. Zekeria Yusuf (PhD)

Technique of cryopreservation
•Thecryopreservationofplantcellculturefollowed
theregenerationofplantsbroadlyinvolvesthe
followingstages
1. Development of sterile tissue culture.
2. Addition of cryoprotectantand pretreatment
3. Freezing
4. Storage
5. Thawing
6. Reculture
7. Measurement of survival/viability
8. Plant regeneration
137Dr. Zekeria Yusuf (PhD)

138Dr. Zekeria Yusuf (PhD)

139Dr. Zekeria Yusuf (PhD)

Classical cryopreservation
•Inthisprocedure,coolingisperformedinthepresenceofice.
•Itinvolvescryoprotectionbyusingdifferentcryoprotectivesolutions
combinedornotwithpregrowthofmaterialandfollowedbyslowcooling
(0.5–2.0°C/min)toadeterminedprefreezingtemperature(usuallyaround
−40°C),rapidimmersionofsamplesinliquidnitrogen,storage,rapidthawing
andrecovery.
•Theyaregenerallyoperationallycomplex,sincetheyrequiretheuseof
sophisticatedandexpensiveprogrammablefreezers.
•Cryopreservationfollowingclassicalprotocolsinducesafreezedehydration
processusingaslowfreezingregime.Astemperaturedecreaseslowly,iceis
initiallyformedintheextracellularsolutionandthisexternalcrystallization
promotestheeffluxofwaterfromthecytoplasmandvacuolestothe
outsideofthecellswhereitfinallyfreezes.
•Therefore,celldehydrationwilldependonthecoolingrateandthe
prefreezingtemperaturesetupbeforeimmersionofsamplestoliquid
nitrogen.
•Classicalcryopreservationtechniqueshavebeensuccessfullyappliedto
undifferentiatedculturesystemsofdifferentplantspecies,suchascell
suspensionsandcalluses.
140Dr. Zekeria Yusuf (PhD)

Vitrification
•Inthisprocedure,coolingnormallytakesplace
withouticeformation
•Theprocesswhereformationoficecannottake
placebecauseoftheConcentratedaqueous
solutionwhichpermiticecrystalnucleation.
Instead,watersolidifiesintoanamorphous‘glassy’
state.
•Thevitrification-basedproceduresinvolvecell
dehydrationpriortocoolingbyexposureof
samplestohighlyconcentratedcryoprotective
media(usuallycalledplantvitrificationsolutions,
PVS)and/orbyairdesiccation.
141Dr. Zekeria Yusuf (PhD)

Vitrification…
•Coolingratemayberapidorultra-rapid,dependingon
howsamplesareimmersedintoliquidnitrogen.
•Vitrificationperseisaphysicalprocess,definedasthe
transitionoftheliquidphasetoanamorphousglassy
solidattheglasstransition(Tg)temperature.
•Thisglassmaycontributetopreventingtissuecollapse,
soluteconcentrationandpHalterationsduring
dehydration.
•Therefore,thefreeze-induceddehydrationstep
characteristicofclassicalproceduresiseliminatedandthe
slowfreezingregimeisreplacedbyarapidorultra-rapid
coolingprocess,characteristicofthevitrification-based
protocols.
142Dr. Zekeria Yusuf (PhD)

1. Development of sterile tissue culture
•Theselectionofplantspeciesandthetissuewithparticular
referencetothemorphologicalandphysiologicalcharacters
largelyinfluencetheabilityoftheexplantstosurvivein
cryopreservation.
•Anytissuefromaplantcanbeusedforcryopreservation
e.g.meristems,embryos,endosperm,ovules,seeds,
cultureplants.
143Dr. Zekeria Yusuf (PhD)

2. Addition of cryoprotectant
•Cryoprotectantarethecompoundthatcanbepreventthe
damagecausedtocellsbyfreezingorthawing.
•Thereareseveralcryoprotectantwhichinclude(DMSO),
glycerol,ethylene,propylene,sucrose,mannose,glucose,
prolineandacetamide.AmongtheseDMSO,sucrose&glycerol
aremostwidelyused.
144Dr. Zekeria Yusuf (PhD)

3. Freezing
•Thesensitivityofthecelltolowtemperatureisvariable
andlargelydependsontheplantspecies.
•Fourdifferenttypesoffreezingmethodareused:
1.Slowfreezingmethod:thetissueisslowlyfrozenat0.5-
5°C/minfrom0°Cto-100°C,andthentransferredtoliquid
nitrogen.
2.Rapidfreezingmethod:decreaseintemperatureupto-
300to-1000°C.
3.Stepwisefreezingmethod:intermediatetemperaturefor
30min.andrapidlycool.
4.Dryfreezingmethod:reportedthatnon-germinateddry
seedscansurvivefreezingatlowtemperatureincontrast
towaterimbibingseedswhicharesusceptibleto
cryogenicinjuries.
145Dr. Zekeria Yusuf (PhD)

4 : Storage
•Maintenanceofthefrozenculturesatthespecific
temperatureisasimportantasfreezing.
•Ingeneralthefrozencells/tissuesarekeptforstorageat
temperaturesintherangeof-72to-196°C.Storageisideally
doneinliquidnitrogenrefrigerator–at150°Cinthevapour
phase,orat-196°Cintheliquidphase.
•Theultimateobjectiveofstorageistostopallthecellular
metabolicactivitiesandmaintaintheirviability.Forlongterm
storagetemperatureat-196°Cinliquidnitrogenisideal.
146Dr. Zekeria Yusuf (PhD)

5 : Thawing
•Thawingisusuallycarriedoutbyplungingthefrozen
samplesinampoulesintoawarmwater(temp37–45°C)
bathwithvigorousswirling.
•Bythisapproach,rapidthawing(attherateof500-750°C
min¯¹)occurs,andthisprotectsthecellsfromthe
damagingeffectsicecrystalformation.
•Asthethawingoccurs(icecompletelymelts)theampoules
arequicklytransferredtoawaterbathattemperature20-
25°C.Thistransferisnecessarysincethecellsget
damagedifleftforlonginwarm(37-45°C)waterbath.
147Dr. Zekeria Yusuf (PhD)

6. Reculture:
•Ingeneralthawnedgermplasmiswashedseveraltimes
toremovecryoprotectant.Thematerialisthen
reculturedinafreshmedia.
7.Plantregeneration:
•Theultimatepurposeofcryopreservationofgermplasm
istoregeneratethedesiredplant.
•Forappropriateplantgrowthandregeneration,the
cryopreservedcell/tissueshavetobecarefullynursed,
grown.
•Additionofcertaingrowthpromotingsubstances,
besidesmaintenanceofappropriateenvironmental
conditionsisoftennecessaryforsuccessfulplant
regeneration.
148Dr. Zekeria Yusuf (PhD)

Applications of germplasmconservation
•Plant materials (cell/tissue) of several species can be cryopreservedand
maintained for several years, and used as and when needed.
•Cryopreservation is an ideal method for long term conservation of cell
culture which produce secondary metabolites e.g. medicines
•Disease (pathogen) free plant material can be frozen and propagated
whenever required.
•Recalcitrant seeds can be maintained for long.
•Conservation of somaclonaland gametoclonalvariation in culture.
•Plant material from endangered species can be conserved.
•Cryopreservation is a good method for the selection of cold resistant
mutant cell lines which could develop into frost resistant plant .
• Disease free plants can be conserved and propagated.
• Recalcitrant seeds can be maintained for long time.
• Endangered species can be maintained.
• Pollens can be maintained to increase longitivity.
• Rare germplasmand other genetic manipulations can be stored.
149Dr. Zekeria Yusuf (PhD)

Limitations of germplasmconservation
•Theexpensiveequipmentneededtoprovide
controlledandvariableratesofcooling/warming
temperaturescanhoweverbealimitationinthe
applicationofinvitrotechnologyforlargescale
germplasmconservation.
•Formationoficecrystalinsidethecellshouldbe
preventedastheycauseinjurytothecell.
•Sometimescertainsolutesfromthecellleakout
duringfreezing.
•Cryoprotectantalsoeffecttheviabilityofcells.
150Dr. Zekeria Yusuf (PhD)

Concept of gene pools of cultivated crops
HarlananddeWetproposedacategorizationofgenepoolsofcultivatedcrops
accordingtothefeasibilityofgenetransferorgeneflowfromthosespeciesto
thecropspecies.Threecategoriesweredefined,primary,secondary,andtertiary
genepools:
1.Primarygenepool(GP1).GP1consistsofbiologicalspeciesthatcanbe
intercrossedeasily(interfertile)withoutanyproblemswithfertilityofthe
progeny.Thatis,thereisnorestrictiontogeneexchangebetweenmembersof
thegroup.Thisgroupmaycontainbothcultivatedandwildprogenitorsofthe
species.
2.Secondarygenepool(GP2).Membersofthisgenepoolincludebothcultivated
andwildrelativesofthecropspecies.Theyaremoredistantlyrelatedandhave
crossabilityproblems.Nonetheless,crossingproduceshybridsandderivatives
thataresufficientlyfertiletoallowgeneflow.GP2speciescancrosswiththose
inGP1,withsomefertilityoftheF1,butmoredifficultywithsuccess.
3.Tertiarygenepool(GP3).GP3involvestheouterlimitsofpotentialgenetic
resources.GenetransferbyhybridizationbetweenGP1andGP3isvery
problematic,resultinginlethality,sterility,andotherabnormalities.Toexploit
germplasmfromdistantrelatives,toolssuchasembryorescueandbridge
crossingmaybeusedtonurtureanembryofromawidecrosstoafullplantand
toobtainfertileplants.
151Dr. Zekeria Yusuf (PhD)

152Dr. Zekeria Yusuf (PhD)

153Dr. Zekeria Yusuf (PhD)

Seed Technology
•Seedtechnologyisthecreationandapplicationoftheknowledgeonseed
foritsbetterusageinagriculture.
•Seedtechnologyreferstomethodsortechniquesusedtomaintainthe
qualityofseedfromharvesttillitisgerminated.
ScopeofSeedTechnology
1.Seedtechnologyencompassesallactivitiescarriedouttoenhance
storability,germinability,vigourandhealthoftheseed.
2.Activitiesincludeharvesting,transporting,handling,storage,testing,
grading,documentation,processingofseedsandgerminationofseeds.
Classes of seed
1.Nucleus or Basic Seed
2.Breeder seed
3.Foundation seed
4.Certified seed
154Haramaya University

155Haramaya University

Nucleus or Basic Seed
•Nucleusseed(orbasicseed)istheoriginalorfirstseed(=propagating
material)ofavarietyavailablewiththeproducingbreederoranyother
recognizedbreederofthecrop.
•Thisseedhas100%genetic&physicalpurityalongwithhighstandards
ofallotherseedqualityparameters.
•Whenanewvarietyisreleasedthereisverylittleseed.Theremaybe
onlyahandfulofseedselectedbythebreederfromindividualplants.
ThisseedisthebasisofavarietyandisknownastheNucleusStock.
•Thisnucleusstockmustbemanagedwithgreatcaresothatallseed
producedfromitremainstruetothenewvariety.Thisisamost
importantstepandistheresponsibilityoftheplantbreederwho
developedthevariety.
•Thenucleusstockseedisnotavailabletofarmers.Thenextstepinthe
chainfromplantbreedertofarmeristhattheplantbreederdevelops
BreederSeed.
156Haramaya University

BREEDER SEED
•Breederseedistheseedofthehighestpurityofthenewvariety.
•Itisproducedbythebreederandprovidedbythebreeder’sinstitution
toagenciesforfurthermultiplication.
•Ifyouarefromanon-governmentalorganization(NGO)seedbusiness
oraprivatecompanythatisproducingseed,youmayneedtopurchase
breederseedfromaresearchinstitution.Breederseedisthemost
expensiveseedtobuy.
•Breeder seed : seed or vegetative propagating material directly
produced or controlled by the originating plant breeder or institution.
•Breeder seed provides the source for the increase of foundation seed. It
is usually limited in quantity.
•Breederseedistheprogenyofthenucleusseedandisthesourcefor
foundationseed.
•Itsproductionisdirectlycontrolledbytheoriginatingplantbreeder
whodevelopedthevariety,oranyotherinstitutionorqualifiedbreeder
recognizedbytheauthorities.
157Haramaya University

FOUNDATION SEED
•Foundationseedistheseedproducedfromgrowingbreeder
seed.Itisproducedbytrainedofficersofanagriculturalstationto
nationalstandardsandhandledtomaintainthegeneticpurityof
thevariety.Itmaybeproducedbyagovernmentseedproduction
farmoraprivateorganization–thiswilldependonthe
regulationsofthecountry.Foundationseedislessexpensivethan
breederseed.
•Alsoknowaseliteorbasicseed.Itisthedirectincreaseform
breederseed.Thegeneticidentityandpurityofthevarietyis
carefullymaintainedinfoundationseed.
•Foundationseedisthesourceofcertifiedseed.
158Haramaya University

REGISTERED SEED
Registered seed is produced from growing foundation seed. It is
grown by selected farmers in a way that maintains genetic purity.
Production has undergone field and seed inspections by Seed
Inspectors to ensure conformity with standards.
159Haramaya University

CERTIFIED SEED
•Certifiedseedisproducedfromgrowingfoundation,registered
orcertifiedseed.Itisgrownbyselectedfarmerstomaintain
sufficientvarietalpurity.
•Productionissubjecttofieldandseedinspectionspriorto
approvalbythecertifyingagency.Harvestfromthisclassisused
forproducingagain.
•Certifiedseedistheseed,whichiscertifiedbyaSeed
CertificationAgency
•Generally,itisknownastheprogenyoffoundationseedandits
productionissohandledastomaintainspecifiedgenetic
identityandpuritystandardsasprescribedforthecropbeing
certified.
160Haramaya University

Requirements of Certified seed
•Seed has to meet certain rigid requirements before it can be
certified for distribution.
•Seed must be of an improved variety released by either Central
or State Variety Release Committee for general cultivation and
notified by the Ministry of Agriculture.
•Genetic purity.
•Physical purity.
•Germination.
•Freedom from Weed seeds.
•Freedom from Diseases.
•Optimum Moisture Content.
161Haramaya University

QUALITY DECLARED SEED
•TruthfullylabeledseedorQualityDeclaredSeedisproduced
fromfoundation,registeredorcertifiedseed.
•Itisnotsubjecttoinspectionbyacertifyingagency.Asthis
seedisnotinspected,itsqualityisdependentonthegood
reputationofthefarmerwhohasgrowntheseed.Hisgood
nameinthevillageisimportant.
162Haramaya University

MODE OF REPRODUCTION
•Reproductionreferstotheprocessbywhichlivingorganismsproduces
offspringsofsimilarkind(species).Incropplants,themodeofreproductionis
oftwotypes:viz.1)asexualreproduction&2)sexualreproduction.
•Asexualreproductionreferstothemultiplicationofplantswithoutthe
fusionofmaleandfemalegametes.Itcanoccureitherbyvegetativeplant
partsorbyvegetativeembryoswhichdevelopwithoutsexualfusion
(apomixis).Thusasexualreproductionisoftwotypes,viz.,a)vegetative
reproductionand(b)apomixis.
•Vegetativereproductionreferstomultiplicationofplantsbymeansofvarious
vegetativeplantparts.Vegetativereproductionisagainoftwotypes,viz.,a)
naturalvegetativereproductionand(b)artificialvegetativereproduction.
•Naturalvegetativereproductionisthemultiplicationofcertainplantsby
undergroundstems,subaerialstems,rootsandbulbilsnaturally.Insomecrop
species,undergroundstems(amodifiedgroupofstems)giverisetonew
plants.
163Dr. Zekeria Yusuf (PhD)

•Artificial vegetative reproduction occurs by cuttings of stem and roots, and by
layering, grafting etc.
•Stem cuttings: Sugarcane, grapes, roses etc.
•Root cuttings: Sweet potato, citrus, lemon, etc.
•Layering, grafting: Fruit and ornamental crops.
Example for underground stems
•Rhizome: Turmeric, Ginger
•Tuber: Potato
•Corm: Colocasia
•Bulb: Garlic, onion
Example for sub aerial stems
•Runner: Sweet potato ,Strawberry
•Sucker: Banana
•Stolon: taro, passion flower
•Bulbils: Garlic
164Dr. Zekeria Yusuf (PhD)

•Apomixisreferstothedevelopmentofseedwithoutfertilization.Theembryos
aredevelopedwithoutfertilization.Apomixisisfoundinmanycropspeciesand
isoftwotypesbasedonnature.
•Reproductioninsomespeciesoccursonlybyapomixis.Thisapomixisistermed
asobligateapomixis.Butinsomespeciessexualreproductionalsooccursin
additiontoapomixis.Suchapomixisisknownasfacultativeapomixis.
•Therearefourtypesofapomixisbasedonorigin:viz.1)parthenogenesis,2)
apogamy,3)aposporyand4)adventiveembryony.
•Parthenogenesisreferstodevelopmentofembryofromtheeggcellwithout
fertilization.
•Apogamy–whentheembryooriginatesfromeithersynergidsorantipodalcells
oftheembryosacitiscalledasapogamy.
•Apospory-Inapospory,somediploidcellsofovulelyingoutsidetheembryo
sacdevelopsintoanotherunreducedembryosacthroughaseriesofmitotic
divisionsandwithoutmeiosis.Theembryothendevelopsdirectlyfromthe
diploideggcellofsuchanembryosacwithoutfertilization.
•Adventiveembryony-Thedevelopmentofembryodirectlyfromthediploid
cellsofovulelyingoutsidetheembryosacbelongingtoeithernucellusor
integumentsisreferredtoasadventiveembryony.Itdoesnotinvolvethe
productionofanotherembryosac. 165Dr. Zekeria Yusuf (PhD)

Sexualreproduction:
•Reproductionbywhichembryoisdevelopedbythefusionof
maleandfemalegameteisknownassexualreproduction.All
theseedpropagatingspeciesbelongtothisgroup.
MODEOFPOLLINATION
•Theprocessbywhichpollengrainsaretransferredfromanthers
tostigmaisreferredtoaspollination.
•Pollinationisoftwotypes,viz.,1)Autogamyorself
pollinationand2)Allogamyorcrosspollination.
A.Autogamy
•Transferofpollengrainsfromtheanthertothestigmaofsame
flowerisknownasautogamyorselfpollination.Autogamyis
theclosestformofinbreeding.
•Autogamyleadstohomozygosity.Suchspeciesdevelop
homozygousbalance&donotexhibitsignificantinbreeding
depression.
166Dr. Zekeria Yusuf (PhD)

Thereareseveralmechanismswhichpromoteautogamy.
1.Bisexualityisthepresenceofmaleandfemaleorgansinthesame
flower.Thepresenceofbisexualflowersisamustforselfpollination.
Alltheselfpollinatedplantshavehermaphroditeflowers.Eg.Rice
2. HomogamyMaturation of anthers and stigma of a flower at the same
time is called homogamywhich is essential for self-pollination Eg.
Bhindi
3. Cleistogamyis when pollination and fertilization occur in an unopened
flower bud. It ensures self pollination and prevents cross pollination.
Eg. cowpea
4. Chasmogamyis the condition when flower opening occurs only after
the completion of pollination. This also promotes self pollination. Eg.
sesame.
5. Position of Anthers: When stigmas are surrounded by anthers self
pollination is ensured. Eg. tomato and brinjal. In some legumes, the
stamens and stigma are enclosed by the petals in such a way that self
pollination is ensured. Eg. greengram, blackgram, soybean, chickpea
and pea.
167Dr. Zekeria Yusuf (PhD)

B.Allogamy
•Thetransferofpollengrainsfromtheantherofoneplantto
thestigmaofanotherplant(crosspollination).
•Allogamyisthecommonformofout-breedingandleadsto
heterozygosity.Suchspeciesdevelopheterozygousbalance
andexhibitsignificantinbreedingdepressiononselfing.
Theconditionswhichpromoteallogamyareasfollows:
1.Diclinyreferstounisexualflowers.Thisisoftwotypes:viz.
i)monoecyandii)dioecy.
•Whenmaleandfemaleflowersareseparatebutpresentinthe
sameplant,itisknownasmonoecy.
•Insomecrops,themale&femaleflowersarepresentinthe
sameinflorescencesuchasincoconut,mango,castor&
banana.Insomecases,theyareonseparateinflorescenceas
inmaize,cucurbits,cassavaandrubber.Whenstaminateand
pistillateflowersarepresentondifferentplants,itiscalled
dioecyasinpapaya,nutmeganddatepalm
168Dr. Zekeria Yusuf (PhD)

2.Dichogamyreferstothematurationofanthersand
stigmaofthesameflowersatdifferenttimes.
•Dichogamypromotescrosspollinationeveninthe
hermaphroditespecies.
•Dichogamyisoftwotypes:viz.i)protogynyandii)
protandry.
•Whenpistilmaturesbeforeanthers,itiscalled
protogynysuchasinblackpepperandpearlmillet.
•Whenanthersmaturebeforepistil,itisknownas
protandryasincoconutandseveralotherspecies.
169Dr. Zekeria Yusuf (PhD)

3.Heterostyly:Whenstylesandfilamentsinaflowerareof
differentlengths,itiscalledheterostyly.Itpromotescross
pollination,suchaslinseed.
4.Herkogamy:
Hinderancetoself-pollinationduetosomephysicalbarrierssuch
aspresenceofhylinemembranearoundtheantherisknownas
herkogamy.Suchmembranedoesnotallowthedehiscenceof
pollenandpreventsself-pollinationsuchasinalfalfa.
5.Selfincompatibilityistheinabilityoffertilepollenstofertilize
thesameflower.
Itpreventsself-pollinationandpromotescrosspollination.Self
incompatibilityisfoundinseveralcropspecieslikeBrassica,
Radish,Nicotiana,andmanygrassspecies.Itisoftwotypes
sporophyticandgametophytic.
170Dr. Zekeria Yusuf (PhD)

6.Malesterility:insomespecies,thepollengrainsarenon
functional.Suchconditionisknownasmalesterility.It
preventsself-pollination&promotescrosspollination.It
isofthreetypes:viz.genetic,cytoplasmicand
cytoplasmicgenetic.Itisausefultoolinhybridseed
production.
•Selfincompatibilityandmalesterilityarethetwogenetic
mechanismsfavouringcrosspollination.
•Themodeofpollinationplaysanimportantroleinplant
breeding.Ithasimpactonfiveimportantaspects:
1)geneaction
2)geneticconstitution
3)adaptability
4)geneticpurity
5)transferofgenes.
171Dr. Zekeria Yusuf (PhD)

Estimation of Genetic variability parameters
172Dr. Zekeria Yusuf (PhD)

173Dr. Zekeria Yusuf (PhD)

VARIANCES AND COVARIANCES
•Thevariabilitypresentinapopulationisofpolygenic
natureandthispolygenicvariationisofthreetypes
•1)Phenotypic
•2)Genotypic
•3)Environmental
•Thestatisticalprocedurewhichseparates(or)splitsthe
totalvariationintodifferentcomponentsiscalled
analysisofvariance(or)ANOVA.
•ANOVAisusefulinestimatingthedifferent
componentsofvariance.Itprovidesbasisforthetestof
significanceanditiscarriedoutonlywithreplicated
dataobtainedfromstandardstatisticalexperimental
results.
174Dr. Zekeria Yusuf (PhD)

Dr. Zekeria Yusuf (PhD) 175
Genetic variability at a single location

F (calculated) is compared with F(Table) value by looking at the F table for
replication df(r-1) and error df values(r-1)(t-1). If the calculated F value is
greater than F(Table value) then it is significant.
Genotypic variance: It is the inherent variation which remains unaltered by the
environment. It is the variation due to genotypes. It is denoted by VG and is
calculated using the formula:
176Dr. Zekeria Yusuf (PhD)

177Dr. Zekeria Yusuf (PhD)
Genetic variability at multilocations

Dr. Zekeria Yusuf (PhD) 178

Dr. Zekeria Yusuf (PhD) 179

Dr. Zekeria Yusuf (PhD) 180

181Dr. Zekeria Yusuf (PhD)

Heritabilityandgeneticadvanceareimportantselectionparametersand
heritabilityestimatealongwithgeneticadvanceareinterpretedas
follows
1)Highheritabilityaccompaniedwithhighgeneticadvanceindicates
heritabilityisduetoadditive(or)fixablevariationandselectionmay
beeffective.
2)Highheritabilityaccompaniedwithlowgeneticadvanceindicatesnon
additivegeneactionandselectionforsuchcharactersmaynotbe
rewarding.
3)Lowheritabilityaccompaniedwithhighgeneticadvancerevealsthat
charactersaregovernedbyfixablegeneeffectsandlowheritabilityis
duetohighenvironmentalinfluenceandselectionmaybeeffective.
4)Lowheritabilityaccompaniedwithlowgeneticadvanceindicatesthat
characterishighlyinfluencedbyenvironmentandselectionis
ineffective.
182Dr. Zekeria Yusuf (PhD)

183Dr. Zekeria Yusuf (PhD)

ESTIMATION OF HETEROSIS AND INBREEDING DEPRESSION
•referstothesuperiorityofF1inoneormorecharactersoverits
parents.Itisalsodefinedasincreaseinfitnessandyieldoverits
parentalvalues.
•Heterosis,orhybridvigor,oroutbreedingenhancement,isthe
improvedorincreasedfunctionofanybiologicalqualityina
hybridoffspring.Itistheoccurrenceofageneticallysuperior
offspringfrommixingthegenesofitsparents.
•Itisalsocalledashybridvigour.Thethreemaincausesof
heterosisareoverdominance,dominanceandepistasis,ofthis
dominanceisthewidelyacceptedone.
•Incropplantstherearethreemainwaysforfixationofheterosis
i.e.asexualreproduction,polyploidyandapomixis
184Dr. Zekeria Yusuf (PhD)

Manifestations of Heterosis
1. increased heterozygosity
2. increased size and productivity in plants
3. Greater resistance to diseases, insects and environmental
factors
4. Early maturity when compared to either of the parents.
185Dr. Zekeria Yusuf (PhD)

. Four different methods are used to estimate heterosis.
186Dr. Zekeria Yusuf (PhD)

•Giving the mean yield of two inbred strains A=80kg , B= 50 and
F1 is 90kg, calculate i. Hmp; ii. Hbp
Solution:
1. mp =(80+50)/2= 65
Hmp= (F –mp)/mp= (90 –65)/65 =0.3846
•This implies that the hybrid vigouris 38.46%
2. Hbp= (F –bp)/bp= (90 –80)/80 =0.125
•Herobeltiosisis 12.5%
•The better parent heterosisis more significant as far as breeding is
concerned because individual progenies are more superior to the
better parent.
187Dr. Zekeria Yusuf (PhD)

Gene action
•Allelesmayinteractwithoneanotherinanumberofwaystoproduce
variabilityintheirphenotypicexpression.Thefollowingmodelsmayhelpus
understandvariousmodesofgeneaction.
•Additivegeneaction:absenceofDOMINANCEincaseofsinglelocus.
•Therefore,thebreedingprocedurechosenforacropgenotypewilldependon
theprevalenceofgeneactione.gadditivegeneactionwillbeeffectivein
accumulatingfavourableallelesinbreedingmaterialsespeciallyinself-
pollinatingcrops.
•Heritabilityinthisnarrowersenseistheratiooftheadditivegeneticvariance
tothephenotypicvariance:
188Dr. Zekeria Yusuf (PhD)

189Dr. Zekeria Yusuf (PhD)

Additive gene action
•Whenbothallelescontributeforthephenotype.
•Thus,offspringphenotyperesembletheirparents
•Itcanbedirectlyinheritedfromparentstotheiroffspringsas
phenotypeiseffectofeachallelesfrombothparentsbeingadded
together.
•Itcanbefixable
Dominancegeneaction:
✓Inwhichoneallelecontributesmoreorlesstothefinalphenotype.
✓Dominancevarianceisnotdirectlyinheritedfromparentstotheir
offsprings.Sinceitisduetointeractionofgenesfrombothparents
withinindividuals,andofcourseonlyonealleleispassedfrom
eachparenttooffsprings.
190Dr. Zekeria Yusuf (PhD)

•Dominancevariancehastwocomponents:variancedueto
homozygousalleles(w/cisadditive)andvariancedueto
heterozygousgenotypicvalues.
•Dominanceeffectsaredeviationsfromadditivitythatmake
heterozygoteresembleoneparentmorethantheother.
•Whendominanceiscompleteheterozygoteisequalto
homozygotesineffects(i.e.Aa=AA).
•Breedercan’tdistinguishbetweenheterozygousandhomozygous
phenotypesasaresultbothAaandAAwillbeselected.
•Thusfixingsuperiourgeneswillbelesseffectivewithdominance
geneactionsinceAawillsegregateinnextgeneration.
191Dr. Zekeria Yusuf (PhD)

192Dr. Zekeria Yusuf (PhD)

193Dr. Zekeria Yusuf (PhD)

Dr. Zekeria Yusuf (PhD) 194

Dr. Zekeria Yusuf (PhD) 195

Overdominancegene action
•Thehetrozygoteismorevaluablethaneitherhomozygotes.
•Existswheneachalleleatalocusproducesaseparateeffecton
thephenotypeandeithercombinedeffectexceedsindependent
effectofthealleles.
•breedercanfixoverdominanceeffectsonlyinF1generation
throughapomixisorthroughchromosomedoulblingofthe
productofwidecross.
Epistasisgeneaction(nonalleleicinteraction)
-interactionbetweenallelesatdifferentloci.
VG=VA+VD+VI
Vp=VG+VE
Forinbreedingpopulation,Vp=Ve,sinceVg=0
Vp=VA+VD+VI+VE+Vgxe
Narrowsenseheritability=
196Dr. Zekeria Yusuf (PhD)

Dr. Zekeria Yusuf (PhD) 197

Dr. Zekeria Yusuf (PhD) 198

Path interpretation
•Inthepathanalysisforgeneticcorrelations,thedirecteffectofNBP
traitonO/LratiowassmallerthantheindirecteffectofAGBP,
NSPODandoleicacidtraitsonO/Lratio;inthiscase,thesignificant
correlationvaluebetweenNBPandO/Lratiowasattributedtothe
indirecteffectsofAGBP,NSPODandoleicacidtraits.Thatis
breedingforhighoilqualitycanbeeffectivethroughindirect
selectionforhighAGBP.InthepathanalysisofAGBPonO/Lratio,
thedirecteffectofAGBPonO/Lratiowassmallerthantheindirect
effectsofNSPODandoleicacidonO/Lratio;inthiscase,the
significantandpositivecorrelationvaluebetweenAGBPandO/L
ratioisattributedtotheindirecteffectsofNSPODandoleicacid
traits.ThepathanalysishasshownthatbreedingforhighO/Lratio
canbeconductedthroughselectionforAGBPtrait.Thecoefficient
ofdetermination()inthepathanalysisforgenotypiccorrelation
indicatesthat92%oftheO/Lratiovariabilitywasexplainedbythe
variableswhichisagoodfitforthemodelandshowsthe
importanceoftheexplainingvariablesintheO/Lratio.
Dr. Zekeria Yusuf (PhD) 199

Dr. Zekeria Yusuf (PhD) 200

Dr. Zekeria Yusuf (PhD) 201

Dr. Zekeria Yusuf (PhD) 202

Dr. Zekeria Yusuf (PhD) 203

Dr. Zekeria Yusuf (PhD) 204

Dr. Zekeria Yusuf (PhD) 205

Detection of G×Einteraction
Dr. Zekeria Yusuf (PhD) 206

Interpretation of Gene Action
•Ifgcavariancesarehigherthanscavariances,itmeansthat
thereispreponderanceofadditivegeneactionandprogeny
selectionwillbeeffectiveforthegeneticimprovementofsuch
traits.
•Ifscavariancesarehigherthangcavariances,itindicatesthat
thereispreponderanceofnonadditivegeneaction(dominance
&epistasis)andtherefore,heterosisbreedingmaybe
rewarding.
•Ifbothgca&scavariancesareofequalmagnitude,itshowsthat
additiveandnon-additivegenesareequallyimportantinthe
expressionofcharacterthenweusereciprocalrecurrent
selection.
Dr. Zekeria Yusuf (PhD) 207

Dr. Zekeria Yusuf (PhD) 208

Combining ability analysis
Dr. Zekeria Yusuf (PhD) 209

Combining ability analysis…
Dr. Zekeria Yusuf (PhD) 210

Combining ability analysis…
Dr. Zekeria Yusuf (PhD) 211

Combining ability analysis…
Dr. Zekeria Yusuf (PhD) 212

•Parentsshowingahighaveragecombiningabilityin
crossesareconsideredtohavegoodGCAwhileiftheir
potentialtocombinewellisboundedtoaparticularcross,
theyareconsideredtohavegoodSCA.
•Fromastatisticalpointofview,theGCAisamaineffect
andtheSCAisaninteractioneffect[6].BasedonSprague
andTatum[5],GCAisowingtotheactivityofgeneswhich
arelargelyadditiveintheireffectsaswellasadditive×
additiveinteractions.Specificcombiningabilityisregarded
asanindicationoflociwithdominancevariance(non-
additiveeffects)andallthethreetypesofepistatic
interactioncomponentsifepistasiswerepresent.They
includeadditive×dominanceanddominance×dominance
interactions.
Dr. Zekeria Yusuf (PhD) 213

214
Breeding
Self Pollinated Crops

215
➢Cultivar
Isagroupofgeneticallysimilarplants,which
maybeidentified(bysomemeans)fromother
groupsofgeneticallysimilarplants
➢EssentialCharacteristics:
•Identity:cultivarmustbedistinguishable
fromothercultivars
•Reproducibility: the distinguishing
characteristic(s)needtobereproducedinthe
progenyfaithfully
Cultivars

216
Types of Cultivars
Open-Pollinatedcultivars
➢O.P.seedsarearesultofeithernaturalor
humanselectionforspecifictraitswhichare
thenreselectedineverycrop.
➢Theseediskepttruetotypethrough
selectionandisolation;theflowersofopen-
pollinatedorO.P.seedvarietiesare
pollinatedbybeesorwind.

217
Types of Cultivars
Syntheticcultivars
➢Apopulationdevelopedbyinter-crossingaset
ofgoodcombinerinbredlineswith
subsequentmaintenancethroughopen-
pollination.
➢Thecomponentsofsyntheticsareinbredsor
clonessothecultivarcanbeperiodically
reconstituted.

218
➢Multi-linecultivars
Amixtureofisolineseachofwhichisdifferent
forasinglegenecontrollingdifferentformsof
thesamecharacter(e.g.,fordifferentracesof
pathogens)
➢F1cultivars
Thefirstgenerationofoffspringfromacrossof
geneticallydifferentplants
➢Pure-linecultivars
Theprogenyofasinglehomozygousindividual
producedthroughself-pollination
Types of Cultivars

219
Cultivars and Self-pollinated Crops
Inself-pollinatedspecies:
➢Homozygouslociwillremainhomozygous
followingself-pollination
➢Heterozygouslociwillsegregateproducing
halfhomozygous progenyandhalf
heterozygousprogeny
➢Plantsselectedfrommixedpopulationsafter5-
8selfgenerationswillnormallyhavereacheda
practicallevelofhomozygosity

220
➢Ingeneral,amixedpopulationofself-pollinated
plantsiscomposedofplantswithdifferent
homozygousgenotypes(i.e.,aheterogeneous
populationofhomozygotes
➢Ifsingleplantsareselectedfromthispopulation
andseedincreased,eachplantwillproducea
‘pure’population,buteachpopulationwillbe
different,basedontheparentalselection
Cultivars and Self-pollinated Crops

Genetic Basis of Self pollinated crops
•Inself-pollinatedspecies:
•Homozygouslociwillremainhomozygousfollowingself-
pollination
•Heterozygouslociwillsegregateproducinghalfhomozygous
progenyandhalfheterozygousprogeny
•Plantsselectedfrommixedpopulationsafter5-8self
generationswillnormallyhavereachedapracticallevelof
homozygosity.
•Ingeneral,amixedpopulationofself-pollinatedplantsis
composedofplantswithdifferenthomozygousgenotypes
•Ifsingleplantsareselectedfromthispopulationandseed
increased,eachplantwillproducea‘pure’population,but
eachpopulationwillbedifferent,basedontheparental
selection
Dr. Zekeria Yusuf (PhD) 221

Dr. Zekeria Yusuf (PhD) 222

Johanson’sPure line theory
Dr. Zekeria Yusuf (PhD) 223

224
➢SelectioninvolvestheIDandpropagationof
individualgenotypesfromalandracepopulation,
orfollowingdesignedhybridizations
➢Geneticvariationmustbeidentifiedand
distinguishedfromenvironment-basedvariation
➢Selectionprocedurespracticedinmixed
populationsofself-pollinatedcropscanbe
dividedintotwoselectionprocedures
Breeding Self-pollinated Crops

225
Breeding Methods of Self
Pollinated Crops
1. Pure line
2. Mass
3. Bulk
4. Pedigree
5. Single Seed Descent (modified pedigree)
6. Backcross

226
➢Apurelineconsistsofprogenydescended
solelybyself-pollinationfromasingle
homozygousplant
➢Purelineselectionisthereforeaprocedurefor
isolatingpureline(s)fromamixedpopulation
Pure-line Selection

227
➢May or may not include hybridization
➢Make IP selections based on single, ideal or desirable phenotype and BULK
seed
➢May repeat or go directly to performance testing
Mass Selection has 2 important functions:
1.Rapid improvement in land-race or mixed cultivars
2.Maintenance of existing cultivars (sometimes purification)
* Many pb’ers of self pollinated crops believe that combining closely related
pure lines imparts “genetic flexibility” or buffering capacity and so are
careful to eliminate only obvious off types
Mass Selection

Breeding cross pollinated crops…
•Populations of cross pollinated crops are highly heterozygous.
•When inbreeding is practiced they show severe inbreeding
depression.
•So to avoid inbreeding depression and its undesirable effects, the
breeding methods in the crop is designed in such a way that there
will be a minimum inbreeding.
228

•I. Population improvement
•A. Selection
•a) Mass selection
•b) Modified mass selection
•Detasseling
•Panmixis
•Stratified or grid or unit selection
•Contiguous control.
•B. Progeny testing or selection (more effective): selection based progeny
performance.
•a) Half sib family selection
•i) Ear to row
•ii) Modified ear to row.
•b) Full sib family selection.
•c) Inbred or selfedfamily selection.
•i) Slself family selection
•ii) S2self family selection.
229

C. Recurrent selection
1) Simple recurrent selection
2) Reciprocal recurrent selection for GCA
3) Reciprocal recurrent selection SCA
4) Reciprocal recurrent selection.
D. Hybrids
E. Synthetics and Composites.
230

Inbred line development:
c)Inbredorselfedfamilyselection
Familiesproducedbyselfing.
S1familyselection
Familiesproducedbyonegenerationofselfing.Theseareusedforevaluationand
superiorfamiliesareintermated(Simplerecurrentselection).
S2familyselection
Familiesobtainedbytwogenerationsofselfingandusedforevaluation.Superior
familiesareintermated.
Meritsofprogenytestingandselection
1.Selectionbasedonprogenytestandnotonphenotypeofindividualplants.
2.Inbreedingcanbeavoidedifcareistakenraisingalargerpopulationfor
selection.
3.Selectionschemeissimple.
Demerits
1.Nocontroloverpollensource.Selectionisbasedonlyonmaternalparentonly.
2.Comparedtomassselection,thecyclerequires2-3yearswhichistime
consuming.
231

Recurrent
parent
Donor
parent
aa AA
Aa F
1
aaAa BC
1F
1
BC
2F
1
aaAa
BC
3F
1
BC
2F
1
aa
AA
aa
Aa
Aa aa
BC
4F
1
Removed
Removed
Removed
Removed
Aa
Removed
Selfing
(1) (2)
(1) maintained
(2) Removed
Backcross for a dominant allele
(1/2)
n
= (1/2)
5
= 0,031
Progeny test
232

Donor parent Recurrent parent
Backcross for a recessive allele
AA aa
F
1-Aa
BC
1F
1
S**S= selfing BC
1F
2
AAremoved
Aaremoved
aamaintained
BC
2F
1-Aa
BC
3F
1SBC
3F
2
AAremoved
Aaremoved
aamaintained
BC
4F
1-Aa
BC
5F
1-Aa SBC
5F
2
AAremoved
Aaremoved
aamaintained
233

BREEDING OF ASEXUALLY PROPAGATED CROPS
Selection is straight forward in asexually propagated crops since any genotype
may be perpetuated intact.
Obtaining segregating populations from which superior genotypes may be found
is the problem in breeding asexually propagated materials.
Clone : A clone is a group of plants produced from a single plant through
asexual reproduction.
The crop plants can either be propogatedby seeds or by vegetative parts. The
vegetative propogationis resorted due to :
1. Lack of seed : Eg. Ginger, termiric
2. There is short viability of seed : Eg. Sugarcane
3. The seed production is very rare : Eg. Banana
4. Seeds are produced under special conditions only : Eg. Sugarcane, potato
234

MethodsofBreedingAsexuallyPropagatedSpecies
Importantbreedingmethodsapplicabletoasexuallypropagated
speciesare
(1)PlantIntroduction
(2)Clonalselection
(3)Massselection
(4)Heterosisbreeding
(5)Mutationbreeding
(6)Polyploidybreeding
(7)Distanthybridization
(8)Transgenicbreeding.
•Massselectionisrarelyusedinasexuallypropagatedspecies.
235

Characteristics of Asexually propagated crops :
1. Majority of them are perennials : Eg . Sugarcane, fruit trees.
The annual crops are mostly tuber crops : Eg. Potato, cassava, Sweet
potato
2. Many of them show reduced flowering & seed set
3. They are invariably cross pollinated
4. These crops are highly heterozygous and show severe inbreeding
depression upon selfing.
5. Majority of asexually propagated crops are polyploids : Eg.
Sugarcane, Potato, Sweet, Potato
6. Many species are interspecific hybrids. Eg. Banana, Sugarcane
236

Characteristicsofaclones:
1.Alltheindividualbelongingtoasinglecloneareidenticalingenetype
2.Thephenotypicvariationwithinacloneinduetoenvironmentonly
3.Thephenotypeofacloneisduetotheeffectsofgenotype(g),theenvironment(e)
andthegenotypexenvironmentinteraction(GxE),overthepop.mean(M)
4.Theoraticallyclonesareimmortal.Theydeteriorateduetoviral/bacterialinfection
andmutations.
5.Clonesarehighlyheterozygousandstable
6.Theycanbepropagatedgenerationaftergenerationwithoutanychange.
Importanceofaclone
1.Owingtoheterozygosityandsterilityinmanycropsclonesaretheonlymeansof
propagation.
2.Clonesareusedtoproducenewvarieties.
3.Clonesareveryusefultoolstopreservetheheterozygosityonceobtained.Inmany
cropsthesuperiorplantsaremaintained.(Mango,orange,apple,sugarcane)
Sourcesofclonalselection:1.Localvarieties2.Introducedmaterial3.Hybrids
and4.Segregatingpopulations
237

Clonal selection :
•The various steps involved in clonal selection are briefly mentioned
below.
•First year : From a mixed variable population, few hundred to
few thousand desirable plants
•are selected. Rigid selection can be done for simply inherited
characters with high heritability. Plants with obvious weakness are
eliminated.
•Second year : Clones from the selected plants are grown
separately, generally without replication. This is because of the
limited supply of propagating material for each clone, and because
of the large number of the clones involved.
•Characteristics of the clones will be more clear now than in the
previous generation.
•Based on the observations the inferior clones are eliminated.
238

•observations and on judgement of the breeder on the value of clones. Fifty to one
hundred clones are selected on the basis of clonal characteristics.
•Third year : Replicated preliminary yield trial is conducted. A suitable check
is included for comparison few superior performing clones with desirable
characteristics are selected for multilocation trials.
•At this stage, selection for quality in done. If necessary, separate disease nurseries
may be planted to evaluate disease resistance of the clone s.
•Fourth to eighth years : Replicated yield trials are conducted at several
locations along with suitable check. The yielding ability, quality and disease
resistance etc. of the clones are rigidly evaluated. The best clones that are superior
to the check in one or more characteristics are identified for release as varieties.
•Ninth year : The superior clones are multiplied and released as varieties.
239

Problems in Breeding asexually propagated crops:
1. Reduced flowering and fertility
2. Difficulties in genetic analysis
3. Perennial life cycle.
Genetic variation within a clone may arise due to :
1. Mutation
2. Mechanical mixture
3. Sexual Reproduction
240

Plant breeding for Biotic stresses
Dr. Zekeria Yusuf (PhD) 241

I. Breeding for Insect Resistance
•Most important because many crops are affected by insects. For e.g.
Cotton is attacked by more than 160 species of insects of these a
dozen are major pests.
•The necessity for resistance breeding are:
i) Environmental pollution prevention
ii) Reducing Higher costs
iii) Death of Beneficial Predators and Parasites.
iv) Building up of Resistance -e.g. Pyrethroid.
Mechanism of Insect Resistance:
1.Non preference,
2.Antibiosis,
3.Tolerance,
4.Avoidance.

•Non preference: Non acceptance or AntixenosisUn
attractive or unsuitable for colonization, Ovipositionor both
by an insect pest. Aphid resistance in raspberry. It involves
various morphological and biochemical features of host
plants.
•Antibiosis: adverse effects caused by the host to an insect
feeding on it. It may hinder the development, reproduction
or in some cases death also. The antibiosis may be either.
•i) Morphological,
•ii) Physiological,
•iii) Biochemical features of the host plant. e.g. Gossypol
content in cotton.
•Tolerance: Able to tolerate the attack, withstand and give
yield.
•Avoidance: Insects avoid certain plants. Early maturing
cotton varieties escape pink bollworm.
•Sorghum early lines escape shoot fly attack.

Nature of Insect Resistance
1. Hairiness: Hairiness of leaves is associated with resistance.
Eg. Jassidresistance –cotton and cereal leaf beetle.
2. Colourof Plant: Induces non-preference for oviposition. Red cabbage -
Lepidopteran. Red colourCotton -Boll worms.
3. Thickness of plant Tissue: Cotton -Jassidresistance. Dense thick leaves -It is
more of mechanical obstruction.
4. Presence of Silica in Plant Body: Shoot fly resistance in sorghum -Damage to
mandibles.
5. Biochemical Factor: Gossypol content, DIMBOA content in leaves, (Bio
chemical) –Stem borer in maize.
6. Physiological Factors: Osmotic concentration of cell sap, cell exudatersetc.
Solanumsp -Gum exudate-Aphids are trapped in it.
Genetics of Insect resistance :
1. Oligogenic-Monogene3 : 1. e.g. Jassidresistance , Cotton Wheat rust
resistance Green bug resistance.
2. Polygenic More durable Wheat cereal leaf beetle resistance.
3. CytoplasmicPlasmogenes: European corn borer in maize.

Sources of Resistance
1. Cultivated variety
2. GermplasmCollection.
3. Related Wild species -S.nitidum-shoot fly resistance –
Sorghum, G.anamalum–Jassidresistance -Cotton.
Screening Technique
a) Field condition :
i) Infector rows are planted at regular intervals.
ii) Testing in areas where ever the pest is recorded as endemic
area.
iii) Seasonal testing when insect population is most.
iv) Rearing the insect in lab and releasing them in fields or by
transferring equal no. of eggs or larvae to each plant.
b) Glass House Screening
•Raised in cages and definite number of larvae are released
in the cage.

II. Breeding for Disease Resistance
•NeedforDiseaseResistanceBreeding
i)Topreventyieldloss.
ii)Highcostofreduction.
iii)Preventionofenvironmentalpollution.
KindsofDiseaseReaction
i)Susceptiblereaction:Diseasereactionisprofuse,if
uncheckeditmayleadtototalyieldloss.
ii)Immunereaction:Hostdoesnotshowthesymptomsofa
disease.
iii)Resistancereaction:Infectionandestablishmenttakesplace
butgrowthofthepathogeninthehostisrestricted.
iv)Tolerance:Hostisattackedbythepathogeninthesame
mannerasthesusceptiblevarietybuttheremaynotbeyield
loss.

MechanismofDiseaseResistance
a)Mechanical:Certainmechanicaloranatomicalfeaturesofhostmay
preventinfectione.g.Closedfloweringhabitofwheatandbarley
preventsinfectionbysporesofovaryinfectingfungi.
b)Hypersensitivity:Immediatelyafterinfectionseveralhostcells
surroundingthepointofinfectiondie.Thisleadstodeathof
pathogenalso.Phytoalexinspresentinplantbodyisresponsiblefor
hypersensitivityreaction.
c)Antibiosis:Presenceofsometoxicsubstance.Thisismorecorrect
forinsectresistance.e.g.Gossypolcontentincotton.
d)Nutritionalfactors:Thereductioningrowthandsporeformation
maybeduetonutritionalfactorsofthehost.
GeneticsofDiseaseResistance
a)OligogenicResistance:Resistanceisgovernedbyoneorfewmajor
genesandresistanceisgenerallydominant.Theactionofmajor
genesmaybealteredbymodifiers.

MethodsofDiseaseResistanceBreeding
1.Plantintroduction:Resistantvarietiesfromothercanbedirectly
introducedforcultivation.e.g.IR20riceresistanttoblast.
2.Selection:Thismaybefromlocallandracesorfromintroduced
cultivars.
3.HybridisationandSelection:dependingongeneactiontheselection
proceduremayvary.Iftheresistanceisgovernedbypolygenes,then
pedigreemethodofselectionistobefollowed.
•Iftheresistanceisgovernedbymajorgeneslinkedwithother
undesirablecharacterswehavetogoforbackcrossmethodof
breeding.
3.MutationBreeding
4. Polyploidy Breeding:
•Nicotianacrosses for resistance against leaf spot.
5. Tissue Culture Method:
•Resistance reaction can be screened easily in test tubes and
resistant lines can be mass multiplied. e.g. Banana

ScreeningTechniquesforDiseaseResistance
•Dependingonmodeofspreadofdiseasethescreeningtechnique
maydiffer.Thescreeningcanbedonebothatscreenorglasshouse
levelandfieldlevel.Thedifferentscreeningtechniquesareas
follows.
1.SoilBorneDiseases
•Wilt,rootrotareproducedbysoilbornefungi.Inthiscasesickplot
techniqueisfollowed.
•Susceptiblevarietiescanbegrownandinfectedplantscanbe
ploughedinsitutomaintainoptimumconditionforinfection.
2.AirBorneDiseasese.g.Rust,Smut,mildews,blights.
•Forgroundnutrust,infestorrowscanbesown15daysearlieras
borderrowsandthediseasewillinfestthesusceptibleinfestor
rows.After15daysthevarietiestestedtobearetobesown.
•Sprayingthesporesuspensionfromaffectedleaveswillalso
increasetheload.

SeedBorneDisease
•Smut,buntetc.Artificialinoculationcanbedone
bysoakingtheseedsinsolutionofpathogen
undervaccumcondition.
InsecttransmittedDiseasese.g.VirusDiseases,
Redgramsterilitymosaicvirus.Saptransmitted.
Herethestaplingtechniqueisused.Leavesfrom
affectedplantscanbestapledtotheentriestobe
tested.Theinsectfeedinginsusceptibleleafwill
transmitvirustotestentries.

Breeding for AbioticStress Resistance
(Drought, Cold, Salinity & alkalinity)
Dr. Zekeria Yusuf (PhD) 251

1.TemperatureStress
a.Coldresistance/Tolerance
b.HighTemperature:Duetohightemperatureseedset
maybeaffected.Incaseofmalesterilelines,the
sterilitymaybebrokendown.Inthiscasealsotesting
singleplantsforhightemperatureresistanceistime
consumingandskillisrequired.Testslikeheattestwith
leafdiscsanddesiccationtolerancetestarefollowed.
2.WaterStress
a.Lowwateri.e.,Droughtresistance:Thisismore
importantforallthedrylandcrops.

3. Chemical Stress
•Salinity and alkalinity : Screening for salinity and alkalinity can be
done more successfully by in vitro techniques.
•Raising the seedling in test tube containing different concentration
of salt. This is followed in case of pesticide and herbicide
tolerance also.
Difficulties in AbioticStress Breeding
i. Screening techniques require high skill and they are time
consuming.
ii. Creation of artificalconditions is expensive.
iii. Under field screening, nature may or may not provide optimum
condition for screening.
iv. In many cases in vitro techniques are to be followed which is
expensive.
v. Abioticstress breeding depends mostly on physiological traits
which are often not stable.

Droughtresistanceincropplantscanbedividedinto
threecategories.
i.Droughtescape-abilityofaplanttocompleteits
lifecyclebeforeserioussoilandplantwater
deficitoccurs.
ii.Droughttolerancewithhightissuewaterpotential.
iii.Droughttolerancewithlowtissuewaterpotential.
•Droughtresistanceincropplantsaremoredueto
physiologicalconditionsofplantlikestomatal
aperture& photosyntheticrates,root
characteristics.

C. Breeding for Drought Resistance
1. Breeder search for a source for Drought resistance.
2. Yield should be a secondary character economic Parts.
3. Partitioning of PhotosynthatesVegetative Parts
•Total Dry matter should be taken as a criterion for selection.
•Drought Resistance
•Drought avoidance & Drought tolerance
1. Xeromorphictraits
2. Root Growth
3. Stomalcontrol,
4. Cuticularresistance(water permeability of leaf cuticle)
4. Stomatalnumber (transpiration low, low stomatalfrequency &
high photosynthetic rate)
5. Cell turgor(Inhibit plant growth) (root water absorption &
stomatalwater loss)

Breeding for Drought resistance variety
-High yield x High cuticularwax content (Poor cuticular
Transpiration).
-F1 (F1 tested under moisture stress condition).
-F2
1. Progeny rows screened in moisture stress nursery in two
locations.
2. Selection based on cuticularwax &a number of agronomic
characters are considered.
•F3 Selected single plants -Screened under normal conditions for
yield and then associated characters.
•F4 Selected single plants -Screened under stress situation.
•F5 Normal condition -yield.
•F7/F8
1. Homogeneity with relative resistance to drought and with
considerable yield.
2. Converge genes for yield and drought resistance.

GeneticDiversity:thedifferencesthatdistinguishoneplantfrom
anotherareencodedintheplant’sgeneticmaterial,theDNA.DNAis
packagedinchromosomepairs,onecomingfromeachparent.Thegenes,
whichcontrolaplant’scharacteristics,arelocatedonspecificsegmentsof
eachchromosome.
257Haramaya University
Measurement of Genetic diversity

Haramaya University 258

Why genetic diversity is important in populations...
1.genetic diversity required to evolve or to adapt to new environment or
environmental modifications.
2.genetic diversity reflects evolutionary potential
Loss of genetic diversity often associated with inbreeding, reduction of
reproductive fitness and extinction risk
•example 1 -habitat selection: peppered moth (Bistonbetularia) in UK
•-dark and light forms
•-night: active / day: resting on trees
• camouflage critical for survival
•-light form: camouflaged on lichen-covered tree trunks
•-Industrialisation: kill lichen by sulphurpollution
• light form: visible / dark form: camouflaged
Haramaya University 259

260Haramaya University

Variation from recombination
•linkage equilibrium—repeated recombination
between genes, randomizing combinations of
alleles of different genes
Example: if frequency of allele a is 0.2 and
frequency of bis 0.4, under linkage
equilibrium:
frequency of ab= 0.2*0.4 = 0.08
261Haramaya University

Variation from recombination
•linkagedisequilibrium-originalnonrandom
associationbetweenallelesofdifferentgenes
onsamechromosome
•linkagedisequilibriumchangesslowlythrough
time,atrateproportionaltoamountof
recombinationbetweengenes
•geneticvariationthroughrecombinationcan
bemuchfasterthanthroughmutation
262Haramaya University

263Haramaya University

Haramaya University 264

265Haramaya University

Haramaya University 266

Haramaya University 267

Haramaya University 268

Haramaya University 269

Haramaya University 270

Haramaya University 271

Haramaya University 272

Haramaya University 273
Methods used to measure genetic variation at molecular level:

Haramaya University 274

Genetic Mapping
•Geneticmappingisbasedontheprinciplethatgenes(markersor
loci)segregateviachromosomerecombinationduringmeiosis
(i.e.sexualreproduction),thusallowingtheiranalysisinthe
progeny(Paterson,1996).
Whatismeangeneticmarkers?
•Geneticmarkersrepresentgeneticdifferencesbetweenindividual
organismsorspecies
•Theydonotrepresentthetargetgenesthemselvesbutactas
‘signs’or‘flags’
•Geneticmarkersthatarelocatedincloseproximitytogenesmay
bereferredtoas‘genetags’
•Allgeneticmarkersoccupyspecificgenomicpositionswithin
chromosomescalled‘loci’
275Haramaya University

Haramaya University 276

Genetic Markers
AgeneticmarkerisageneorDNAsequencewithaknown
locationonachromosomeandassociatedwithaparticular
geneortrait.
Itcanbedescribedasavariation,whichmayarisedueto
mutationoralterationinthegenomicloci,thatcanbe
observed.
AgeneticmarkermaybeashortDNAsequence,suchasa
sequencesurroundingasinglebase-pairchange(single
nucleotidepolymorphism,SNP),oralongone,like
minisatellites.
Haramaya University 277

Genetic Markers
Geneticmarkersarethebiologicalfeaturesthataredeterminedby
allelicformsofgenesorgeneticlociandcanbetransmittedfromone
generationtoanother,andthustheycanbeusedasexperimentalprobes
ortagstokeeptrackofanindividual,atissue,acell,anucleus,a
chromosomeoragene.
Geneticmarkersusedingeneticsandplantbreedingcanbeclassified
intotwocategories:classicalmarkersandDNAmarkers.
Classicalmarkersincludemorphologicalmarkers,cytologicalmarkers
andbiochemicalmarkers.
DNAmarkershavedevelopedintomanysystemsbasedondifferent
polymorphism-detectingtechniquesormethods(southernblotting–
nuclearacidhybridization,PCR–polymerasechainreaction,&DNA
sequencing)suchasRFLP,AFLP,RAPD,SSR,SNP,etc.
278Haramaya University

Morphological markers
•Duringtheearlyhistoryofplantbreeding,themarkersused
mainlyincludedvisibletraits,suchasleafshape,flowercolor,
pubescencecolor,podcolor,seedcolor,seedshape,hilumcolor,
awntype&length,fruitshape,rind(exocarp)colorandstripe,
fleshcolor,stemlength,etc.
•Thesemorphologicalmarkersgenerallyrepresentgenetic
polymorphismswhichareeasilyidentified&manipulated.
Therefore,theyareusuallyusedinconstructionoflinkagemaps
byclassicaltwo-and/orthreepointtests.
•Someofthesemarkersarelinkedwithotheragronomictraitsand
thuscanbeusedasindirectselectioncriteriainpractical
breeding.
279Haramaya University

Cytological markers
Incytology,thestructuralfeaturesofchromosomescanbeshownbychromosome
karyotypeandbands.
Thebandingpatterns,displayedincolor,width,orderandposition,
revealthedifferenceindistributionsofeuchromatinand
heterochromatin.Forinstance,Qbandsareproducedbyquinacrine
hydrochloride,GbandsareproducedbyGiemsastain,andRbandsare
thereversedGbands.
Thesechromosomelandmarksareusednotonlyforcharacterizationof
normalchromosomesanddetectionofchromosomemutation,butalso
widelyusedinphysicalmappingandlinkagegroupidentification.
Thephysicalmapsbasedonmorphologicalandcytologicalmarkerslaya
foundationforgeneticlinkagemappingwiththeaidofmolecular
techniques.
280Haramaya University

Biochemical/protein markers-Allozymes& Isozyme
•Biochemical/proteinmarkers:Proteinmarkersmayalsobecategorizedinto
molecularmarkers.
•Isozymesarealternativeformsorstructuralvariantsofanenzymethat
havedifferentmolecularweightsandelectrophoreticmobilitybuthave
thesamecatalyticactivityorfunction.
•Isozymesreflecttheproductsofdifferentallelesratherthandifferent
genesbecausethedifferenceinelectrophoreticmobilityiscausedby
pointmutationasaresultofaminoacidsubstitution.Therefore,
iso‐zymemarkerscanbegeneticallymappedontochromosomesand
thenusedasgeneticmarkerstomapothergenes.
•Theyarealsousedinseedpuritytestandoccasionallyinplant
breeding.Thereareonlyasmallnumberofisozymesinmostcrop
speciesandsomeofthemcanbeidentifiedonlywithaspecificstain.
Therefore,theuseofenzymemarkersislimited.
•Anotherexampleofbiochemicalmarkersusedinplantbreedingishigh
molecularweightgluteninsubunit(HMW-GS)inwheat.
281Haramaya University

Biochemical Marker -Allozymes(Isozyme)….
•Allozymesare allelic variants of enzymes encoded by structural
genes.
•Becauseofchangesinelectricchargeandconformationcanaffectthe
migrationrateofproteinsinanelectricfield,allelicvariationcanbe
detectedbygelelectrophoresisandsubsequentenzyme-specificstainsthat
containsubstratefortheenzyme,cofactorsandanoxidizedsalt(e.g.
nitro-bluetetrazolium).
•Usuallytwo,orsometimesevenmorelocicanbedistinguishedforan
enzymeandthesearetermedisoloci.Therefore,allozymevariationis
oftenalsoreferredtoasisozymevariation.
•Althoughproteinmarkerscircumventtheeffectsofenvironment,they
havethedrawbacksofalimitationinthenumberofdetectableisozymesas
wellastissueanddevelopmentstagespecificity.
282Haramaya University

Biochemical Marker -Allozymes(Isozyme)….
Advantages:
Thestrengthofallozymesissimplicity.
BecauseallozymeanalysisdoesnotrequireDNAextractionorthe
availabilityofsequenceinformation,primersorprobes,theyarequick
andeasytouse.
Simpleanalyticalprocedures,allowsomeallozymestobeappliedat
relativelylowcosts,dependingontheenzymestainingreagentsused.
Allozymesarecodominantmarkersthathavehighreproducibility.
Zymograms(thebandingpatternofisozymes)canbereadilyinterpreted
intermsoflociandalleles,ortheymayrequiresegregationanalysisof
progenyofknownparentalcrossesforinterpretation.
Sometimes,however,zymogramspresentcomplexbandingprofiles
arisingfrompolyploidyorduplicatedgenesandtheformationof
intergenicheterodimers,whichmaycomplicateinterpretation.
283Haramaya University

Biochemical Marker -Allozymes(Isozyme)….
•Disadvantages:
•relativelylowabundanceandlowlevelofpolymorphism.
•Moreover,proteinswithidenticalelectrophoreticmobility(co-migration)may
notbehomologousfordistantlyrelatedgermplasm.Inaddition,theirselective
neutralitymaybeinquestion.
•Lastly,oftenallozymesareconsideredmolecularmarkerssincetheyrepresent
enzymevariants,andenzymesaremolecules.However,allozymesareinfact
phenotypicmarkers,andassuchtheymaybeaffectedbyenvironmental
conditions.
•Forexample,thebandingprofileobtainedforaparticularallozymemarkermay
changedependingonthetypeoftissueusedfortheanalysis(e.g.rootvs.leaf).
Thisisbecauseagenethatisbeingexpressedinonetissuemightnotbe
expressedinothertissues.
•Onthecontrary,molecularmarkers,becausetheyarebasedondifferencesin
theDNAsequence,arenotenvironmentallyinfluenced,whichmeansthatthe
samebandingprofilescanbeexpectedatalltimesforthesamegenotype.
284Haramaya University

DNA markers
•Mostwidelyusedtypeofmarker
predominantlyduetotheirabundance
•Selectivelyneutralbecausetheyarenon-
codingsequences
•Notaffectedbyenvironmentalfactors
and/orthedevelopmentalstageoftheplant
•Numerousapplicationsinplantbreedingsuch
asassessingthelevelofgeneticdiversity
withingermplasmandcultivaridentity
285Haramaya University

DNA Makers/ Molecular markers
•DNAmarkersaredefinedasafragmentofDNArevealingmutations/variations,which
canbeusedtodetectpolymorphismbetweendifferentgenotypesorallelesofagene
foraparticularsequenceofDNAinapopulationorgenepool.
•AmolecularmarkerissegmentofDNAwhosecharacteristicscanbe
measuredandmakeinferencetotheecologyandevolutionofindividuals,
populations,andspecies
Therearethreemethodstodetectthepolymorphism:
1.Southernblotting,anuclearacidhybridizationtechnique(Southern1975),
2.PCR,apolymerasechainreactiontechnique(Mullis,1990),aswellas
3.microarraychiptechniquesuseDNAhybridizationcombinedwithlabeled
nucleotides,andnewsequencingtechniquesdetectpolymorphismbysequencing.
•UsingPCRand/ormolecularhybridizationfollowedbyelectrophoresis(e.g.PAGE–
polyacrylamidegelelectrophoresis,AGE–agarosegelelectrophoresis,CE–capillary
electrophoresis),thevariationinDNAsamplesorpolymorphismforaspecificregion
ofDNAsequencecanbeidentifiedbasedontheproductfeatures,suchasbandsizeand
mobility.InadditiontoSothernblottingandPCR,moredetectionsystemshavebeen
alsodeveloped.
286Haramaya University

Applications of molecular markers
•DNAmarkersystems,whichwereintroducedtogeneticanalysisinthe1980s,havemanyadvantagesoverthe
traditionalmorphological&proteinmarkersthatareusedingenetic&ecologicalanalysesofplantpopulations:
1.anunlimitednumberofDNAmarkerscanbegenerated;
2.DNAmarkerprofilesarenotaffectedbytheenvironment,&
3.DNAmarkers,unlikeisozymemarkers,arenotconstrainedbytissueordevelopmentalstagespecificity.
4. Genetic Diversity Measurements
•-Selecting what genotypes to use in breeding
•-Narrowing germplasmsearches(only if less costly then phenotyping!)
•-Managing germplasmcollections
5. Intellectual Property Protection
•-Preventing others from using your proprietary technology
6. Food Safety
•-Detecting transgenes
•-Detecting pathogens
7. QTLMapping
•-We will discuss today
8. Marker-Assisted Selection
•-Backcrossing in a transgene
•-Maintaining or crossing in a QTL
9. Genomic Selection 287Haramaya University

Properties of ideal molecular markers
An ideal molecular marker must have some desirable properties which are enlisted as follows:
1. Highly polymorphic/hypervariablenature: It must be polymorphic as it is
polymorphism that is measured for genetic diversity studies.
2. Codominantinheritance: discrimination of homozygous and heterozygous states
of diploid organisms.
3. Frequent occurrence in genome: a marker should be evenly and frequently
distributed throughout the genome.
4. Selective neutral behaviours: the DNA sequences of any organism are neutral to
environmental conditions or management practices.
4.High reproducibility: giving same result across labs.
5. Even distribution across the whole genome (not clustered in certain regions)
6. Clear distinct allelic features(so that the different alleles can be easily
identified)
7. Low cost to use (or cost-efficient marker development and genotyping)
8. Easy assay/detection & automation
9. High availability (un-restricted use) and suitability to be duplicated/multiplexed
(so that the data can be accumulated and shared between laboratories)
10. Single copy & Genome-specific in nature (especially with polyploids)
11. No detrimental effect on phenotype
288Haramaya University

Properties of ideal molecular markers…
12.Freedomfromenvironmentalandpleiotropiceffects.Molecularmarkersdo
notexhibitphenotypicplasticity,whilemorphologicalandbiochemicalmarkers
canvaryindifferentenvironments.DNAcharactershaveamuchbetterchance
ofprovidinghomologoustraits.Mostmorphologicalorbiochemicalmarkers,in
contrast,areunderpolygeniccontrol,andsubjecttoepistaticcontrol&
environmentalmodification(plasticity);
13.Potentiallyunlimitednumberofindependentmarkersareavailable,unlike
morphologicalorbiochemicaldata;
14.DNAcharacterscanbemoreeasilyscoredasdiscretestatesofallelesorDNA
basepairs,whilesomemorphological,biochemicalandfieldevaluationdata
mustbescoredascontinuouslyvariablecharactersthatarelessamenableto
robustanalyticalmethods;
Theseadvantagesdonotimplythatothermoretraditionaldatausedtocharacterize
biodiversityarenotvaluable.Onthecontrary,morphological,ecologicaland
other“traditional”datawillcontinuetoprovidepracticalandoftencritical
informationneededtocharacterizegeneticresources.
289Haramaya University

Properties of ideal molecular markers…
Itisextremelydifficulttofindamolecularmarker,whichwouldmeetalltheabove
criteria.
Awiderangeofmoleculartechniquesisavailablethatdetectspolymorphismatthe
DNAlevel.Dependingonthetypeofstudytobeundertaken,amarkersystemcanbe
identifiedthatwouldfulfillatleastafewoftheabovecharacteristics.
VarioustypesofmolecularmarkersareutilizedtoevaluateDNApolymorphismandare
generallyclassifiedashybridization-basedmarkersandpolymerasechainreaction
(PCR)-basedmarkers.Intheformer,DNAprofilesarevisualizedbyhybridizingthe
restrictionenzyme-digestedDNA,toalabeledprobe(whichisaDNAfragmentof
knownoriginorsequence).
PCRbasedmarkersinvolveinvitroamplificationofparticularDNAsequencesorloci,
withthehelpofspecificallyorarbitrarilychosenoligonucleotidesequences(primers)
andathermostableDNApolymeraseenzyme.
Theamplifiedfragmentsareseparatedelectrophoreticallyandbandingpatternsare
detectedbydifferentmethodssuchasstainingandautoradiography.
290Haramaya University

Genetic markers: dominance / co-dominance principle
dominance:whenheterozygotesarenot
distinguishablefromhomozygotes
‣AAwithPCRproduct,aawithoutPCRproduct,Aa
withPCRproduct
co-dominance:whenheterozygotesare
distinguishablefromhomozygotes
‣AAwithlowmobility,aawithhighmobility,Aa
withamediummobility
→difficultiesintheanalyses
Haramaya University 291

292Haramaya University

293Haramaya University

294Haramaya University

Applications of molecular markers
1.Assessmentofgeneticdiversityandcharacterizationof
germplasm
2.Identification&fingerprintingofgenotypes
3.Estimationofgeneticdistancebetweenpopulations,inbreds&
breedingmaterials
4.Detectionofmonogenic/qualitative&quantitativetrait
loci(QTL)
5.Markerassistedbreeding
6.Identificationofsequencesofusefulcandidategenesetc.
Haramaya University 295

CLASSIFICATION OF DNA MARKERS
•Basedonthemethodoftheirdetectionbroadlydivided
into
1.Hybridization-based
2.PCRbased
3.DNAsequence-based
•Visualisesthegeneticdifferencesbygelelectrophoresis
•Stainingwithchemicals(ethidiumbromideorsilver)
•Detectionwithradioactiveorcolourimetricprobes
PolymorphicDNAmarkers:helpsinrevealingthe
differencesbetweenindividualsofthesameordifferent
species.
MonomorphicDNAmarkers:Markersthatdonot
differentiatebetweengenotypesarecalledmonomorphic
markers
Haramaya University 296

297Haramaya University

298Haramaya University

First generation molecular markers
•ThefirstgenerationofDNAmarkersystemsemployedSouthernblot
basedmarkers.
•RFLPs(restrictionfragmentlengthpolymorphisms):resultfrompoint
mutationsinrestrictionenzymerecognitionsites.Chromosomal
mutationssuchasinsertions,deletions,inversions,andtranslocations
canalsocauserestrictionfragmentsizepolymorphisms.TheRFLP
techniqueemploysmolecularhybridizationofcDNAorgenomicDNA
probeswithgenomicDNAfragmentedbyrestrictionenzymes.
•AnotherSouthernblotbasedmarkersystemreliedonminisatellite
probesfor‘fingerprinting’individualspecifichumanDNA.
MinisatelliteDNAsareshortstretchesofDNAthatarepresentin
tandemrepeatsineukaryotes.Theyarehighlyabundant,and
individualsoftencarrydifferentnumbersoftandemrepeatswhichcan
bedetectedasVNTRs(variablenumberoftandemrepeat)byPCR
amplification.
299Haramaya University

Minisatellites, Variable Number of Tandem Repeats (VNTR)
•ThetermDNAfingerprintingwasintroducedforminisatellites,though
DNAfingerprintingisnowusedinamoregeneralwaytorefertoa
DNA-basedassaytouniquelyidentifyindividuals.
•Minisatellitesareparticularlyusefulinstudiesinvolvinggeneticidentity,
parentage,clonalgrowthandstructure,andidentificationofvarieties
andcultivars,andforpopulation-levelstudies.Minisatellitesareof
reducedvaluefortaxonomicstudiesbecauseofhypervariability.
DNA fingerprints (minisatellites)
•‣core repeat sequences of 10-100 bp
•highly variable, high quantity of DNA, difficult to set-up / old
method
300Haramaya University

301Haramaya University

302Haramaya University

303Haramaya University

304Haramaya University

Second Generation DNA Markers
•ThesecondgenerationDNAmarkersforgeneticanalysiswerethose
derivedfromPCRpolymerasechainreaction.
•PCRrevolutionizedgeneticandecologicalanalysesofpopulationsin
severalwaysbecauseithadtwomajoradvantagesoverSouthernblot
basedmarkers:
1.itrequiresonlysmallDNAamountstoallowanalysisatveryearly
stages,thusreducingtheneedforplantnurseries.
2.itisinexpensive,andsimpleenoughthatlargescaleexperimentscanbe
carriedoutrapidlyonalargescale.OfthemanyPCR-marker
techniquesthathavebeendeveloped,RAPD,AFLPISSR,SSRandSNP
arethemajorsystems,withtheothersystemsbeingmodificationsof
thesethree.
305Haramaya University

Inter Simple Sequence Repeats (ISSR)
•ISSRinvolvesamplificationofDNAsegmentspresentatanamplifiabledistancein
betweentwoidenticalmicrosatelliterepeatregionsorientedinoppositedirection.
•ThetechniqueusesmicrosatellitesasprimersinasingleprimerPCRreactiontargeting
multiplegenomiclocitoamplifymainlyintersimplesequencerepeatsofdifferentsizes.
•ThemicrosatelliterepeatsusedasprimersforISSRscanbedi-nucleotide,trinucleotide,
tetranucleotideorpenta-nucleotide.
•ISSRsuselongerprimers(15–30mers)ascomparedtoRAPDprimers(10mers),
whichpermitthesubsequentuseofhighannealingtemperatureleadingtohigher
stringency.
•IncontrasttotheSSRmarkertechniquethatamplifieswithprimerslocatedonthe
flankingsinglecopyDNA,microsatellitesanchoredprimersthatannealtoanSSRregion
canamplifyregionsbetweenadjacentSSRs.
•TheISSRtechniqueusesprimersthatarecomplimentarytoasingleSSRandanchoredat
eitherthe5'or3'endwithaone-tothree-baseextension.Theampliconsgenerated
consistofregionsbetweenneighbouringandinvertedSSRs.Asaresult,thehighcomplex
bandingpatternobtainedwilloftendiffergreatlybetweengenotypesofthesamespecies.
Haramaya University 306

Microsatellites or Simple sequence Repeat (SSR)
SSRs,alsocalledmicrosatellites,SimpleSequenceRepeats(SSRs),short
tandemrepeats(STRs)orsequence-taggedmicrosatellitesites(STMS),are
sectionsofDNA,consistingoftandemrepeatsofshortnucleotidemotifs(1-6
bp/nucleotideslong),mono-,di-,tri-,tetra-orpenta-nucleotideunitsthatare
randomlyarrangedthroughoutthegenomesofmosteukaryoticspecies.e.g.
(GT)n,(AAT)nand(GATA)n.
Microsatellitemarkers,developedfromgenomiclibraries,canbelongtoeither
thetranscribedregionorthenontranscribedregionofthegenome,andrarelyis
thereinformationavailableregardingtheirfunctions.
BecausetheDNAsequencesflankingmicrosatelliteregionsareusually
conserved,primersspecificfortheseregionsaredesignedforuseinthePCR
reaction.SSRlociareindividuallyamplifiedbyPCRusingpairsof
oligonucleotideprimersspecifictounique/conservedDNAsequencesflanking
theSSRsequence.
Inaddition,primersmaybeusedthathavealreadybeendesignedforclosely
relatedspecies.
307Haramaya University

SSR…
ThePCR-amplifiedproductscanbeseparatedinhigh-resolutionelectrophoresis
systems(e.g.AGEandPAGE)andthebandscanbevisuallyrecordedby
fluorescentlabelingorsilver-staining.
Microsatellites,likeminisatellites,representtandemrepeats,buttheirrepeat
motifsareshorter.
PolymeraseslippageduringDNAreplication,orslippedstrandmispairing,is
consideredtobethemaincauseofvariationinthenumberofrepeatunitsofa
microsatellite,resultinginlengthpolymorphismsthatcanbedetectedbygel
electrophoresis.
Microsatellitesequencesareespeciallysuitedtodistinguishcloselyrelated
genotypes;becauseoftheirhighdegreeofvariability/polymorphism,theyare,
therefore,favouredinpopulationstudies&fortheidentificationofclosely
relatedcultivars.
308Haramaya University

Haramaya University 309

The third generation of molecular markers
•Thethirdgenerationofmolecularmarkersisthesystemthatutilizes
SNPs(singlenucleotidepolymorphisms)andmicroarrays.
•Comparedtothegel-basedmolecularmarkersystems,SNPdetection
andanalysiscanbecarriedoutwithnon-gelbasedassays.
•Thepolymorphismofasinglebasedifferencecanbeassessedby
through-putanalysis:hybridizationwithallele-specificoligonucleotides
(ASO),primerextension,oligonucleotideligationassay(OLA),&
invasivecleavage.
•ThefrequencyoftheSNPscanrangefromapproximatelyoneper30bp
tooneper500bpinotherplantspecies.
•Althoughthesenewgenerationmarkersystemsarepowerfultoolsin
linkagedisequilibriumanalysis,germplasmassaybyhaplotyping,QTL
(quantitativetraitloci)analysisandafewothers,theyareonly
amenabletouseinthosespeciesforwhichextensivenucleotide
sequenceinformationisavailableinmajorcrops.
310Haramaya University

SNPmarkers
AnSNPisasinglenucleotidebasedifferencebetweentwoDNAsequencesor
individuals.
SNPscanbecategorizedaccordingtonucleotidesubstitutionseitheras
transitions(C/TorG/A)ortransversions(C/G,A/T,C/AorT/G).
Inpractice,singlebasevariantsincDNA(mRNA)areconsideredtobeSNPs
asaresinglebaseinsertionsanddeletions(indels)inthegenome.
Thefactthatinmanyorganismsmostpolymorphismsresultfromchangesina
singlenucleotideposition(pointmutations),hasledtothedevelopmentof
techniquestostudysinglenucleotidepolymorphisms(SNPs).
SNPsprovidetheultimate/simplestformofmolecularmarkersasasingle
nucleotidebaseisthesmallestunitofinheritance,andthustheycanprovide
maximummarkers.SNPsoccurverycommonlyinanimalsandplants.
Typically,SNPfrequenciesareinarangeofoneSNPevery100-300bpin
plants.
SNPsmaypresentwithincodingsequencesofgenes,non-codingregionsof
genesorintheintergenicregionsbetweengenesatdifferentfrequenciesin
differentchromosomeregions. 311Haramaya University

Gene microarrays
–Genemicroarraysenableresearcherstostudyallofthe
genesexpressedinatissueveryfast
–Microarray(genechip)iscreatedwithuseofsmallglass
microscopeslide
•SinglestrandedDNAmoleculesarespottedontheslideusingan
arrayer(computercontrolledroboticarm)whichfixesDNA
(multiplecopiesofcDNA)atdifferentspotsontheslidewhichis
recordedbyacomputer.
Haramaya University 312

Haramaya University 313

Haramaya University 314

Haramaya University 315

Haramaya University 316

Haramaya University 317

Haramaya University 318

Haramaya University 319

Haramaya University 320

Haramaya University 321

Haramaya University 322

Haramaya University 323

Haramaya University 324

Haramaya University 325

Haramaya University 326

Haramaya University 327

Haramaya University 328

Haramaya University 329

Haramaya University 330

Haramaya University 331

Haramaya University 332

Haramaya University 333

Haramaya University 334

Haramaya University 335

Haramaya University 336

The real genetic and genomic world is not A’s and peas:
Human genome: about 3 billion nucleotides, with about 3 million of them variable
among any two random humans (99.9% identity); most variants probably have no
phenotypic effects (are ‘neutral’)
Human Genome Project has provided the sequence (all online) of one human, but the
most interesting and important data as regards health is the variation among humans,
analyzed using the:
HapMap (Haplotype Map) project has characterized genetic variation among three
major populations, one African, one Asian, one Caucasian (one or more common SNP
genotyped at least every 5000 base pairs); > 1 million SNPs overall
1000 Genomes project: full sequences of 1000 humans -> rare variants
SNP - single nucleotide polymorphism (2 or more bases at a locus)
Haplotype - linear combination of SNPs or other markers on a chromosome such as
C...C....A.T (haplotype 1), C...G....A.T (haplotype 2); sets of linked bases tend to be
inherited together -- form flanked ‘blocks’
Microsatellites - repetitive elements with variable numbers of short repeats such as
CAGCAGCAG...or ATATAT - used as markers, and underly some diseases
Copy number variation - variation in number of copies of large sections of genome,
including one or more genes (large deletions, duplications)
337Haramaya University

Some important findings from HapMap project (and earlier studies using other genetic
markers)
(1)About 10-15% of total human genetic variation is among populations; rest is within
populations
(2)Africa harbours substantially higher levels of human genetic variation than other
regions
(3)Patterns of natural selection ‘for’ given alleles (positive selection) vary substantially
among populations
-> local adaptation
338Haramaya University

Molecular Breeding
Molecularbreeding(MB)maybedefinedinabroad-senseasthe
useofgeneticmanipulationperformedatDNAmolecular
levelstoimprovecharactersofinterestinplantsandanimals
(MAB+GMO).
Marker-assistedbreeding(MAB)isdefinedastheapplicationof
molecularbiotechnologies,specificallymolecularmarkers,in
combinationwithlinkagemapsandgenomics,toimprove
plantoranimaltraitsonthebasisofgenotypicassays.
339Haramaya University

340Haramaya University

Molecular breeding Methods
• Marker Assisted Selection (MAS)
• Marker Assisted Backcross (MABC)
• Marker Assisted Pyramiding
• Marker Assisted Recurrent Selection (MARS)
• Quantitative Trait Loci (QTL)
• Genomic Selection
341Haramaya University

342Haramaya University

343Haramaya University

344Haramaya University

345Haramaya University

Prerequisites for an efficient marker-assisted selection program
1.High throughput DNA extraction
2. For efficient MAS(morphological, protein, cytological) markers should be:
•Ease of use
•Small amount of DNA required
•Low cost
•Repeatability of results
•High rate of polymorphism
•Occurrence throughout the genome
•Codominance
346Haramaya University

Prerequisites for an efficient marker-assisted selection program…
3.Geneticmaps:
•Linkagemapsprovideaframeworkfordetectingmarker-traitassociationsand
forchoosingmarkerstoemployinMAS.
•Onceamarkerisfoundtobeassociatedwithatraitinagivenpopulation,a
densemolecularmarkermapinastandardreferencepopulationwillhelp
identifymarkersthatarecloserto,orthatflank,thetarget.
4.ThemostcrucialingredientforMASisknowledgeofmarkersthatare
associatedwithtraitsimportanttoabreedingprogram.
5.Datamanagementsystem
•LargenumbersofsamplesarehandledinaMASprogram,witheachsample
potentiallyevaluatedformultiplemarkers.
•Thissituationrequiresanefficientsystemforlabeling,storing,retrieving,and
analyzinglargedatasets,andproducingreportsusefultothebreeder.
347Haramaya University

348Haramaya University

349Haramaya University

REQUIREMENTS FOR GENETIC MAPPING
•Geneticlinkagemapconstructionrequiresthatthe
researcher;
1)Developappropriatemappingpopulationanddecidethe
samplesize.
2)Decidethetypeofmolecularmarker(s)forgenotyping
themappingpopulation.
3)Screenparentsformarkerpolymorphism,andthen
genotypethemappingpopulation(parentsplusall
progenies).
4)Performlinkageanalyses(calculatepairwise
recombinationfrequenciesbetweenmarkers,establish
linkagegroups,estimatemapdistances,anddetermine
maporder)usingstatisticalprograms.
350Haramaya University

Gene Mapping principle
•Genesandmarkerssegregateviachromosomerecombination(called
crossing-over)duringmeiosis
•Genesormarkersthatareclosetogetherortightly-linkedwillbe
transmittedtogetherfromparenttoprogenymorefrequentlythan
genesormarkersthatarelocatedfurtherapart
•Inasegregatingpopulation,thereisamixtureofparentaland
recombinantgenotypes
•Thefrequencyofrecombinantgenotypes:inferthegeneticdistance
betweenmarkers
•Thelowerthefrequencyofrecombinationbetweentwomarkers,the
closertheyaresituatedonachromosomeandthehigherthe
frequencyofrecombinationbetweentwomarkers,thefurtheraway
theyaresituatedonachromosome).
•Markersthathavearecombinationfrequencyof50%aredescribedas
‘unlinked’andassumedtobelocatedfarapartonthesame
chromosomeorondifferentchromosomes
351Haramaya University

352Haramaya University

Gene Mapping principle….
•Inasegregatingpopulation,thereisamixtureof
parentalandrecombinantgenotypes
•Thefrequencyofrecombinantgenotypes:inferthe
geneticdistancebetweenmarkers
•Thelowerthefrequencyofrecombinationbetween
twomarkers,theclosertheyaresituatedona
chromosomeandthehigherthefrequencyof
recombinationbetweentwomarkers,thefurtheraway
theyaresituatedonachromosome).
•Markersthathavearecombinationfrequencyof50%are
describedas‘unlinked’andassumedtobelocatedfar
apartonthesamechromosomeorondifferent
chromosomes.
353Haramaya University

QTLMapping
•Theprocessofconstructinglinkagemapsandconducting
QTLanalysistoidentifygenomicregionsassociatedwith
traitswiththehelpofmolecularmarkersisknownasQTL
mapping;Alsocalledasgenetic,geneorgenome
mapping;
•Manyagriculturallyimportanttraitssuchasyield,quality
andsomeformsofdiseaseresistancearecontrolledby
manygenesandareknownas“quantitativetraitsor
polygenicormultifactorialorcomplextraits”.
•Thesetraitsshowcontinuousvariationinapopulation.
•Thesetraitsdonotfallintodiscreteclasses.
•Theyaremeasurable.
354Haramaya University

355Haramaya University

Quantitative Trait Loci (QTL)
•ThelocicontrollingquantitativetraitsarecalledquantitativetraitlociorQTL.
•TermfirstcoinedbyGeldermanin1975.
•Itistheregionofthegenomethatisassociatedwithaneffectona
quantitativetrait.
•Itcanbeasinglegeneorclusteroflinkedgenesthataffectthetrait.
•QTLsarecontrolledbymultiplegenes,eachsegregatingaccordingtoMendel's
laws.
•Thesetraitscanalsobeaffectedbytheenvironmenttovaryingdegrees.
Individualgeneeffectsissmall&Thegenesinvolvedcanbedominant,or
codominant.Thegenesinvolvedcanbesubjecttoepistasisorpleiotrophic
effect.
•QuantitativeTraitLocus(QTL):astatisticallysignificantlocus(notnecessarily
agene)thatquantitativelyaffectsaphenotypeofinterestwithphysical
boundariesdefinedbylinkedmolecularmarkers.
356Haramaya University

357Haramaya University

358Haramaya University

359Haramaya University

360Haramaya University

Objectives of QTLMapping
•ThebasicobjectiveistodetectQTL,whileminimizing
theoccurrenceoffalsepositives(TypeIerrors,thatis
declaringanassociationbetweenamarkerandQTL
wheninfactonedoesnotexist).
•Toidentifytheregionsofthegenomethataffectsthe
traitofinterest.
•ToanalyzetheeffectoftheQTLonthetrait.
•Howmuchofthevariationforthetraitiscausedbya
specificregion?
•WhatisthegeneactionassociatedwiththeQTL–
additiveeffect?Dominanteffect?
•Whichalleleisassociatedwiththefavorableeffect?
361Haramaya University

Prerequisites for QTLmapping
1.Availabilityofagoodlinkagemap(thiscanbe
doneatthesametimetheQTLmapping)
2.Asegregatingpopulationderivedfromparents
thatdifferforthetrait(s)ofinterest,&which
allowforreplicationofeachsegregant,sothat
phenotypecanbemeasuredwithprecision(such
asRILsorDHs)
3.Agoodassayforthetrait(s)ofinterest
4.Softwareavailableforanalyses
5.MolecularMarkers
6.SophisticatedLaboratory
362Haramaya University

Prerequisites for QTLmapping…
•Selection of parental lines
•Sufficient polymorphism
•Parentallinesarehighlycontrasting
phenotypicallyGeneticallydivergent
•Selectionof molecular markers
(dominant/codominant)
•Making crosses
•Creation of mapping population
363Haramaya University

Principle of QTLanalysis
•Genesandmarkerssegregateviachromosomerecombinationduring
meiosis,thusallowingtheiranalysisintheprogeny.
•QTLanalysisdependsonthelinkagedisequilibrium.
•QTLanalysisisusuallyundertakeninsegregatingmappingpopulations.
•Asignificantdifferencebetweenphenotypicmeansofthegroupsindicates
thattheparticularmarkerlocusislinkedtoaQTLcontrollingthetrait.
•Itisbasedontheprincipleofdetectinganassociationbetweenphenotype
andthegenotypeofthemarkers.
•Markersareusedtopartitionthemappingpopulationintodifferent
genotypicgroupsbasedonthepresenceorabsenceofaparticularmarker
locusandtodeterminewhethersignificantdifferencesexistbetweengroups
withrespecttothetraitbeingmeasured.
•Asignificantdifferencebetweenphenotypicmeansofthegroups,
dependingonthemarkersystemandtypeofmappingpopulation,
•Itisnoteasytodothisanalysismanuallyandsowiththehelpofacomputer
andasoftwareitisdone.
364Haramaya University

Principle of QTLanalysis contd…
•If,QTL&markeriscloselylinked,chanceof
recombinationwillbeless.
•SoQTLandmarkerwillbeinheritedtogetherand
meanofthegroupwillhavesignificant
difference,
•Iflooselylinkedorunlinked,thereisindependent
segregationofthemarkerandQTL.Thus,there
willbenosignificantdifferencebetweenmeans
ofthegenotypegroups.
365Haramaya University

What are linkage maps?
•Itisthe‘roadmap’ofthechromosomes
derivedfromtwodifferentparents
•Indicatethepositionandrelativegenetic
distancesbetweenmarkersalongchromosomes
(signsorlandmarksalongahighway)
•Helpstoidentifychromosomallocations
containinggenesandQTLsassociatedwith
traitsofinterest;suchmapsmaythenbe
referredtoas‘QTL’/or‘genetic’maps
366Haramaya University

367Haramaya University

368Haramaya University

How linkage map constructed?
•Thethreemainstepsoflinkagemap
constructionare:
(1)Productionofamappingpopulation
(2)Identificationofpolymorphism
(3)Linkageanalysisofmarkers
369Haramaya University

1. Production of a mapping population
•Requiresasegregatingplantpopulation(i.e.apopulation
derivedfromsexualreproduction)
•Theparentsselectedwilldifferforoneormoretraitsofinterest
Populationsizes:generallyrangefrom50to250individuals
•IfmapisusedforQTLstudiesthenthemappingpopulation
mustbephenotypicallyevaluated(i.e.traitdatamustbe
collected)beforesubsequentQTLmapping
•Inselfpollinatedspecies,parentsthatarebothhighly
homozygous(inbred)
•Incrosspollinatingspecies,thesituationismorecomplicated
beingheterozygous
370Haramaya University

Mapping population
•Thefirststepinproducingamappingpopulationis
selectingtwogeneticallydivergentparents,whichshow
cleargeneticdifferencesforoneormoretraitsofinterest
(e.g.,therecipientorrecurrentparentcanbeahighly
productiveandcommerciallysuccessfulcultivarbutlacks
diseaseresistance,whichispresentinanotherdonor
parent).
•Theparentsshouldbegeneticallydivergentenoughto
exhibitsufficientpolymorphismandatthesametimethey
shouldnotbetoogeneticallydistantsoasto:
a)Causesterilityoftheprogeniesand/or,
b)Showveryhighlevelsofsegregationdistortionduring
linkageanalysis.
371Haramaya University

Mapping populations developed for self pollinating species.
•Inself-pollinatingspecies,mappingpopulationsoriginatefromparentsthat
arebothhighlyhomozygous(inbred).
•AsshowninFigure2,progeniesfromthesecondfilialgeneration(F2),
backcross(BC),recombinantinbredlines(RILs),doublehaploids(DHs),and
nearisogeniclines(NILs)canbeusedforgeneticmappinginselfpollinating
species.
•Theirmainadvantagesarethattheyareeasytoconstructandrequireonlya
shorttimetoproduce.InbreedingfromindividualF2plantsallowsthe
constructionofrecombinantinbred(RI)lines,whichconsistofaseriesof
homozygouslines,eachcontainingauniquecombinationofchromosomal
segmentsfromtheoriginalparents.
•ThelengthoftimeneededforproducingRIpopulationsisthemajor
disadvantage,becauseusuallysixtoeightgenerationsarerequired.Doubled
haploid(DH)populationsmaybeproducedbyregeneratingplantsbythe
inductionofchromosomedoublingfrompollengrains,however,the
productionofDHpopulationsisonlypossibleinspeciesthatareamenableto
tissueculture(e.g.cerealspeciessuchasrice,barleyandwheat).
•ThemajoradvantagesofRIandDHpopulationsarethattheyproduce
homozygousor‘true-breeding’linesthatcanbemultipliedandreproduced
withoutgeneticchangeOccurring.
Haramaya University 372

Haramaya University 373

Mapping populations developed for cross pollinating species
•Two-waypseudo-testcross,half-sibandfull-sibfamiliesderivedfromcontrolledcrosses
havebeenproposedformappinginoutcrossingspecies.
•F2populationsaredevelopedbyselfingF1hybridsderivedbycrossingthetwoparents
whileBCpopulationisproducedbycrossingF1backintooneoftheparents(the
recipientorrecurrentparent).
•RILsaredevelopedbysingle-seedselectionsfromindividualplantsofanF2population;
suchselectionscontinueforsixtoeightgenerations.
•Ifbackcrossselectionisrepeatedatleastforsixgenerations,morethan99%ofthe
genomefromBC6andabovewillbederivedfromrecurrentparent(Babuetal.,2004).
•SelfingofselectedindividualsfromBC7F1willproduceBC7F2linesthatare
homozygousforthetargetgene,whichissaidtobenearlyisogenicwiththerecipient
parent(NILs).
•NILsarefrequentlygeneratedbyplantbreedersastheytransfermajorgenesbetween
varietiesbybackcrossbreeding(Tanksleyetal.,1995).
•ADHpopulationisproducedbydoublingthegametesofF1orF2population.Plants
willberegeneratedusingtissueculturetechniquesafterinductionofchromosome
doublingfrompollengrainsorhaploidembryosresultingfromspeciescrosses.
•Incrosspollinating(outcrossing)species,thesituationismorecomplicatedsincemost
ofthesespeciesdonottolerateinbreeding.
Haramaya University 374

2. Identification of polymorphism
•Selectanappropriatemarkerthatshowsdifferences
betweenparents(polymorphicmarkers)
•Itiscriticalthatsufficientpolymorphismexistsbetween
parents
•InCrosspollinatingspecies,higherDNApolymorphism
exitscomparedtoinbreedingspecies,
•Soininbreedingspecies,parentsselectedshouldbe
distantlyrelated,
•Thenmarkershouldbescreenedacrosstheentire
mappingpopulation,includingtheparents:marker
genotyping.
375Haramaya University

Identification of polymorphism contd..
•Generally,markerswillsegregateinaMendelian
fashionalthoughdistortedsegregationratios
maybeencountered
•Significantdeviationsfromexpectedratioscanbe
analysedusingchisquaretests
•Inpolyploidspecies,identifyingpolymorphic
markersismorecomplicated
•Somappingofdiploidrelativesofpolyploid
speciesisdone
•However,diploidrelativesdonotexistforall
polyploidspecies
376Haramaya University

3. Linkage analysis of markers
•CodedataforeachDNAmarkeroneachindividual
ofapopulationandconductlinkageanalysisusing
computerprograms
•Linkagebetweenmarkersisusuallycalculatedusing
Oddsratios:theratiooflinkageversusnolinkage
•LODvalue/LODscore:Logarithmoftheoddratio
•Manualanalysisisnotfeasible,socomputer
programmesneeded
•Commonlyusedsoftwareprograms
•Mapmaker/EXP,MapManagerQTX,JoinMapetc
377Haramaya University

Linkage map…
•Linkedmarkersaregroupedtogetherinto‘linkage
groups,’whichrepresentchromosomalsegments
orentirechromosomes
•Polymorphicmarkersdetectedarenotnecessarily
evenlydistributedoverthechromosome,but
clusteredinsomeregionsandabsentinothers
•Theaccuracyofmeasuringthegeneticdistance
anddeterminingmarkerorderisdirectlyrelated
tothenumberofindividualsstudiedinthe
mappingpopulation,min50individuals
378Haramaya University

Dr. Zekeria Yusuf (PhD) 379

Haramaya University 380

Genetic distance and mapping functions
•Greaterthedistancebetweenmarkers,the
greaterthechanceofrecombinationoccurring
duringmeiosis
•Distancealongalinkagemapismeasuredin
termsofthefrequencyofrecombination
betweengeneticmarkers
•Mappingfunctionsarerequiredtoconvert
recombinationfractionsintocentiMorgans(cM)
•Whenmapdistancesaresmall(<10cM),themap
distanceequalstherecombinationfrequency
•However,thisrelationshipdoesnotapplyformap
distancesthataregreaterthan10cM
Haramaya University 381

QTLMapping
Five primary types of QTLmapping with increasing complexity
and (theoretically) power
1.Single marker analysis
2.Interval mapping (IM)
3.Composite interval mapping (CIM)
4.Multiple interval mapping (MIM)
5.Bayesian ( Hidden Markov Model)
•Others that are more rare.
382Haramaya University

1. Single-Marker Analysis (SMA)
Alsoknownassingle-point
analysis.
Itisthesimplestmethodfor
detectingQTLsassociatedwith
singlemarkers.
•Thismethoddoesnotrequirea
completelinkagemapandcanbe
performedwithbasicstatistical
softwareprograms.
•Thestatisticalmethodsusedfor
single-markeranalysisincludet-
tests,analysisofvariance
(ANOVA)andlinearregression.
•Linearregressionismost
commonlyusedbecausethe
coefficientofdetermination(R2)
fromthemarkerexplainsthe
phenotypicvariationarisingfrom
theQTLlinkedtothemarker.
383Haramaya University

384Haramaya University

385Haramaya University

386Haramaya University

2. Simple Interval Mapping (SIM)
•ItwasfirstproposedbyLanderandBolstein.
•Ittakesfulladvantagesofthelinkagemap.
•Thismethodevaluatesthetargetassociationbetweenthetrait
valuesandthegenotypeofahypotheticalQTL(targetQTL)at
multipleanalysispointsbetweenpairofadjacentmarkerloci(target
interval).
•PresenceofaputativeQTLisestimatedifthelogofoddsratio
exceedsacriticalthreshold.
•Theuseoflinkedmarkersforanalysiscompensatesfor
recombinationbetweenthemarkersandtheQTL,andisconsidered
statisticallymorepowerfulcomparedtosingle-pointanalysis.
•MapMaker/QTLandQGeneareusedtoconductSIM.
•Theprinciplebehindintervalmappingistotestamodelforthe
presenceofaQTLatmanypositionsbetweentwomappedloci.
387Haramaya University

Statistical methods used for SIM
i.MaximumLikelihoodApproach
•ItisassumedthataQTLislocatedbetweentwomarkers,
thetwolocimarkergenotypes(i.e.AABB,AAbb,aaBB,
aabbforDHprogeny)eachcontainmixturesofQTL
genotypes.
•MaximumlikelihoodinvolvessearchingforQTLparameters
thatgivethebestapproximationforquantitativetrait
distributionthatareobservedforeachmarkerclass.
•Modelsareevaluatedbycomparingthelikelihoodofthe
observeddistributionswithandwithoutfindingQTLeffect
•ThemappositionofaQTLisdeterminedasthemaximum
likelihoodfromthedistributionoflikelihoodvalues.
388Haramaya University

ii. Logarithm of the odds ratio (LODscore):
•Linkagebetweenmarkersisusuallycalculatedusingoddsratio.
•Thisratioismoreconvenientlyexpressedasthelogarithmofthe
ratio,andiscalledalogarithmofodds(LOD)valueorLODscore.
•LODvaluesof>3aretypicallyusedtoconstructlinkagemaps.
•LODof2meansthatitis100timesmorelikelythataQTLexists
intheintervalthanthatthereisnoQTL.
389Haramaya University

ii. Logarithm of the odds ratio (LODscore):
•LODof3betweentwomarkersindicatesthat
linkageis1000timesmorelikely(i.e.1000:1)
thannolinkage.
•LODvaluesmaybeloweredinordertodetecta
greaterleveloflinkageortoplaceadditional
markerswithinmapsconstructedathigherLOD
values.
•TheLODscoreisameasureofthestrengthof
evidenceforthepresenceofaQTLata
particularlocation.
390Haramaya University

3. Composite Interval Mapping (CIM)
•DevelopedbyJansenandStamin1994
•ItcombinesintervalmappingforasingleQTLin
agivenintervalwithmultipleregression
analysisonmarkerassociatedwithotherQTL.
•Itismorepreciseandeffectivewhenlinked
QTLsareinvolved.
•Itconsidersmarkerintervalplusafewother
wellchosensinglemarkersineachanalysis,so
thatn-1testsforinterval–QTLassociationsare
performedonachromosomewithnmarkers.
391Haramaya University

Dr. Zekeria Yusuf (PhD) 392

Understanding interval mapping results
•SIMandCIMproducea
profileofthelikelysites
foraQTLbetween
adjacentlinkedmarkers.
•Thestatisticalresultsare
typicallypresentedusing
alogarithmicofodds
(LOD)scoreorlikelihood
ratiostatistic(LRS)
•LRS=4.6×LOD
•PositionforaQTL:position
wherethehighestLOD
valueisobtained.
Haramaya University 393

Understanding interval mapping results contd…
•RealQTL:Thepeakmustalsoexceedaspecified
significanceandisdeterminedusingpermutationtests.
•Thephenotypicvaluesofthepopulationare‘shuffled’
whilstthemarkergenotypicvaluesareheldconstantand
QTLanalysisisperformedsome500-1000timestoassess
theleveloffalsepositivemarker-traitassociationsand
significantlevelsaredetermined.
•Previously,LODscoreofbetween2.0to3.0(most
commonly3.0)wasusuallychosenasthesignificance
threshold.
Haramaya University 394

Haramaya University 395

Haramaya University 396

4. Multiple Interval Mapping (MIM)
•Itisalsoamodificationofsimpleintervalmapping.
•Itutilizesmultiplemarkerintervalssimultaneously
tofitmultipleputativeQTLdirectlyinthemodel
formappingQTL.
•Itprovidesinformationaboutnumberandposition
ofQTLinthegenome.
•ItalsodeterminesinteractionofsignificantQTLs
andtheircontributiontothegeneticvariance.
•ItisbasedonCockerham’smodelforinterpreting
geneticparameters.
397Haramaya University

5. Bayesian Interval Mapping (BIM)
DevelopedbySatagopanetal.in1996.
•Itprovidesinformationaboutnumberandpositionof
QTLandtheireffects
•TheBIMestimatesshouldagreewithMIMestimates
andshouldbesimilartoCIMestimates.
•Itprovidesinformationposteriorestimatesofmultiple
QTLintheintervals.
•ItcanestimateQTLeffectandpositionseparately.
398Haramaya University

Minor and major QTL
•QTLcanbemajororminorbasedontheproportionofthe
phenotypicvariationi.e.R2value:
•MajorQTLs:>10%),stableQTL
•MinorQTLs:<10%.environmentallysensitiveespecially(disease
Resistance):
(1)Suggestive;
(2)Significant;
(3)Highlysignificantto“avoidafloodoffalsepositiveclaims”and
toensurethat“truehintsoflinkage”werenotmissed
Significantandhighly-significant:significancelevelsof5and
0.1%,RespectivelySuggestive:Expectedtooccuronceat
randominaQTLmappingstudy.
399Haramaya University

Genomic Selection
•Genomicselection(GS)isanewapproachfor
improvingquantitativetraitsinlargeplant
breedingpopulationsthatuseswholegenome
molecularmarkersandcombinesmarkerdata
withphenotypicdatainanattempttoincrease
theaccuracyofthepredictionofbreedingand
genotypicvalues.
400Haramaya University

Genomic Selection…
401Haramaya University

Dr. Zekeria Yusuf (PhD) 402
Tags