Yunastiti Purwaningsih Chapter 6 Production Ringkas
2
Teori perusahaan ( theory of the firm ): bagaimana perusahaan membuat keputusan produksi yang meminimumkan biaya pada berbagai biaya yang muncul seiring perubahan output 3
Production Technology Cost Constraints Input Choices 4
Production Technology : How inputs (such as labor, capital, and raw materials) can be transformed into outputs (such as cars and televisions….padi, kedele, tebu, jagung, dll). For example, an electronics firm might produce 10,000 televisions per month by using a substantial amount of labor (e.g., workers assembling the televisions by hand) and very little capital, or by building a highly automated capital-intensive factory and using very little labor . 5
Cost Constraints : Firms must take into account the prices of labor, capital, and other inputs . The firm will be concerned about its cost of production. For example, the firm that produces 10,000 televisions per month will want to do so in a way that minimizes its total production cost, which is determined in part by the prices of the inputs it uses. 6
Input Choices : Given its production technology and the prices of labor, capital, and other inputs , the firm must choose how much of each input to use in producing its output . 7
persamaan 6.1: this equation relates the quantity of output (q) to the quantities of the two inputs, capital (K) and labor (L). Production functions describe what is technically feasible when the firm operates efficiently —that is, when the firm uses each combination of inputs as effectively as possible . The presumption that production is always technically efficient need not always hold, but it is reasonable to expect that profit-seeking firms will not waste resources . 8
9
T he production function for a single input, labor : q = f (L ) 10
Figure 6.1 Production With One Variable Input Infection point = A MP = AP maksimal = B / D T P maksimal = C 11
Gambar a Gambar b Hubungan TP dan MP sebagai berikut: Gambar a: pada fungsi produksi di titik A (pada L = 3 dan output = 6 9) disebut sebagai inflection point (titik balik), dan pada titik tersebut, MP maksimum (MP = 29) (gambar 2.6b). Gambar a: dari titik A ke titik C (dari L = 3 meningkat sampai pada L = 9), daerah terjadinya deminishing return, artinya MP menurun (dari MP = 29 menurun sampa i pada MP = 1 (gambar 2.6b). Gambar a: pada fungsi produksi di titik C (pada L = 9) output maksimum (output = 153), dan maka MP = 1 (gambar 2.6b). Gambar 2.6 Hubungan Total, Marginal dan Average Product Sumber: Pyndick, 2018
Gambar a Gambar b Gambar 2.6 Hubungan Total, Marginal dan Average Product Sumber: Pyndick, 2018 Hubungan MP dan AP (gambar 2.6b) dijelaskan sebagai berikut: Ketika AP menaik (dari L = 1, AP = 15 meningkat sampai pada L = 3, AP = 23), MP (dari L = 1, MP = 15 meningkat sampai pada L = 3, MP = 29) > AP. Ketika AP menurun (dari L = 6, AP = 23 menurun sampai pada L = 9, AP = 17), MP (dari L = 6, MP = 18 menurun sampai pada L = 9, MP = 1) < AP. Ketika AP tetap (tidak naik dan tidak turun yaitu pada L = 4 dan 5, AP = 24) maka AP maksimum, dan MP (pada L = 5, MP = 24) = AP.
Gambar a: titik balik (inflection point) pada L1 di fungsi produksi, maka pada L1, MP maksimum di gambar b: titik A = MP maksimum . Gambar a: ray pada fungsi produksi = L2, maka AP maksimum di gambar b: titik B AP maksimum . Bila garis ray garis menyinggung fungsi produksi maka AP = MP, dan pada L2 AP maksimum, sehingga AP maksimum = MP gambar b: di titik B, AP maksimum = MP . Gambar b: sebelum L2 AP naik, setelah L2 AP turun Gambar a: fungsi produksi mak simum gambar b: di titik C, MP mulai nol dan kemudian negatif. T he production function for a single input, labor: q = f (L) cp Gambar a Gambar b
Isoquant (q) : Kurva yang menunjukkan semua kemungkinan kombinasi input (tenaga kerja dan modal) yang menghasilkan jumlah output yang sama .
labor is increased from 1 unit to 2 (from A to B), output increases by 20 (from 55 to 75). labor is increased by an additional unit (from B to C), output increases by only 15 (from 75 to 90). 20
q1 q2 q3 Isoquants show the flexibility that firms have when making production decisions: They can usually obtain a particular output by substituting one input for another . 21
Figure 6.6 Marginal Rate Of Technical Substitution Diminishing MRTS : The MRTS falls as we move down along an isoquant 22 A B C D E MRTS L,K : mengganti kapital untuk tambahan labor MRTS L,K : MRTS of labor for capital
L ↑ ∆q MPL = ∆q / ∆L ∆q = (MPL) (∆L) K ↓ ∆q MPK = ∆q / ∆K ∆q = (MPK) (∆K) Perubahan input (L ↑, K ↓) pada output (q) sama ( ∆q = 0) Equation (6.2) tells us that the marginal rate of technical substitution between two inputs is equal to the ratio of the marginal products of the inputs . 23
24 Contoh: produksi semikonduktor. Misalkan, pada kombinasi input yang ada, satu unit tenaga kerja tambahan akan meningkatkan output sebesar 10 unit, sementara satu unit modal tambahan (robot) akan meningkatkan output hanya sebesar 2 unit MPL = 10, MPK = 2. Jadi, pada kombinasi input saat ini, tenaga kerja memiliki produktivitas marjinal yang jauh lebih tinggi daripada modal. Persamaan (6.5) MRTS L,K = MPL/MPK = 10/2 = 5 yang berarti bahwa perusahaan dapat mengganti 1 unit tenaga kerja dengan 5 unit modal tanpa memengaruhi output . Dasar Keputusan perusahaan dalam membuat keputusan investasi yang melibatkan kombinasi antara robot dan pekerja manusia.
For example, musical instruments can be manufactured almost entirely with machine tools or with very few tools and highly skilled labor. Figure 6.8 Fixed-proportions Production Function , sometimes called a Leontief production function. that a cereal company offers a new breakfast cereal, Nutty Oat Crunch, whose two inputs, not surprisingly, are oats and nuts. The secret formula for the cereal requires exactly one ounce of nuts for every four ounces of oats in every serving. If the company were to purchase additional nuts but not additional oats, the output of cereal would remain unchanged, since the nuts must be combined with the oats in a fixed proportion 25
2014_Besanko_Microeconomics
27
RTS long-run analysis Dengan semua input variabel yang ada, perusahaan harus mempertimbangkan cara terbaik untuk meningkatkan output. Salah satu cara untuk melakukannya adalah dengan mengubah skala operasi dengan meningkatkan semua input produksi secara proporsional. 28
(a) constant returns to scale (b) increasing returns to scale 29
30
31 Struktur biaya: Modal fisik (termasuk pabrik dan Peralatan) = 77 %; tenaga kerja = 23 % dari biaya produsen karpet. Produsen karpet meningkatkan skala operasi dengan: Mesin penjahit yang lebih besar dan lebih efisien ke pabrik yang lebih besar Meningkatkan penggunaan tenaga kerja Hasilnya: Peningkatan input yang proporsional telah menghasilkan peningkatan output yang lebih dari proporsional . Misalnya, penggandaan input modal dan tenaga kerja dapat menyebabkan peningkatan output 110 persen
32 Pola tersebut tidak seragam di seluruh industri. Sebagian besar produsen karpet yang lebih kecil: perubahan kecil dalam skala memiliki sedikit atau tidak ada pengaruh pada output; yaitu, peningkatan kecil proporsi input hanya meningkatkan output secara proporsional. dapat menggolongkan industri karpet sebagai: skala pengembalian konstan untuk pabrik yang relatif kecil. skala pengembalian yang meningkat untuk pabrik yang lebih besar. skala pengembalian yang meningkat ini terbatas, dan dapat diperkirakan bahwa jika ukuran pabrik ditingkatkan lebih lanjut, pada akhirnya akan terjadi skala pengembalian yang menurun.
Firm and their production decisions Why do fims exist: The firms exist because they allow goods and services to be produced far more efficiently than would be possible without them. The Technology of Production : How inputs (such as labor, capital, and raw materials) can be transformed into outputs (such as cars and televisions….padi, kedele, tebu, jagung, dll). 33
Production function Function showing the highest output that a firm can produce for every specified combination of inputs. The short run versus long run Short run : Period of time in which quantities of one or more production factors cannot be changed ( fixed input). Long run : Amount of time needed to make all production inputs variable . 34
Production with one variable input (labor) q = q (L) AP : Average product of labor = Output/labor input = q/L MP : Marginal product of labor = Change in output/change in labor input = ∆ q/ ∆ L Slope fungsi produksi MP Law of diminishing marginal returns : Principle that as the use of an input increases with other inputs fixed, the resulting additions to output will eventually decrease L ↑, K tetap MP ↓ Labor productivity : Average product of labor for an entire industry or for the economy as a whole. 35
Production with two variable input q = q (K, L) I soquant : Curve showing all possible combinations of inputs that yield the same output. Isoquant map : Graph combining a number of isoquants, used to describe a production function. Input flexibility Isoquants show the flexibility that firms have when making production decisions: They can usually obtain a particular output by substituting one input for another. Diminishing marginal returns : isoquant also reflects diminishing marginal returns to both labor and capital. 36
Substitution among inputs marginal rate of technical substitution (MRTS) Amount by which the quantity of one input can be reduced when one extra unit of another input is used, so that output remains constant deminishing MRTS Two special cases production function : Two extreme cases of production functions show the possible range of input substitution in the production process Inputs to production are perfect substitutes for one another . The fixed-proportions production function , sometimes called a Leontief production function : only one combination of labor and capital can be used to produce a given output. 37
Return to scale = RTS : Rate at which output increases as inputs are increased proportionately. IRTS : Increasing returns to scale: Situation in which output more than doubles when all inputs are doubled. CRTS : constant returns to scale: Situation in which output doubles when all inputs are doubled. DRTS : decreasing returns to scale: Situation in which output less than doubles when all inputs are doubled. RTS long-run analysis with all inputs variable, the firm must also consider the best way to increase output One way to do so is to change the scale of the operation by increasing all of the inputs to production in proportion. 38