Quantum mechanics 1

ameerhamza443 2,459 views 80 slides Oct 16, 2021
Slide 1
Slide 1 of 80
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80

About This Presentation

handwritten notes of quantum 1 book by Dr.shied Hamad Bukhari, Dr.R.M.Arif Kalil, Malik Shafqat Hayat, Hafiz Umer Farooq.


Slide Content

coe, bte INES
G Sf 6 2

QUANTUM
MECHANICS- I

2nd Edition
For Students of ‘ Salient Features
> MSc Physics > Essential questions & answers
| > MSc Applied Physics > Fully solved problems
> MScElectronics > Multiple choice (MCQ's)
> MSc Mathematics > Link to online videos Ei
> BS Physics : > References and bibliography
> BS Mathematics 2 > List of essential formulas
> BS Chemistry > Alphabetical words index
gpl?
Coal anne)" PP
À e 2 &
_. lad) © (LL voue
“Corby Amar

Dr. Syed Hamad Bukhari Dr. R. M. Arif Khalil
Malik Shafgat Hayat Hafiz Umer Farooq

TOPIC: INTRODUCTION TO QuñWTum
_MECHANIC-

= DEFINATION®

is He stud:

PC debraatie's hisPaths
associated with mauelenth)
a Pacticle have dunl_nature

) ——ExPlaratiens

a
+ Pesticle have dial
__natafe tt behave

_Busticle a6 well os.

this ox, Shaw thaks- == ety

> Micsescopic —Posticles have lower warelenafn.
toctescopic Parties have smaller wunuelenath-—

Pasticle duality. =

a SIx THINGS (QUANTUM MECHANIC) =
1: Everything is made of wave! end
2- Quantum Physics. is discrete (enecss toval)-—

32 Quantum H3Sic5 iS Probablistic- (Ya 2) =
y= Quantum Physics is —non-local- _

5- Quantum Phäsics_ is mostlà. Concerned
_Smali_Pacticles.

—£- Quantum Phsics is nt magic.

with weed.

+ AAA
=> DIFFERENCE Blw_ CLASSICAL MECHANICS AUD —
_ QUANTUM _ MECHANICS 30 u
Qualls MECHANICS _|

CLASSICAL MECHANICS. |
+ Deals with macroscopic | 3. Deals with _miciase Pic
Puxticles. = | Particles. = ‘os

2- JE concesred with the |
Study of Particles whose ___
velocity Compare with —____|
|_vetocity of ignt —
velocity af light

22 ft conceso withthe _}2=
_ study ok Pasticles — —
| whose velocity ComPar

withuelocity of li pit is |

___Zeln-— — 4 —____,
@ioches
de À —— -
E
MAA —

Ii based on MAKWEL — 3. E based on MX Plans

eleckxomagnatic wave. Eheor3. theoch.
__(engcas_emit oc absafoe — | (ened emil ot absosne in
Senna Our LPacuets))

7 DANS) —
nn Ben _ >>

¡Scanned with CamScanner]

Y Based on EsTa |y- Basel on Heisenbexa ———
— Ll luncettainitss Prince _
HS also call by Debxode MI thesis — —
— Name of mEwTonIon —| #Shoraleatex wave e4uistion

MECHANIC. | e Direct_evuation —————
5- EMED RESULT | Prvabviits of Ending __
—_— Au Forces | the article
—__+ Position B_Velocits

Classical domane is
A
= ano —
a

_ Ese =
hy hc/>

met bel I
——_ meso : —

Bann > a: Wp | ———

« Planks. constant 6:63. x10" 38”
_e Direct evuation —-motion_of elections =:
Le Clagical__mechanic fail to discuse .. —

_> Velocity of Night = =

> MictoscoPic_Paxticles.
» 1905_-» Lidht have _Parkicaı nature _

[Scanned with CamScanner

8-21-2019 QuaurumMechaures

ToPic:- "Block bodY rodiatian" - —
a Ware Parhcal_dunlit :- Clormak down of clasical_mechonic) += ——
Ecol? Copiado pas

wove is. —diserioe 64. one vector À —
ze Ko ths 20 = Pen
a bis Choi that” if ive increase the mar lensth

So the wae vector wi decr
THERMAL RADIATEON __. = en

hueso -

Te_Seliotim. enitecl Goan a material
thermal Cadistion, ——

temPesstute is cal

When _.se_heat_the Solid =

[radiations eisen te he E
form of electíomaspetic_ ena | = mae ven

(because is ae to the
_electin§ that Present on she
di

xtonce which is crent bg hent sat
the Salid- So,) electrant at the Surface
Start do tadiate energy due to heat

—— Intensit3_of radistion_depend_ufon

a Temperature — TAT (int ola bina

— ws inczesse the temfetsture ine _

of distin ols increase
e Frequency
a AAA FE —
intensita of Cdi

> Classical (alure _
Closgical —mechonic explained that ener emit_or
—olcemed_in—the —ContinowS... forme ane mate.
Ve continous
aut im cealite

crense

Lee tram.

¡Scanned with CamScannen

According "; Moe form.
—— Chunta y _
—Kandized-

— So; Calossical \thesty mechanic foil

| BACK BODY + —_
black ood is the opone abs

so a pad € mile
— 0. STEFEN_BOLTZMAN LAW: ____
—_——Intensit: — Power Pezunik_ Area is Knoon_ as Intensitd- ——

if we increase the pee 2=kime | [Lea = wy
—_ khen intensity will Change (incesses) |
Ibatime { wa T*

| 2-_K vector (wave vector) rente io
r

a w ET ae |
Wert“ _ |
is Seen Waltzman Constant: — [unit — |

7777727777 … © | ru … |
| __eMcasi= _ ERS |
|

frevuenc 3

N
f Q#2-_What_is_ ut Belskion? Estotolished the 7
_Plonk's__ formula to_er Plain to_enertt _disteikutin
in black od radiation Pecirum:

o - 4

»_ Wiens form an _aPPlicable ons

for_Shostes wavelength and.

— aid Io —erplsin the tesjon_of à
cuve _fes-\onget_uauelengin.
_» RAYLEIGN UAW

I lam Sr KT Leaman Consent
Vaan Sw
e This tonos opine on forte longer wavelength.
but foil to_eaPlain the Geier cane, Fur —
hoctes wavelentih= —
——2 PLANK’S RADIATION LAW:
Planes —Pubtisheol the theor:

axe of Clasical mechaic) __ —4

in tho Sian op. ce the Porm of Packets) 0
_ ——

PODA na |
Ai is applicable (os bath louer ar Inner |
souelength=— — _
> PAQTICAL REHAVOUR DESCRIBE BY + |
+ PHOTO-ELECTRIC ERECT. 1
© ComPTON_ERECT_ - a
PALR_PRODUCTION.

PATR_ANHALLATI0
| = PHOTOELECTRIC. EFFET

DEFIWATIOV- =
The_converSion of Ant _ener&% _ into 4he

eiectulcal eneses under Same sPecific Condition
lied Photo electric esjecé-

ig

‘Scanned with CamScanner]

|» The_deuice which is. Ue do Convert the

hhto.clecbrical enesgy—hcaled Phat cell —

+ The_elechsons threat oso emited Gram __cathad _svst-nce —
age caused Phehs electron =

___ when light with (Sutiabie) freyaenez Fall =
_sunface’(cathodé) the current is estulisnad-

I is cated Onoto uen
_THRESHOLD_FREQUENCY _
IE is the minimum frequency of

Inceclent An
| umich con couse Phob-electric effect =

E= ho —

OR _
Enesgy_Per unit Plenks contant_is cated

__Hifeshold_ frequency ——
WORK= FUNCTION

| Minimum Sense es _to_enject tho __ —
_ electron from the Surface metal is
__calted Sort function

{Scanned with CamScanner]

KE MAXIMUN +

———The Pioduct of _ Sais GET, Du EN e é
——Lction=— 15 _Coned maximum k:E_ (Of Prato electrons), AE
_ __kE, se = _ u A
Kinotic_eneteyy of election. Er vn ———

1- if we increase the intensit' of waht ____.___

.

—— Hen it increase the amount of.
-Photon_in_ Fhe _beam of \iShE = +

meee we inctease Me —freouenco of —inceclent
___NiGht_if with_imesease the energy aj
A AA == o

—Eshv

of lidht-
2 GRAPHICAL RERESENT ATEO 2
—_ y FREQUENCY. VARTATIONs-

_ Ks tobi in flecks al _degond-
__uPon_ Frequency ef
it
a Number of Photons Ve
__ remain constant; it
___ Sxeuenta os \ighi inerense
election Alto inusesse ———

En hy —_—

——» IMTENSITY vARTIATON:

This _gaph _shas that

—Stoping Potential doesnot

dePenc_uPon the —intensits.

3S_cotteh_St0Ring,

_t0_Z000.

Rokential..

Rckeritio’ ot Lahid endo Eee ae ——

IS-1-209 QUANTUM MECHANICS LS

— The _Scattecind of
2-5 —vohen they,

—— fe incedent _on tne. Socedent _ ——
——teyQet_moteriat. is. Pi Scatter Proton
Called_.ComPton_effect a

= Scottered_2-30%_(Photon)_haue larger —___
——Wave_length and less ‘enes4_anel Freyuench-
| —=*Compien_effect_conferm_the particle _natuse—
ee e
> Classically,_The_wavelerathof_incedent-and
Scattered _wave_Shule_be Same
=> Quantum MecHAnics; 5 di

—Eshy a he —accosdiny_to_mordien_

lin a a
|____wiavelength_of scattec photon is enter
[then the wauelensih_of-incedent Photon.
= Dna ER EDEN _

isis encinas PC
Compton Shift eruation-

¡Scanned with CamScanner

> hhen_0.
—— ax hf1-cos0"]

mec

When 9.90?

ef G5 act am
— Ace 43 MO m. qna
AXIS Inczenses with.

Pair PRODUCTION :-
__When__hiâh._ Frevuencs
|___clecttomasynetic
——Sadiation_ Pass oda.
| gil, the indiviclual_Photon_iS_abseroed
| bo the muciess of foih-ond_the Pair of Pastis.
(ie electson—and Positron) is Produced. _ Ñ
> Minimam_enexog_cesusied fos Paix production iS
0D Me — =
+ Paix Production_is_occas_in Vaccum.
Bs me?» oosime =
+ Photon_= Election +_Position _
Foca net) tect net)
| + m,.is_the zest mass of elechron- and Pasitren
___ hve _2mc ene ener _
|. ke" and fe are the kE op Pp
Positten=

__23= his Known as _Compton. wovelenäth-

— PAIR Annihiliation=
The_inverse of Pair Production —

——i8_called Pair _annihiliation- | - -
I—When_elechzon and _posikton. a a ~~
~Come__close__thes_omihiliate— 4 AA ————+

i #e*__, 27 — E

— + gama_ toys ase also the Packet of eneldies-—

WAVE ASPECTOS.
> _de-Bmiie_ h¥Arthesis- = — +]
0 _RAdiatin_haue dial noture- # be have |
like_waue__When_it_trauel,_wave note —
_are_exPlained in _clffraction and.

——intexfesence _Phenomena.. ==
29 _behaue_like_particle_vohen it Colide-
Rasticle_nature_Can_be_exphin ey omPion.
isPsoduction_and Photo electric

Aa ss
= >
_mc=2h£/n ee tessa _|

| his relation Show hat mattes _a/S0__haue |
notuse, 7 _beha dike wove __
____when_4ravel_and__as_oparsticle when Collide

This is known ale-hrogle hy Pothesis =
| obout_ the du 1 nou Of radiation.
and matter |

¡Scanned with CamScanner]

—de-bsogie_hyfotheses ose also comfermed ——
———b9,—G_thomson. -expeximert_, Davison_——
——GEBME Expeximent= |]
according ie |, PEA — -
——————h wouelensth is_associete:
TE it mass,
> Micioscopic —Porticles __have_ Laser “wave erat

—= BOHR “MODEL: OLD QUT THEORY +
>Bohe model dives ine accurate
| —account_of the otomic_shouchute
— Os wellas_Convincing,-
——L£aplonation —for_¡Ys stabilit-
——= Rohe _ossumed that electron
———-0f_each_okom moves in_cisculac orbiWs, rl
——— Henucleus under he influence. of electrostatic
attraction_of the nucteus- _ u
———=-eleckrons_ate_Couoluine around tne _ a
n the orbit, Each _oxbit hove aie on
4 u ee fir, Ey, Epa

-anguls momentum of Me elechrn
SE np h/ar

15 4h e cadius of nth orbit.

¡Scanned with CamScanner

—>—AS_lone, _as_on_electron_cemein_in_orkit., it_—____—
——doesna&_rmadiate_electromaanetic _eneneyy=—______———
—When_etectan__aain_Some__enetryy it Sum

—— $om_\owes_enesxg State _to_\sther_energg_—__—_—
Site. pte ons, Hme en. elechren —__—_——
come ck lo is orinal place it emit
— Cheesy inform _of electro magnetic nes) —
o Energy of hi + En ————
> Energy of loo “on -

— AEs Ey=Ën = =

|__=» FRom_hkohr modie we Come to caos
Hot _Cadius and enecdy of electron is.
= -Vuonti2ed- — —

En== Mee”
A BRC EK
e Quontized vadius-
= HT ER

me

Ge yeah = osa” Om 01M Am

> WAVE EUNCTHOUs A]
_—Wwouefunction_olencted samba of" D Sal —

| > Ph¥sical_interPretation= __ A
Wave funcrion_ot__a Pswticuloc Hime Conterin.
|_ All information {hat _ontlood4 ok that Hime.

Cah_hove_ about Porticle._
Waue- Funcrion_oaly represents the - etude. a
Ehe Cidd and has_no. direct _Phissicel__|
meonin’.

hove_.a..phöfsical_meonind- D
= OBABILISTIC INTERPRETATION eee
| The probobilitW density and _\apitol*r_as_the
| Probalollitts of findio3_a Particle at time E
| in the volume element dr, ____
The_total_prolobitity of findin the “Particle
| Somewhere in_Sfoce must _lbe_e% ual to one
I > Probcbilits __olway. given in
I yl Pedoilit) desity —

Es Volume _

_ Psobabilit} E qe pu de

— fier a

[> ETA he. Maximum. Probabilikg.
| PROPERTIES OF WAVE FUNCION:

a mr finite. This__mean_Hhat_ con net |
_infinite. nun
ALCA leans _t that fae any,

Value: eee must | have om one — — |
er A 2 “|

Be ae E O

¡Scanned with CamScanner]

The_derivotive ok 4 Should _also_be continues.
— This _imPlies hot _discontinuites — in the —
= —lerivative ob y. _is_not_allawed-

5 Par

Sei

Pr

et
Po —

= HEISENBERG:
—— UNCRTAINTY PRINCICOLE + E u
Uncestaints_PxincipleexPloin_dualit3 „of matter
cnd_—matter_and_codiation-. al
— POSITION AN MOMENTUM = =
The_Position_and —momentum_ of miccoscopic Particles.
Such_as_electron-cannot- be measure with lent
ot_the Same time or-exoct_fsition. =

Change _in_momen-tum:~ = >

An + E —

Ah
ax

A ar —
a apt — E

> ENERGY AUD TEME à —
_ The_amount_0f-enesgydlusing_de-excitation —
____and-time-éntemal deexeitalion Can-hot

Te mensuse with Stent accus at the Same 1

__time-——

‘Scanned with CamScanner]

| —_multidly both_e-9 —D ond —D
LEA he XK

AE At > h. >
—these_tusro_ famous felations..shere Uncertaintg.
Celationfs re ne

‘Scanned with CamScanner]

>-An_exPeximent_wilh_waue +-—An_exPeximent with.
hove S__can_be__Seon—in__£:3_(0)_,_____—
——t_consist_of a _wiave-source_,Slit's Sand 52
——e_Wlave fronts_ form from each Sit and
———inbesfaso with each other os the vesult —
dark _and_bridht feinges are A OS
———Mhis_wW4y maxima ancl minima app esting, —————|
on_Seceen
> _An_exkasiment with electrons.
——An_exPeximent —usith—elecifons —.Can. cab be —
—— amrded_ in order to_-obsasue_how_they —____—§_
—__behoue——So,— instead —of Solid _otÿects — deu]
——_ Ol wove, we noid have a funda menti —
__Pagticle oS a Soufce-
____e-Wavelength— associated with the elecron- —
—_x=h/mv ——— e
if this condition Satisfied , Hanns enna ved
____on interfexence_ Pattern on the Screen, Just
_we observed with wave. This how
4hot_electtan behave like wave whenito |
4xayel aS the result inter serence Paktren
_ ofe _ Shown onthe Een. - mr
__ When we place a detecton bus SS
electron come out either SiS, IE will
detect from wheaïthez it is going from
which Slt: AS the —vesult on the _ _|
screen inkiference _pattren disappears-

[Scanned with CamScanner

1 SRE SCHRÔDINGER WAVE _EQUATEON =
Ihe wave equation _uhich_desasibe the Fielel_ be hand ——
— _a_a,uontum Particle 4#hiS_equation_is called
_Schtadinepe wove equations _____—
—The_sole of Schrodinger wave equation in —
Quantum mechanics _is_analoyousto_that_Newtots —
Jaws __in__classical_mechanics.__tooth_descaibe_metion-—
| __ > NEwlowu's second _law_is o differential eayustion
—_which_cleseribes__how a Particles_Moues.
|? The_Schtodinger wave equation iso Partial

| difroxentical evusttion which describe how the —
wave function representing a Iuantum.
Particle _vises and False — = -
The most gemal_form. + ‘eho wsaue_t UE —

ae: ane Gaine —— +
Js_the feucied answer-

> PROPERTIES OF THE SCHRODINGER ——
-—WAvE_ EQUATION
|-—4=Solwin’s_the_Schrottingec wave equation — mean |}
— —how _Wrt)__depend__upon_2¢_and_t_——

—— rt Theze_iS_ mixed _olerivation wet to SPace-
ae time 2— —

a Pain Aifferentinn La Om —
HS a complex equatioh..—— = 2

a COMPLEX NUMBER : a
—e_Quantum_mechonics. is Sui Of complex

(c),_namber’s_invdlving, À
omplex conjugate of cis denoted 103 c

TN — en
che CeCe.

C,is_colled the seal past. |
— Called _the_imaginary Past |
2 EULER IDENTITY — _ Y
E Coso+ eine =
a. exponential function is a monoatomic_ Function
| thot changes steadlÿ_in che direction

|_= FUNCIEONS AS VECTOR ©
__In_mathemalical _idea__q,uantum_mechanics is. Bat

— functian__can_be_treated__ in diffatent_ form af _

_ Voctos- _

_SPike_diafami-_Plor the voue in huo ~dlimention
__#_ con _also- represent

> COMDITION OF MORMALIZATION «=

if _total_probobility of Finding the particle ot ——
Position x’ at quen time Eis units, called —

notmali zation- = _ _
u — pen er ‚Such.o_woue Sunctin "|

__is_called_nasmalized. =

> CONDITION. | OF CRTHOGNALTTY =
i£_total _Probabbililty of Sindind the particle ot — —
Position ‘x! at Quen time't! is Zero, called _ nes
____ Orinoajnalit =

ARE

+0 nn
Le ¡Uan! de = o _ =
> CONDITLON_OF ORTHONOR MALIZATION « —
"The condition_of notinelizationanc_concliion
of _orthognalits together is. called
_ condition.—of _ortnonormatization -—__— ee
ik iS given o's un

eu
= E LPC GE dE =

More ote "Rossiilitie En
i) For n= nig e
pont

=_2 condition d_Notmalizshon- ——

3 LINEAR VECTOR SPACE =
-—Deggination
_——A vectoc_Spoce which ist ta e ena

—ond ollo two fides. q mathe medica is lied
——lineas_vectos_Space.—.
-i)_A_Seé_of wave function:
—— MPA 0,
il A Set of_ejden_molue-

denen urn —

The_fules of. athe matic Hex — st
—— Y) Addition_tule. it) Multiphcation rule. —
_i)_ Addition Rules: Ar
—1: if Pond Y ose the members of. ieac echt _
sface_then_W+h is also member of ineat
- vector — Space. -
—2- Commutative — Propertey Aye: li
—_——held_i-e;___ >

ces due to addition
pW +0) AR = pelo)
_—u- Zero oc_murtal vector exist ie-
W402 Ory _
2 irenicirics lunes Oe eats wollen de me ad
Ya) 20» CA) ‘
_ = W-is_the_additive_inverse—of
_ fi) MULTEPLICATIOV_RULES=-
___ The multi ponian as lo ar
ATA LES

———SPace_then_theis__lineax__Combination__ayy + bp is ___—_——.
also_ member of linear_vector_SPace_ |
— 2 _Distsibutive _Proßectr Existe —
— AY +6) = ay +ap
—Co+bly #+bp

—5- Associative _Propests ws
hold __ice;_____
AM) (ad)
_Unitasy_scolat_also_exist.
ETEC ER ES ‘a
o A (+ _ = — —

Sense mern ae

_— LECTURE # 5:- THE HILBERT SPACE, |
__ a THE HILBERT. SPACE + =
Product _uectos_sPace—Hy—in addition to
anothes_Propest's.callecl __completeness..is „alte

Hilbest Stau = =
Hilhert__ Sace canbe finite _ dimensional de
__infinite_ dimensional ( both_ Case we call it Hillbeck _

_ Sfaces) — — _
__» The Hillbert Stoce_: PEOR too _set_of elements
o —> Al set of wove-function ie; VQ) ts ==.
> ASet of einen values. ie;_avbe,d, =
_— Pilllbark_sKace_is_olenoted ts "W_— — _
Hillbetk Race follow Ihe four psoperties-— _ _
> His alineat Space: — — EIER
_All_Mingat vector Sfaces_. ose the past of hillber

ose and follows the properties of

TL inear-vector Space.

2H has_a defined_Scalor Product Mat is Strichg —____—
— Positive: - -
—a Properties:
1) The_Scalar_product_of Y with o_is_ a tobe clea —
Conjuspte_of Scalar_product_of with Y —
LOTS EN Co,
—2)The_scatar_Product_of $ with Pis linear wet
——_second fochod_ if Veafi+bY, _
— (01.0402) = afp) + (810) un _—
———ond_ anilineas srt fisst factor if
———L00 4h) 1) = A, ple (pv)
—8)The_scalac_product of vectut_y withitselg is
Positive Leal__numbe:
(9) = 19”
= His SeParable
Thece__exists__a__cauchy Seyuence Yn- E H(n=12,)-.
Such that _fos_each Y of H-and_E>0., these exirks
ok Least one Wy af Sequence _
i ET
HS Complete
re ee Wn EH converges to on
element. of H., hat is for_ang- Un,
the. Cela tion es —
Lim Ly-Wl=0__ en
fis ie reed A in ‘complete. _

=> Dirac Notation: ___
_ = Dirac._Nofatione_ ——.———_—_——— _
e psc sleep a System represented ia

{Scanned with CamScanner

-L-vantum mechanics by elements of Hilbert space: |
— these element —ase_caled state_uectors= -
— Me con @present a s3stem_in_cylindrical .ond.
SPherical _co-osdinate «System.
——Dirac introduced a-valueabple notation_—for_Stete
———urentum__mechaics-
——>Dirac introduced _the—ket_, bras. u Li Kos
———Nototion-
=> kets:- Element _ of vectos_ ir _—
—Dirac_denote__the_Stste_vector Y by the symbol
— IN) Which is called a Met vector, or simply
— Het, __ket bebng to the Hilbest Luectox) Space-
E A —
=> Bras:= Element ek. chi. 30002.
_In_quntam__mechanic_euexy —State_uectos has
dual sface- + is demoted y Symbol
—<Sl called toas vector or Simph og.
—MAHE:
For_evosy— “Ket. les these 2 exist a unique bag 40
OMA vice versa.
> BRA-KETS NOTATION.
_Ofac denoted the scalar produét of ket a BER
kof of Siete veckor BY suymiool <> Called —
—_ bea = kel’s notation. —
he _lora=Ke¥'s_notebion of Strike Keane — ——

[Scanned with CamScannerl

= The proloabilitty of particle — in tora=lUek _natedtion___|
—i8_votiten as ea re

J (oe) Mond? = HER —
~->Com dition __of _natmoliZation.

—<OCab Wot) 21 _ -

Condition of. -otthoapelitf).i- in tora Mat Notation
— M0) | pUnt) = 0 _

—=> PROPERTIES OF BRA, MET AND. BRA- KETNOTRMON:-
Every _vectoy. space has. i's_dual... In_.netation.
adopted _in_quantum_mechanics, A_mamber |
-of A vector _sface is callad._ket (13). and_on the
——othex hand, the element of the dual Séaco ——
ae denoted toy a tom (el) in_dicac_notetion, —__
The __Notaten_adopted—is_callect_Hra - Ket_notalion =
m EVERY KET HAS_A_CORRESPONDING BRA:- |

To_evexy Ket 1Y>_, there Coœesponds a

a unigyue tora <pl_ and vise_ Yesa

|_æ RRA-KET TUER-PRODUCT RULES: a

_ JU quontum mechones, Since —the scalar product —
1s_o complex __numives the ordering, matters.

oo |

coms A PATES

Kg <vie
ORTHOGONAL_SIATES: un 8
| Two kets, (1w> and 10»), ase -Saidl_tobe_
__osthogenal they have a sah
gcaar product ie
__<ylé 20

¡Scanned with CamScannen

26-11-2019 Quantum Mechanics. Lec #5

Tepic: "OPERA.
—>-PHYSICAL_MEANINO.0f DER PRODUCT
—1-To_evecy_Ket_theic. (exist)is_a unique —b6a_andl_

— far. every bias_Hheis is o unique Met

i A]
|——2- These_is a me-toone_ cres pondence bw. _
——8%S_and Kets. _ IIA

——— Hip) A boy) e le a
~———Whese,_a.ond_b_ isa complex number. — Ser
3: Te _follwsing_is_a_cammon.nebakion. |
—lo)= ay), <avl = dc] a
——t-A_Salar_Product of (Complex —conjugate is — =
I dien by, __» state veer
= — pps Coie _
5 =The_addition_propotly of Scaiar product is, —
SWlaWy+ bYs) ALU ly + bel)
Kah +a) | bib; 1). u
—= 152 MI EL SL I DER ERC HT + FD, Cot,
— 7 <A, +00) = OFC O40) + CP, dp) —_ a
8-_ SCHWARZ INEQUACZTY:- u
Fog am 4uo_Stote_lY> and ID of the Hillbed _
Space, we can Show that _
|< plo)" <¥1>< O19». ¿e
TRIAMGLE IMEUALITY- 7
_For_any toy and $ of Hilbert Soca. __.. _ u
ER eye ojyre_< Ncuie> egy
> OBSERVABLE = _A—
WHAT IS... You MEASURE TS WHAT You Know _

{Scanned with CamScannen

|=» OPERATORS» =
— A_operatoc A when applied to te Kat Ip is —
Im Hong forms _into__anethes ket 1Y> of ine Same —
Pace and_wWhenit act on ara _<hl-it
I trans fosmed _in_to_cn_othec ta <q"
Aal ___
<A BEE: -
A_wove function Comain_ol_+the inpormation—aloowt
Particle. and_wecan_9et the information.
by Aling Some _Sitabe_ cparator-
= Ayzay
a —is_the_eigen. value which is.
basically
=> EXAMPLES OF OPERATORS=.
412 Diffexential.opetator=

PEER
da ot e

out énformation

2- LAPLOCE OPERATOR
pe D ae De
2x? y.

Jeust-vclh = féxê. dA
__3- UNITY OPÉRATOR:-
leave any Mer unchanged..
_ Ama _ _ _ _ u
1- MONENTUN_ OPERATOR:-

vihon_we_afpiicd a: mathematical expression
which when

2ePlied_on_a_wWave Cunction we
can find Inponmtion clcout_momentum_a _
__Posticle is Caled mopentum operator:

The_wove_function— for

| Mumbes of woaues_ Par unit

¡Scanned with CamScanner]

| This. Con be_vutitn ob= — a

Re tha
dx
k 2
25
AA,
+R LR 7
fa aa]

A —

Bo tha ie _ q _ |
2

P_is the momentum ope ror ince __

2- ENERGY OPE RATOR- _ a
_An_opesalos_ which will _giue ¿nfoxmation about |
__eneray, when use apply iton soe Gunckion- |
y= AEE EE) se
___-diggeventiaking wird —
aug [aN Ese) u
dt oe

E ne RE
ehe > Pal Leen] ————
Ay = Wied leso\= WE

de Pb lesa ¡ES .

Drop Ypo boobh Silt _-z> _ — —

“Be “HOMILTOUTAN OPERATOR WHICH Is FREE
—— ENERGY__OPERBTOR:- (Brel cnexas_oPetohs)

——The_Sum_of "WE and_P-E_is_coted_tcko\_mechomrical
—— energy — 05_hamilitonian enezgu

ee -assecialed wi aia.

¡Scanned with CamScanner

la LECTURE . #
|» LINEAR OPERATORS 3 |
__ An _operutor À" is_sotcl_49_be_lineat if it obeys +
___the_chighCiloutive law, __
Operator A_is lineoc if, fran ae ES ll
12) omd_om complex number, we have. moe
Alay 1D) = Aly + bala». une
_ 3 HERMITIAN ADSOIWT OPERATOR:- mn
__Hexmition_operatos_1S_define_bJ relation.
_cylAtior 2 <piatl uy sun
_Hhis-operalot is Known as on jugate Square —
. _ond._is —denoled _bj_i At a
m PROPERTIES. — ai
RePlace constante _b9_ their Complex — erie PS)
CS
_RePlace Ket (bas)_bY_apsrespondiing bins (els):
land (en? 18
CA by sheis adjoint:

Y congugale

Tat at

o. laced Cae nn
Scanned with Cam Scanner

=> HERMITION OPERATOR: a =

> SKEW- HERMITION OPERATOR
An_opesatos_&_seid._to_be shes. Hesmition_operta 4

msde Fellomı _ the. Condition. o _ ieee zZ de

- Ê

—— embase = = nd a

0

5212-2019 Quantum MECHONICS Lec ##.

ToPIC:- PROTECTION OPERATOR ————
PROTECTION OPERATOR® _______
—An_operator_is said. ul à pujadas operator ———
if_its_Hesmition_edjaint ond. it’s squase is
—24ual_to tise.
pr = B_

A

—— Gesral. it_is_o ule, oP etalon;
ef I
e PROPERTIES, Fr RR OPERATOR
The_Predict of ba
À and À

commuting..prejection —eparatery =
piejectioncpesstor., since

tôt PA - AA E _
[—2) The sum of hao. Progechion_céerbts_is_ gemally nata.
| — pi) ection_perahee —— aa
B)_Thle_ Projection ppetaors.(Cttonctmal if thie product 15 —
Reto q
4) Poseo op projection operator's Bra À + ----
be waste ortlogerl_a. Piejection opetador, If

[_—— Projaction operates este matusliy_osthagnal-.

|_@ PARITY OPERATOR: _

¡ The_Spacefeflection_about Hhe_erigin_0j_the cooxdinate _
sústem_I5 Called an Inyersion os a Pariit_opzintr-

Bly
Drop nen. on_both_side;—

__TPES_of OPERA En
—There_ove_tio_types_of aa aies
)_Eveu PARTY ———— =
ODO_PARITY _ =.
à. EVEN PARITY= _ -
Parity is _Soid._tobe-euen.paritY # Em |
the Conditii

TA

2 YE) UE nn

m) ODD.MRITY _
Porit_15_said._to_be. 5 ila wit if it follows —
the condition- un it _
By = yet) = =e a
EVEN AUD_000 OPERATOR :-
— EVEN _OPERATOR = —________—___———
| An eperatos Is Saldto_be_eucn epexatos _if_iE follows.
the condition, — = —

__An_opesatos is. soil a be on add pene |
follow s. the Condit, $$
Pe A nn

-B.COMPLETE SET OF ETREN FuneT Lone
— DEFIMALIO=. ss ms
The_tineas_combination_of oxthogonal. igen function called.
~--~—-Compleke_Set__of eigenfunction. "|
—Y2_ 2 +422 + 055 =

yee By i

Gor

ab. DEGENERAT E_EIGEM_. Fuld pr
if there is _only_ one eigen fonction —cossesponding. to.
euetlyualue,_then_the eigen voue — is

|-—Len=aegenerate_ Cien fuorton ____ =

y LES O

| —DEGENRATE _ETGEN. FUCTIOW= 5 po rel

it luso digerent_oigen__functon_giue_same_eiyen vale

| under the Same operator that cigen value is

| Called —degensate _eigen_ function. =

fee Aber ER

| os2x Fr gen vaues

| d’/dz? _is_an_eigen_opetatos- _

wd fix, = dl? Sinan» -USin2x EN
de de

ee — eigen_ function |
With 2igen_value=¥
la COUDITIOU_OF_HERMICITY
| considex_on_operates Ht, we Said Hat opera as
___Hesmision operator —Y_ it_ folows He Candition: _
IA A dt |

¡Scanned with CamScanner]

—____< o)Aiy> = <Agl>
_Te_cpettes which sy 8 _above condition fs called — =

hesmition__cperatas.__—

AAA ————
_ PIC :- "POSTULATES OF QUANTUM —
| MECHANICS" u
POSTULATES OF QuANTUM MECHANICS:
Tie_foumalism of Quantum mec Hoani:s 5. based _on—
a_number_of postulates, These. postulates_cornat—_———]
be devine, there sesult get fsom- experiment
Postulote #1: STATE_OF SYSTEM: = a
JIn_Hihert_space,theStateof each phil sical_quantit) —
_is_xepresonted.b_a—state_uectos Una and time E
Postulate #2: OBSERVABLE. ANO-OPERPR-
—Everd_ physically. measusable_ysontit Ais. colled_obsevable —
__ variable fas_evert_obsensaldle. these is_cbasses paneling. —

_hincas_pesmitien_opelatox-— eee =
Postulatese3:= MEASUREMEMT AUD EIGEN = VALUES OE OPERATE
" Measulement_of -obsesvable—A_may—be sapresenteel ____
fosmoll_b} theo tion of. Aono state vectos_|¥.tu>. —|
Alyce -=On}Y0)-———— — = |

amis the eigenvalue mhishie out hfasmatin al

hh tale vache Ink ne get is tine —
— independent —— a
on. is-2igen valueof-opesatat A_—

Postulade.- #4: Time EVOLUTION OF. SYSTEM = ==
= The time evalation of 4: tem_is_gaverned by

7 schrädinger war equation Eu

¡Scanned with CamScanner]

= Kulm) = EJ — =
— When —hexmition__.opexator _ofply on (neue function) Stet
Actos, then the state vechs_tepente and we
—Set_eigen value m enesgy=

AQ] yy — __ ___
AO |e. —

sae ron PROBARIISTIC OUTCOME Œ

MEBSUREMEM =
When _mensusing_an_obsexuable _A_0.n System in state
— 1) -the_probabilit¥. -of Obtaining. nen-degexnated_
Eigen sales an,

— Tie above Yelotion_ 35 vsti fe discute facts, —
which_con_be extended to measurement À
_Yeilds o value ba one arda ona _suskm |
which is initials in state [yy
dPlar = we
da zum _
_ a UNCERTATUTY PRINCIPLE + u
__Uncex tainty _.Peinciple__ exPlein_the_ oduolity _nalare of.
___ matter and -raddiation-

Miss an 2 ue Pchameteiied He dunes —— —_
__ Wu —mmicioscopic gsm ot -macmepie— System ___

>
m POSITION AD MOMEUTUM:-— ——

—The__position__ and momentum _ a} mic Sapic— pos tides ——

— Such_as__elechent__Connot be _mersuse nit ———

— Meat accuracy at the Some A
Position,
CHANGE Ivy MOMENTUM:
——4p_s_h —

— — en = ==>

Parr 5 en e]
A E a =

Ay system those alterne is q the cides E —
ka quantum Sistem; if the indetesminacy |

Product Is much longer, the System is dessicon=_

ENERGY_ANDTIME = el

TRe_omount genes using _—dé-exeitation and time —

__ interual__0-de-exciation— cnnet-be_ mangue |
uith_gueat_occulacy al the Same time ———————

whe = he —@.

> ax

Cat ax 0 =
by 04 =0 ond = D = >

¡Scanned with CamScanner]

—How MEASUREMENT DISTURO THE SYSTEM:
—-2=IU_Classical..physics it is_possible_to._peiform:——————
—_measuse mentS_on_a_systom_wsithoutdistucbing it —
-- 2-10. Quantum. (physics) mechanics, He _measutemeat —— - —
——Piotess_pettush's the system Significanty-————=="
—B=_While_Carsing_cut_mansurement$_on_classica! ———
Systems, this_pextusbationdoes exist, but. itis ———
‘Smell_enough_thet-_con_be_neglegeble- ———__——-—--—
IN_atomic_o0% _Subofomic. System. (Quantum.
Mechanics). the_ack_of- measusement_gexnsiiy — -
——Changes_the___stote_of the Systeme —

—CouSIDER AN! EXPERIMEN. that_measure the position of
— an_eleckson in an atom fox this wo need _to_bombard
the elechen xi electfomagnatic cadiation (protons)

lf we _detexmine _ the Position Aturatels , the wovelenSth
_———_0f Xadiation_must_toe_Shosier Meno! m. mn

Photors have WiShex enesd3.- e

Hhis.not om pextuse_the position op electa de =>
lll Knock tout. completly from ¡ÉS —omoik, anal _
alam become. —ioniZed= _

| a

cad aj AE Changes Eee

stem

_m GERNALIZE PROOF OE UNCERTAIMTY PRILCIPLEr

a. The tal numbexs of Pesticies axe.
2

NE ¿My —

{Scanned with CamScanner

—2=The__ptobabilit's of _mumbess_of —Pasticles ove

EM. condition. y nesmelization Hetol_psobabilita
to_units > € “ PE

—_4-_Me_auctage-ualue -o$ Dis Bon as,

<i> = Zinc - 2.300, —
N do

L ASSINGMENT
«PHASE VELOCITY AND_GROUP VELOCITY
-b GROUP VELOCITY = _ ———

» The speec of the overall Sapa ga iad inked A
= {envelope i5_colled_gyoup velocity

|p PHASE VELOCITY 3 _
me speed at which a a GE ING of en > > _
through Space is called phase velocity
__ BY GRAPHACALYs |

D
_>EXPLANATTON
h Equation of cer: ia;
Y, 2 Sin 2x| a ve) ss

ongulaë-waue-rumbex; Ke AT/x _
A wa

¡Scanned with CamScanner]

Vie Sin (Kost) —
——oue equation of Second wave ——
— o Sinf Kadi) = (os edialt)
there is__Slightty_ -dhjfeïence _ in. wove umbet_andonguled — —
———#requency from wa yy" >
——-RESULTAUT_WAUE —
ee 000
in ua stat) + S [Ud 2 (sort) ——
As se Know Hal; Q_AA > —Á

Had = on

= — dote de galena fe

_e_Cosine term decide how the group is. wii
_Sin_term_indecate the wave mare; it indecate____
the phase velocity

¡Scanned with CamScanner]

©

GrENERALIZE PROOF OF eee —
PRIACIALE __
ta numbers of —peaticles axe — ———

een NES - _— —

_The_pscbabilits af numberof |
Ad. m
y

e conditic of. meal zation I probo TS
A
= eo.
|The ouende uote of 3 in Sven as, neers
Ao S722. ue = Zn citi

u DEVIATION _
Tre digeserco op ench_unkie_of -5-ftom_awetage
vale ef ¿dis called deviation,
es nn o
Tako_overage of deutation Value.
<a> < A= <B> = x m
OR ty 2 & 5 ec
naiss A PU =
_= IRFERY LIE

S0;_L a Nas constant.

Change —— - = |

| VARIANCE +
— Auazage of _ ee ere - ee
_Lasiances =
ca a ee

— 0 = Etap = ETRE PG) ae A
£ {5% $52? ES DE
Ex Pe) E SPU) + INER —
= <> = 2E52¢5> TA SE
<> = „ae e 25>
ESAS =
| is is the fastest to compute he varie
_Simpl¢_calculate_<.3* >_and_<32*_anal_Substiect-—_——
a STAUDARD. DEVIATION: — —
___ The__$q.uase_xoot—of variance. is cole pe

___ deuiation._— PP. —_

ee is ESS = = a ==

alias
| THE UNCERTAINTY PRINCIPL + ——— _

— In1922_Getman_Phtseist Heisenberg_Inttaduces tra — —

A ___________—__— _
Be gemeizad fam of uncestointS —psinciple of ha a
obsesuabie And Bis — A

Er mo |

¡Scanned with CamScanner]

She << (Acá
> = 1 (4-<A)> 2
£le <y(A-<Ay)> nn ee

—m_FoR observable A the uasionce is --
592 <(8-< ANY) = La] —_—___——

—<o}-s_<(6=<8>)y)
J9>-2\(a=<8)y> _

Now-use _the_Schworz_in eat
— LE rd) lot A o
ch SCS A

alar 5

Foc_the_complex. number _z.
121? = CAES EN (Ina

ERO ah Tall pg A

“a a-éb - _

À = dtib=préb EE
yo o A E E -

Magnitude_af Complex number

le, te SS
ize ig 0

za b* ie aso

A ie ve i

‘Scanned with CamScannen

a
—2* = <a» _ BEER

en

— E22 = <A PPAYS
= <y\ Cz <= ON
So ÄB-Ä 68> Bears Ama) >
= kW Á By) =<8> y] Au>-<ardy By + LAK BI
—<H93-= SÁB) <B> >= 095% + SC =
SEI) =_<ÄB>- <AX8> se
| STIMTLARLYs
a <(8=<.8>)y| (A= art

— Sal €: <8. <AILB> _

| Put the values of < £19> one <1 hey 8,
50,2 ate -[eáb>- <a) (<BÄ>- a

a & pes cases = Ahr ré}
= fi b> cat]

LA BL= <A8>-<3A>

= ——
aa] 2 —_

42019 Quantum MEHANTC IE #0_

—ToPlic- _Sciwadindec_EQuATION—one ——————
—_ Stationacy Stokes ——_—_—. =
La SCHRODINGER EQUATIOU.- IE
—Schcodingec_eayiuation—i& very — important equation
in quantum mechanics because very difficult —
HaSkKS con eig Saleh 183 this equration. Be
——de..Breglie's__pacricies is Siuen_ a, —
O TO 7 cel
Wwhece_ox)_iS_a_porition ren Pera
%_khe_time dependent -
ds _Homiltonian_operator_on—wave function
Wat) then, a
Az t) = EY.

¿Rp —
ot

po = Wofín_= Ey.
ES

: 7 ee
Hs DU Zum. V peu. Et.

wies. Loy De ergo - u
“then we get —

> Ten + Vena CK Bft)
ENTRE fa Dt

giScanned with CamScanner]

2
ES ESTAN = Beh nn a
_2m so: a

7 the. era “pi

= DV — Epo)=0.
am ae

Do) + E2M Vos 20
2x? K -
PU + Jo ——_—_—
a = 5 =
Oy +key =o —
(2D Y =o — -
m4 = 0 -
me Kk CIS
Ve nn —
met K = 7 - ~

©
Quantum MECHANIC HEC RS

TOPIC RAISING AND LOWERIUG LANDER
— OPERATOR.
m-Calculate

how» —much.encr99 _ increases or decreases.
—due io the _oPPlication af towering and ising
lander. -oPerator-

— Cosider a —porticiein_Scound Siete having ener,
E_,this__Patticle_are_xeloted with wave function “y
—bY_Schtdingec weve eyuntion..
fips ey
“His_c_caising operator”
wihen-raising_lander _ operator
Wit step upit's state the
represent as) qu”

we—hove_to find the ences of Particle

applied on-Me_wswefuction.
mas Site can be

— FIND THE ENERGY oF 4 PARTICLE I TMS MEW.
SITES, =

Alga)

À is a ing. lander_oferator

se]: aa au +Lhyo,y
= (ga + ho _ E

_ 2(99 +45) y BE
u

«0a Knows Mati,

Lees te]eu)= edo] siya
_ fiveew 7

[32 &ho]@e)zgeu hos
= fesse
=festubgp
His Shostak when mue pied the anising
Lander__ of rator Particle with ste? uP Potential
seve function. becomes_it's_enex8s incre

—LOWERTUG ANDER
OPERATOR =

mils
[ga + he) (aw) = [E tw) ay

Ibis es show that ishen_we oPtlied the tours
Jandec_cPetatoc Particle with Step down Catential

sanction ecomes. its anes deccanses WA

= QUANTUM =
MECHANIC
TOPIC: AUGULAR

——— MUMELTUM.
> LINEAR momEnTum:

Te 2uontits of melon aboli ia caled moment
53 neston_tmos ie Demi. it is a uector—
— Mantils _and is unit is King” -
=>-AUGULAR MOMENTUM a e
—The—duontits anol awualtt\_of the motion of the bod —
iS Called _momentuan
QuotitY__depandl_ fon mass
Quant detencl_ufon—vetocit's
* The vector product of
——fediuis_vector E is cal
—2rfloc_enomentum
#5_linese_momentum. $ is _atonse.
fhe_tongental__ a9 Lo

liocac —romentumn

—pÎi

odias.
vector À so 8.2 %!*

is ¢x6_« cpsime - Cosinac

Co = cmu_ -

jr Le mur it_is_o vector _ ant
And is Si untis komis”
Nel bebe medal Mur: m/e eshece Miso DlankS constant.
m ANGULAR MOMENTUM IN. SRRIESTEN,
- COORDINATE SYSTEM +
AS_election_revelves.ofeuncl_Uhe_wucleus—
in—cisculos—écbits,

we-haye to develop _opetatacs
for calculatind the -obital
an Sata mementum_ of eleckrons= __

|___ComParing_|

|< (Ye, =2P,) = (00-28) ————
BEITRETEN) 2
LE -S Px) — À
k= @ =
the ae of Oand 0
A Na of —petator—

oo

La 8x8 = 4%) ¿ft _
> ANGULAR MOMELTUM In) SPHERICAL _

COOROINATE - SYSTEM = 1

¡Scanned with CamScanner]

—elechton._con__algo,-be_describeol__

<ootdinates- >

FE rr $
CA

lb A)

2
sr 2

e y Copcdirate-
[Scanned with CamScannel

COMPONENT OF AGUILAR
—MUMEMTUM e E
—The _unit Uectors (21.4 Xecms op Sphecicol

Coocainate system IS Siven 54 —

¿e sino sinpêe ccoccsg 8 = sino

i= Sine sino + cose sing + (hd

Reset ned...

Compa. cli ug)

29 Sino

Sing

= ie 2-+ ei

Her + COSO cosp. 3) ==

[Scanned with CamScanner

I7=1-2020_____ QuontumMECHAMICS _
TOPIC: AUGULAR MumenTur
-6:3-—COMMUTATION RELATIONS.

Since _À.3 nd mutuo commute ancl Sa do —
Lx By and Ez

16 two operators computes
— they om hais Some eiñen A
2 Commutation_relation
—momentum $

between Position © ond \ineor.

id

A A hi

Hhis_sesulk _Shons._thot uve _ore_nct_alole_to_ determing

— Position and_lineat__ momentum _Simutanenual.
dtop_ bothside fem will Jet=
ERA

Sum -

ee, ALA à Cube
a_Comnutation_reletion blew Position? and anular

(Bi - Pa)
= 81e 8 612.9) - 212, Gb
Ps 2L — 29 —0 ASIA (A B)-Caser_
alió Abe Pa _
ap = Row = CET

A AA AA AAA u

ae vas sep ue ea

—— and „linear. _ momentum__Simultane ous - zus |
—2ut_all_uolues_én_eg,
- Lila) =0x0

MERMA ns
EICHE LEE Bt BEER.
_ = o+0-Glech)=

(ca. —

3- EN 12,20% CES -

= (%, 201-122 Bal _ e
2 SLA Ba a Bul 23] - 212,801 ~ ICH IE
___ 2 2{ék)+0-0-0 — a
— Calle ESPE 2 = ee

TABLE — _ =>

~ Gylaleo [la dt A
Trade tides — izle CS
tad = hi ll _ alla net

Hence, Commutation _cetation. blo Position TÉ and anfulor_——

_momentum_T_represents thet Anese_two operators — —

_commutes when both operators have the Same

_ components ———_—_—-—
teo - do not compute _ratnen ath. Pernt haut

he different Components

¡Scanned with CamScanner

@ Commutation elation. jus. linear and. onaulor
2 (Brsinls (6, 8-28) 1
[BGB] (61,581 NE

SR NEN ENTE TEEN WENE —

9+0-0-0 20

— nana Pa (ét)
CAN ES x8,

= Ba Le (Ba, 28, 58)
CATA KENT E
= ALB ER I A
+ byàr) =0.-0.

| ie 12 Bi) ¿eh
Puri) > is by

I These tecate Shows Mob =

|} —1=-these_tuso_opesators_commutes._ this shows that i

|= comfbnent_of both _momentum_P_and_anSular
——mumentuin..L__can__be_mensute_Simuttaneous-

=— these to opecslods non commutes, Haig shows
Aha. x Component. of momentum and. 4 -conponent —
| of anaubr mamentum_L cannot be measure
Simultaneously -

3- these two oPeralors non commutes, this shows, Mat

—%_comPonent,_of _momentuny_onnc_-comPonert _

~ — ef _andulorc momentum L_conck_be —mesture _
____ Simultaneous =

eR Pa Cote] o
——this__ Shows hat ff two (both) oPeretors ace

——-then_.commute _other_ wise not commtite ee

B_Connutotion. ‘elation au “comPonen’s Ps EU :
momentum- E. Lu: iba 28,
vs BEREITET
—[A.8,c.0) = fls.do+ clAı0lae ___ un

Lusty) [987 204, 2002260)
— (58,204) - (48,26) - (28,,28]:(28y 28).
2 3B. 2] A460, Al? (BAT - Pola (bd
— fy(2bd2- +2 (By) 8+ REALS a
Sito = -0-0-0-=0 +0+Py HZ a A —
— 9G.» By)
ir =
NARA —

| {iy tele kl A o

_ lr tale fly A EB
this _shass thet component of —arfulec__momentum 1 _donct
Commutes —___ ps =

Brenn {Scanned with CamScanner aa

2
1-2. 2020 Quart Mers hex WS.
TOPIC.» "ZEEMAW EFFECT
o_ZEEMAU EFFECT;-

Splilind af Spectra lines

(esoctarsPoR TAN THA

into_Secunt__components,
_the_qesence—of-—smaqnetic_field (Best) is ——
— Known 08__Zeemea._egect.
e STARK EFFECT

Splitina,

Of Spectral lines _ into.

seca components.

—hthc_prerence of elechtic field (Gore) 13360000,
Stack ego es en

Reemon_effeck iS analedus da Stack

> ZEEMAN. EFFECT à
de

egect-

5 Strond_conkridcitier
ZEEMAN,

— °

— Morea ZEEMAN.
EFFECT
a NORMAL ZEEMAN. EFFECT:-

ANOMALOUS. ZEEMAN
EFFECT

y SPi0 of election _i$_Rera— Ira + 1 +0

i_Each_enesos _leuel._ SONES. iodo an edd number (2441) of

Euas_Sfaced level. sa

it)_tormal_zeeman_ef fect is ooserved when Spectcal
line of an atom split in do Hate lines under

a madneric field (Sem)
DER, den 4 2 —
dot mex 0.44

een manes
ad

© ANOMALOUS. ZEEMAA EFFECT

D_SPin_of electron is non Zero 1 #4.
| Each_enecs._level_SPltt_in_to_an__even_number =

(232) of on unevualY SPaced _tevel -

ii] Anomalous Zeeman effect _is_observed when-a
‘SPecha\_tine_of an_atom__<Alit into mere_then.
ihre lines under_a_meanet field (Bent)

nee.
401,2

Lena 2
Mp=-0,11,22

pren external madnetic_fiete

PAS

ne manebie fed
pire

Des

mend

Meer

me
e_ZEEMAN. ENERGY. (PERTURBATION) =
HanhurBen- Fs Bo one mem
Hz (elie = fs) Bent. E -
a. la
Bong 6 Beng PER;
Nesative San means that- His \
alas opposite_to—S_oc-L. £
L «Bent chacde on
Han [E Ea): óun ds

£l+2e
am im

fürs)

À

DE Bent

BA, magnetic dite

mo

‘momar

>> —Reemen__sPlitiss.dePend___upon_the went.
—Crtecnal_masnetic field (Be) is_compacision
ssith_intecaal_maanelic_tield= —

——___He He He ents
THREE CASES:
4-Weeks= Field Zeeman effect = (Bent cc Bint) —

Best-<< Bim — then fine ruche dominate and He
San-be_trested 05 man Peharbalion.

Strong fied_Xeeman_esgectre (Bera » But)
—Bent-33_8,, hen — Zeeman. effect is dominate
—And_ fine Scrnchute_ con toe centred as Sat

Puros tion.

3-—IMtermidicte. field Zeeman. egpecte (Ben = 6,

Boxy By 50 100 nel Abe pal manbinen

f-degernate —peturbation Aheoed-

LECHS Tr Bozous, FERMIONS. we
> SYMETRIC .AVO_AUESYMETRIC WAVE. Function.

For_ideritcal _Bartices_ there oe une different tone

Sanction.

2).84metric wave. function.

2)_ Anti sYmettic_usave function.
— 4) SYMETATC_wAVE_EuNeTION

We ms Hu + won "ence ga

= | ca Wace Yue sul

Warren]
% + Wanna) |

Hhis_ksPc ob come function Is Knaus as

Symeitic wave function =

~2)_ ANTE SYMETRIC WAVE FUNCTION +
——Wa-=. = Appa sal

|_repiace 12 —
> 22

A | at ya = Vorl ac.

cs = cuco]

Hhis_t4te_of soaveganction_is called amti=S metro
weave function:

i)_fecmions.

_ofe_onti_sumeltic_wove function
ii)_for_identical__pacticles;

Wy = lef Uc Yat) tr tH

Ya.2-0. ——
this Show Hat. two. identical Pacticie

cannat be
_exist in same State.

_ ji)_Fetmions have half integre Spin 3 eleciton |
Ki pe A

Eier a

_iv)_FecmionS—obe¥. Poli's exclusion Peincipie-

__Two_ identical —Pactitles_(fermionS) election in
__an atom. an not bein. same_Stote-
e BOZONS=_. A
il Bozons oe _SiSmettic we function
fi) We = + Walt) RCA) + pet Pat —— PP.

_for_identical perds = i
E [+ Pps) Yl) + Pac) po al ef an)

¡Scanned with CamScanner]

also readl_ trom _book-

this show that hoo _ientioal__pattides... Can. be
exist_in Ihe _Same__state,
il Bozens have ui) integral spine: —Photon-oyalo 23h
iv)_Bozesdoes_not_cloeyPoli_exclusive „principle
becouse_— tuo_édentien particles con be
exist in Ihe Same State. — =

e GEOMETRICAL REPRESENTATION OF ANGULAR —
MOMENTUM _ + :
Eor_a_Sixed_ value of), the total_andulac_momentum
À mai be cepresented_by_a vector whose tenth
E KGa)
— 2 Component af an. anular _—momeetum_is_ presented
Such ce
Ee ee na seen 16
2-3 ane. = =
Classical; represent a vector Loose
end_point's_.\ies_.on the cirele of —cadius.
ATI cotatin3 _alondp_Ahe-_ Surface of cone
> Ris 2 BE
I HRG ARG = Ek Fes min
Ip 2 IA 99 26K
Nie 0,21,22,216. e

Si Saxo

¡Scanned with CamScannen

-4:2-2020 Quantum mechanics.

TOPIC: Autre momen ser —

— GERNAL FORMALISM . 0F_AUGUUR. MOMENTUM» —
—andulac_momertumopetator_S=f+8 thor define

44 _three_components Sars Fyand dey which
} ——Salisps_the flowing —commrstation relations

Li. E ES
= pe

3 a, E
15% Ju]=o
wheres Ing, e and Tse
lali Hecmition.. > a
EIGENSTATE _AND_EIGEN VALUE =
OF Je:

rn let ly) is he -ei3en she and
Bis she eigen vue for-Z=
=combonent of -ondular momentum.
Falu>=Bly>
Äh dp BY
de

_ du > PB dp >
WW SER
inteatate_locth Side-
= diya. _<B{d¢.
WR

A-is just à cyçecert term _
— if pe) is the point ina wave u
Aisa Reciod-_cepest Liye 22m) ZZ
— piers Iwtgs2ey — =
| TRE TE

ache ace ORE L
ee

Mj>0,1,2,——' So compare _vailn_ above eq uation.

E =
Er

= dB a = impar
K

B- mi
E
= mk eiden ane = =
eisen state em ice be rien inthe em aj m
MD Acme lan.
x

RAISING Au LOWERIUG OPERATOR:
Vaisino oPerator 3,
LouecinS_ Pacstor À

—= ER

Sie nei 3-255)
La ¿bue

Js
(Bis dba
isn il —
——— "à RE
ust lll IS +5, +hjz
tds SHE

¡Scanned with CamScanner

Is O —
Tsd ARA =~ any. ==> mn
rtfäh- dé -
— J and on ons

Tr: +) +3
is AAN
is Mb

(5051+ (5.32540
— el

a AS AN
ail = ohn

6-2-2020

Quanilans mM. lec ws
MECHAVICS.

—RPIC:-_ MATRIX REPRESENTATION of _—
ANGULAR Moen iT

— ud mb ide

— 05 we know thet Mp) 2 AE
e_magnetic_quantum mmber—
— dependind_on£—
So.

ch rhone for —

»2j41_also

te,

lp
ML ii | prom Lt a a

al mjsAitle All 3

this is cur matrix

SW. Se
rol eli)

Pl Ar) —

oC What Set Wy, 01)
<Wuol-Jeh-Yrr0)

PA

rod Teh py)
o) Sob Par) 5

nous concluce values

2) da miel, del miso 000.00. - —

2 O)K Bund

_MATRLX _RERESENATION =

Tuy =i S41)

AS_we Know ther WI = Ae, agent upon the
| magnetic Sonn number me 2jsl dus afro

depending on hu So, 112 con nie

Fim: EL jay Luo

ni both

2, fo Leg

u ld LEW Citar |
Unold — UT Apo pol ar
Ley Sg |

y Scanned with CamScanney

6)

Moro conclude the..values; . .— ——

itl FLY gis EN

——See_fi9_in___Quarkum mechanics -1_ Page Hg _

82-2020 __ Quorum mechonics =
TOPIC :-_SPIV AUGULAR Momentum _ 6
BSPIN_AVGULAR MomeuTUMs af
—When_a_ articles _Tevowves _in_ciecular Path _ about its
—— an axis is caned Spin and _momentum Sp ———
Particle due to_sein_metion._is__called Sin anular

momentum.

e EXPERIMENTAL EVIDENCE oF SPIVt

—mza_Xeto field Pattcen..

a EXPERIMENTAL
Resutt

À oven —
Co = >

PhoteamPhic
- = Pte —

___S seins (rest)

se +» incon Anke om
too orientations
| Steca_ond Gertach in 1922 petçorm an ———

experiment: to verify the SPin_of_electfon. —
They have_use_ siluec_alem_ocem. - SilveC_stom —

_contoin_47_elecians, #7" elec ion Semaín_uapbic |
this_is_occugies_in_6S_ottoital — accacclir on
Schorodingee case ec his leer Naue to seit |
in hong one component,

font esas hy Change... bee wa spNt
— ndo hoo comment
this Puel save ti Goudamit and embeds, —
4e 3 ostia hat thece da alo ON AS _——_____——~
— ANAL _ Momentum. ed as sein _anSulat.
Momentum. -
a > a
nihece; me
“is _an_an3ulac_mementum..
Vis ne charge
+m is_a_imss,cis_o SReech of tight -
E _ _

where Bg TC
—is_coted she lande factor,
—»—Those_pasticles which _ have (Spin) inteScasQio.

| gs 011,2, <=: called Bosons —
——> Those acticles wuhich- have helf dd Integral Pin
oe Sr —are_caled_as _Fermions. —

a PAULI SPIN MATRICES:
FOR Pacticles hauins Fin dy Paul Ideen

____~ Mateices _Matices such x E90. ae
| which are tlotedt - spin. MA
BA on
I Commutation. elation —
eee KS, 184.5.
IN CES AS

DETTE mE:

Suns Km [06m —

¡Scanned with CamScanner]

Ihe _Pauii_sPin _mmpadtices are _

EEE

NA-12-2020-__ QuAVUMMECHANEES ————"

ToPIc__ QuauTum_ NUMBERS.
QUANTUM MUMBERS:-_ Quant numbe(s —afe-
the Set of numerical Values which Nes ——

ne complete information „about nn „eleriten
sitar mar hen

non atome =
numbers —io-clesctibe.

— Thee ore four Iuantum-
90 electron—Ín an atom
i) Principal Quantum number Co).
1 AZi mutha _ Quantum number 60).
ii]_tAAGNETIC Quantum number (ne)
Spin Quansum numbec 5)

i) PRINCIPAL QUANTUM NUMBER:
accor ding to — oht_Iheoch _energs of electrons.
in there orbits are YuamiZed mean each
orbit have fixed_eneray, a =
Enz=18:6.eu
racliu Sof elöchton From Auceus also ponia.

Yo" don? where 99.2 O SRAXAS ra

Principle — aan namie is ted Wh
PET FRE FL anne
— Deil_+.K:Shell_
eB» Shell
etection_ shell formula;
_+ Ke shell
2612 electóon

ee A
2ta1*> elecion _

+ = Shen nes __
23> 2 I elecivans

— NN shell m
264}? = 32 elections ___

Li AZIMUTHAL QUANTUM NUMBER: —
——The_elecicons-has-—ardlac onomendumn hen ils —
—Sevolues _orouncA the —nuclems- The angulac mamentum
of an electron ar douldY QuentiZedl in mañnäude
and_citection- _madntude of angulac_momentuna
-is_dlenoted 4." ¢!' AZimudil quantum number —
Lis use —to_olescaibe...the. Shape- of arhitals:
ond._it!s _Ualuec_clepond._upon Piincple quantum.
_num ber-

ii) MAGNIT1c- QUPATUM_NuME: — mn.
Te __enSular_momentum of an elechon is —doublY
_quanti Zeck —in_maSnitucle_anl. ob@ction_. the
quantize d.._olivection...of. orbital__anQulac momentum
is discribed b4 maSnetic Quantum number —
db is oemted bd "my" — _ —
magnetic —yuan: _ number use 1 enf lai

_ the magnetic Properties of electrons ol

AA —

¡Scanned with CamScanner]

ms 041,42,

iv) SPIU_QUAUTIUM NUMBER:

—The_electsons_in_the_exbitk hag hao ties of

——MotionCalled__oxbltal_motion— MA SPN_fnotion=___

Spin quantum number _is use to descúle

— the _Sein__motion of an electron. _
2 is Jlenoted_bY_.ms-

with _ posite. “sin.
—— SD, A, 0. em

ely 120, My 0 y m6.

See he table fam beak Quart MECHANIC | (2) Pye
A148

‘Scanned with CamScanner]